
Ping SDKs
July 2, 2025

SDKS

Copyright

All product technical documentation is
Ping Identity Corporation
1001 17th Street, Suite 100
Denver, CO 80202
U.S.A.

Refer to https://docs.pingidentity.com for the most current product documentation.

Trademark

Ping Identity, the Ping Identity logo, PingAccess, PingFederate, PingID, PingDirectory, PingDataGovernance, PingIntelligence, and
PingOne are registered trademarks of Ping Identity Corporation ("Ping Identity"). All other trademarks or registered trademarks
are the property of their respective owners.

Disclaimer

The information provided in Ping Identity product documentation is provided "as is" without warranty of any kind. Ping Identity
disclaims all warranties, either express or implied, including the warranties of merchantability and fitness for a particular
purpose. In no event shall Ping Identity or its suppliers be liable for any damages whatsoever including direct, indirect, incidental,
consequential, loss of business profits or special damages, even if Ping Identity or its suppliers have been advised of the
possibility of such damages. Some states do not allow the exclusion or limitation of liability for consequential or incidental
damages so the foregoing limitation may not apply.

Table of Contents

About the Ping SDKs . 10
New name for the ForgeRock SDKs . 15
Designing a protected system . 16
Securing your system . 28

Token and key security . 29
Authentication security . 31
Data security . 32
OAuth 2.0 security . 32

Release Notes . 33
What’s New . 50

Ping SDK for Android changelog . 66
Ping SDK for iOS changelog . 73
Ping SDK for JavaScript changelog . 79
DaVinci client changelog . 83
Login Widget changelog . 85
Token Vault changelog . 86

Limitations . 87
Incompatible changes . 89
Deprecated . 94
Interface stability . 94
Getting support . 96

Compatibility . 97

Introduction . 114
Compatibility . 121
Configuration . 133

Configure Ping SDK properties . 136
Android . 137
iOS . 144
JavaScript . 150

Configure logging . 155
Customize REST calls . 162
Customize storage . 173
Enable SSL/certificate pinning . 182

Tutorials . 186
Ping SDKs . 189

Ping SDK for Android . 190
Quick start . 190

Before you begin . 192
Step 1. Download the samples . 198

Step 2. Configure connection properties 199
Step 3. Test the app . 202

Deep dive . 205
Before you begin . 207
Step 1. Configure the development environment 214
Step 2. Configure connection properties 218
Step 3. Initialize the SDK . 220
Step 4. Create a status view . 221
Step 5. Add login and logout calls 225
Step 6. Create UI to handle the callbacks 227
Step 7. Test the app . 235

Ping SDK for iOS . 237
Before you begin . 238
Step 1. Download the samples . 244
Step 2. Configure connection properties . 245
Step 3. Test the app . 250

Ping SDK for JavaScript . 254
Before you begin . 255
Step 1. Download the samples . 264
Step 2. Install the dependencies . 264
Step 3. Configure connection properties . 265
Step 4. Test the app . 269

Platform integrations . 271
Angular . 271

Before you begin . 273
Step 1. Download the samples . 283
Step 2. Configure connection properties . 285
Step 3. Build and run the projects . 286
Step 4. Implement the Ping SDK . 287

Flutter (iOS) . 305
Before you begin . 308
Step 1. Download the samples . 314
Step 2. Configure the projects . 315
Step 3. Configure connection properties . 315
Step 4. Build and run the project . 316
Step 5. Implement the iOS bridge code . 319
Step 6. Implement the UI in Flutter . 326

ReactJS . 338
Before you begin . 341
Step 1. Download the samples . 351
Step 2. Configure connection properties . 353
Step 3. Build and run the projects . 354
Step 4. Implement authentication using the Ping SDK 356
Step 5. Start an OAuth 2.0 flow . 365

Step 6. Manage access tokens . 371
Step 7. Handle logout requests . 376
Step 8. Test the app . 377

React Native (iOS) . 381
Before you begin . 383
Step 1. Download the samples . 389
Step 2. Configure the projects . 390
Step 3. Configure connection properties . 391
Step 4. Build and run the project . 392
Step 5. Implement the iOS bridge code . 395
Step 6. Implement the UI in React Native . 402

Use cases . 418
Implement PingOne Protect for risk evaluations . 425

Step 1. Set up the servers . 427
Step 2. Install dependencies . 437
Step 3. Develop the client app . 439

Implement user profile self-service . 446
Implement device self-service . 464
Implement mobile biometrics . 473

Prerequisites . 476
Prepare the server . 477
Biometrics using the Ping SDK for Android . 479

Associate your app with your server . 479
Configure biometric authentication journeys 484
Configure the Ping SDK for Android for WebAuthn 488
Register a WebAuthn device . 489
Authenticate by using a WebAuthn device . 491
Handle WebAuthn errors . 494
Unregister a WebAuthn device . 495

Biometrics using the Ping SDK for iOS . 496
Prepare an apple-app-site-association file . 496
Configure biometric authentication journeys 497
Register a WebAuthn device . 498
Authenticate by using a WebAuthn device . 503
Error handling . 506
Unregister a WebAuthn device . 507

Implement web biometrics . 508
Prepare for web biometrics . 512
Handle web biometrics . 513

Implement passwordless with passkeys . 514
Implement device binding . 529
Implement device profiling . 553

Prepare the server . 554
Uniquely identifying devices . 558

Device profiling in Android apps . 561
Device profiling in iOS apps . 569
Device profiling in JavaScript apps . 577
Prevent auditing of device data . 582

Implement social login . 583
Configure social login identity providers . 585
Set up PingOne Advanced Identity Cloud for social login 592
Set up social login in Android apps . 598
Set up social login in iOS apps . 602
Set up social login in JavaScript apps . 608

Implement magic links . 609
Implement transactional authorization . 613
Implement QR Codes . 619
Implement Google reCAPTCHA Enterprise . 620

API reference . 627
Troubleshooting . 629

Introduction . 635
Compatibility . 640

Default DaVinci client headers . 648

Getting Started . 649
Installing the DaVinci client . 651
Configure DaVinci client properties . 654

DaVinci Client for Android . 655
DaVinci Client for iOS . 657
DaVinci Client for JavaScript . 659

Localize the client UI . 660

Tutorials . 666
DaVinci Client for Android tutorials . 669

Quick start . 670
Before you begin . 671
Step 1. Download the samples . 675
Step 2. Configure the sample app . 675
Step 3. Test the app . 683

Deep dive . 689
DaVinci Client for iOS tutorials . 694

Quick start . 695
Before you begin . 696
Step 1. Download the samples . 700
Step 2. Configure the sample app . 700
Step 3. Test the app . 702

Deep dive . 709

DaVinci Client for JavaScript tutorials . 716
Quick start . 717

Before you begin . 718
Step 1. Download the samples . 722
Step 2. Install the dependencies . 722
Step 3. Configure connection properties . 722
Step 4. Test the app . 723

Deep dive . 728

Use Cases . 736
Setup social sign on . 738

Before you begin . 740
Configure client apps for social sign-on . 751

Android . 751
iOS . 759
JavaScript . 763

API Reference . 766

Introduction . 768
Configuration . 772

Configure OIDC login . 774
Android . 775
iOS . 780
JavaScript . 786

Choose journeys with ACR values . 787

Tutorials . 790
Android . 792

PingOne . 793
Before you begin . 794
Step 1. Download the samples . 798
Step 2. Configure connection properties . 799
Step 3. Test the app . 803

PingOne Advanced Identity Cloud . 807
Before you begin . 808
Step 1. Download the samples . 812
Step 2. Configure connection properties . 812
Step 3. Test the app . 814

PingAM . 817
Before you begin . 818
Step 1. Download the samples . 822
Step 2. Configure connection properties . 822
Step 3. Test the app . 824

PingFederate . 827
Before you begin . 828
Step 1. Download the samples . 831

Step 2. Configure connection properties . 831
Step 3. Test the app . 834

iOS . 837
PingOne . 838

Before you begin . 839
Step 1. Download the samples . 843
Step 2. Configure connection properties . 844
Step 3. Test the app . 848

PingOne Advanced Identity Cloud . 854
Before you begin . 855
Step 1. Download the samples . 859
Step 2. Configure connection properties . 859
Step 3. Test the app . 863

PingAM . 868
Before you begin . 869
Step 1. Download the samples . 872
Step 2. Configure connection properties . 873
Step 3. Test the app . 877

PingFederate . 882
Before you begin . 883
Step 1. Download the samples . 886
Step 2. Configure connection properties . 886
Step 3. Test the app . 890

JavaScript . 895
PingOne . 896

Before you begin . 897
Step 1. Download the samples . 901
Step 2. Install the Ping SDK . 902
Step 3. Configure connection properties . 902
Step 4. Test the app . 905

PingOne Advanced Identity Cloud . 906
Before you begin . 908
Step 1. Download the samples . 912
Step 2. Install the Ping SDK . 913
Step 3. Configure connection properties . 914
Step 4. Test the app . 915

PingAM . 917
Before you begin . 918
Step 1. Download the samples . 922
Step 2. Install the Ping SDK . 923
Step 3. Configure connection properties . 923
Step 4. Test the app . 925

PingFederate . 926
Before you begin . 928

Step 1. Download the samples . 930
Step 2. Install the Ping SDK . 931
Step 3. Configure connection properties . 931
Step 4. Test the app . 933

Use cases . 935
Creating a custom UI app to share across OIDC apps . 937

Before you begin . 941
Part 1. Configuring your PingAM server or PingOne Advanced Identity Cloud tenant. 949
Part 2. Running the JavaScript custom UI sample app 955
Part 3. Running a client sample app . 957

Introduction . 975
Tutorial . 980

Step 1. Install the widget . 990
Step 2. Configure the CSS . 991
Step 3. Import the widget . 993
Step 4. Configure the SDK . 994
Step 5. Instantiate the widget . 999
Step 6. Start a journey . 1003
Step 7. Subscribe to events . 1006

Customize the theme . 1009
Use cases . 1015

Log in with social authentication . 1017
Log in with OATH one-time passwords . 1019
Implement a CAPTCHA . 1020
Suspend journeys with "magic links" . 1024

Integrations . 1026
Integrate with PingOne Protect for risk evaluations . 1028

Step 1. Set up the servers . 1029
Step 2. Configure the Ping (ForgeRock) Login Widget for PingOne Protect 1039

Integrate Login Widget into a React app . 1042

API reference . 1056

Introduction . 1072
Use cases . 1074

Implement MFA using push notifications . 1078
Implement MFA using OATH one-time passwords . 1098
Secure the Authenticator app using policies . 1111

Troubleshooting . 1113
Recover after replacing a lost device . 1115
Recover after a device becomes out of sync . 1115

Reset registered devices over REST . 1116

Introduction . 1118
Getting started . 1121

Set up your Ping (ForgeRock) Authenticator module project . 1123
Initialize the Ping (ForgeRock) Authenticator module . 1125
Customize the storage client . 1126

Use cases . 1130
Integrate MFA using push notifications . 1133

Step 1. Configure Push notifications for Android . 1135
Step 2. Configure Push notifications for iOS . 1137
Step 3. Configure Push notifications in AWS . 1138
Configure a server for push notifications . 1143
Step 5: Configure the app for push notifications . 1150
Step 6. Configure the Ping (ForgeRock) Authenticator module for push notifications. 1154

Integrate MFA using OATH one-time passwords . 1166
Integrate authenticator app policies . 1169

API reference . 1173

Introduction . 1175
Getting started . 1180

Configure the server . 1182
Prepare for Token Vault . 1187
Implement Token Vault code . 1190
Access resources using Token Vault . 1194

Tutorial . 1196
Troubleshooting . 1227

What is available?

Our mission is to hide the complexity of underlying protocols and simplify your experience of integrating with Ping products.

We offer products that help developers build secure digital experiences, bringing apps to market faster and reducing costs and
risk.

New name for the ForgeRock SDKs
The SDKs are being optimized to support diverse use cases across the entire Ping portfolio.

With a unified, modular architecture the Ping SDKs empower developers to seamlessly integrate any service, feature, or
functionality into their apps, enabling quick and efficient access to the full range of Ping capabilities.

Learn more about the new name for the SDKs.

What is available? Ping SDKs

12 Copyright © 2025 Ping Identity Corporation

Ping SDKs

Our software development kits (SDKs) help you build secure digital experiences faster, for Android, iOS, and in JavaScript.

The SDKs enable you to easily integrate authentication, OAuth 2.0, registration, and self-service into your apps.

Ping SDKs for Authentication Journeys

PingOne Advanced Identity Cloud PingAM

Integrate the Ping SDKs with PingOne Advanced Identity Cloud or PingAM for an embedded (in-app) experience.

Learn more 

DaVinci client for DaVinci Flows

PingOne DaVinci

Integrate with DaVinci flows by using a web or native app in PingOne for an embedded (in-app) experience.

Learn more 

Ping SDKs for OIDC (centralized) login

PingOne PingOne Advanced Identity Cloud PingAM PingFederate OpenID Connect 1.0

Login to your apps using a browser-redirect, leveraging your server’s own UI, or by creating your own UI, in a centralized
(single) location.

Can be used with any OIDC-compliant server, including PingOne, PingOne Advanced Identity Cloud, PingAM, or
PingFederate.

Learn more 

api

Ping SDKs What is available?

Copyright © 2025 Ping Identity Corporation 13

Ping (ForgeRock) Login Widget

PingOne Advanced Identity Cloud PingAM

The Ping (ForgeRock) Login Widget is an all-inclusive UI component to help you add authentication, user registration, and
other self-service journeys into your web applications.

The Ping (ForgeRock) Login Widget is only compatible with PingOne Advanced Identity Cloud and PingAM.

You can use the Ping (ForgeRock) Login Widget within React, Vue, Angular and a number of other modern JavaScript
frameworks, as well as vanilla JavaScript.

Ping (ForgeRock) Login Widget 

ForgeRock Authenticator

PingOne Advanced Identity Cloud PingAM

ForgeRock Authenticator is a multi-factor authentication application.

Users can download the application for Android and iOS and use it as part of their PingOne Advanced Identity Cloud and
PingAM authentication journeys.

ForgeRock Authenticator 

Token Vault (Plugin)

OAuth 2.0 OpenID Connect 1.0

Implemented as a plugin for the Ping SDK for JavaScript, Token Vault provides a feature called origin isolation.

Token Vault provides an additional layer of security for storing and using OAuth 2.0 and OpenID Connect 1.0 tokens in your
JavaScript single-page applications (SPAs).

Token Vault (Plugin) 

desktop_windows

smartphone

key

What is available? Ping SDKs

14 Copyright © 2025 Ping Identity Corporation

Ping (ForgeRock) Authenticator module

PingOne Advanced Identity Cloud PingAM

The Ping (ForgeRock) Authenticator module helps you build the functionality of the ForgeRock Authenticator application
into your own Android and iOS apps. The ForgeRock Authenticator works with both PingOne Advanced Identity Cloud and
PingAM.

The module supports time-based one-time passwords (TOTP), HMAC-based one-time password (HOTP), and Push
notifications.

Ping (ForgeRock) Authenticator module 

New name for the ForgeRock SDKs

What is the new name of the SDKs?

The new name for the ForgeRock SDKs is the Ping SDKs.

Why is the name being changed?

The SDKs are being optimized to support diverse use cases across the entire Ping portfolio. With a unified, modular architecture
the Ping SDKs empower developers to seamlessly integrate any service, feature, or functionality into their apps, enabling quick
and efficient access to the full range of Ping capabilities.

Figure 1. ForgeRock SDKs now known as the Ping SDKs

This furthers the commitment of a combined product offering, so you can continue to create the solutions you need. This means
continued support for PingOne Advanced Identity Cloud, PingAM, as well as enabling other solutions such as PingOne DaVinci.

What other changes should I be aware of?

The existing ForgeRock Login Widget and ForgeRock Authenticator Module continue to provide support for PingOne Advanced
Identity Cloud and PingAM exclusively; however, to align with the new naming conventions as well as to keep the server it
supports intuitive, the names are slightly changing:

The ForgeRock Login Widget is now the Ping (ForgeRock) Login Widget.

grid_view

•

Ping SDKs What is available?

Copyright © 2025 Ping Identity Corporation 15

The ForgeRock Authenticator Module is now the Ping (ForgeRock) Authenticator module.

The ForgeRock Token Vault is now Token Vault as you can use it with the Ping SDK for JavaScript for any server type, as long as
the server is OAuth 2.0/OIDC compliant. This means that the Token Vault, when used in conjunction with the Ping SDK for
JavaScript, supports and can be used with PingOne, PingOne Advanced Identity Cloud, or PingAM.

Design a protected system

Authentication, sessions, cookies, OAuth 2.0, authorization code flow, and so on. This page explains how to make sense of the
complexity.

The modern system

In the early days, we wrote a single application that did it all. The gorgeous monolith! It did everything: handled user requests,
authenticated users, rendered UIs, queried data directly from the database, served files, managed user sessions… everything.
This could have been an application built with Rails, Spring, Node.js, but that’s no longer a representation of a "modern system".

We now live in a world where "monolith" is a bad word. Everything has been split out into microservices, SPAs (single-page web
app), PWAs (Progressive Web App), native mobile apps, with other functionality delegated to a FaaS, PaaS, or SaaS (Functions,
Platform or Software as a Service).

This new design has given us a greater sense of organization and tooling to focus on solving the unique, novel problems
independently of the common ones. Experts can now be responsible for their relative domains within their own repository or
project. If a company does not employ an expert of a required domain, it can now "outsource" it to be managed by another
company.

Unfortunately, this new paradigm comes with its own set of problems. Architecture diagrams now illustrate a complex web of
distributed components that are simple in isolation, but hard to reason about when viewed holistically. Due to this distributed
nature, the system now comes with more surface area to protect from unwanted access.

In a world where everything is a tap or click-of-the-finger away, it’s more important than ever to ensure the right fingers have
access to the right data. Knowing the basics of a protected system is no longer optional. Developers, product managers, IT
professionals, all need to have a good grasp of the fundamentals.

Let’s cover the basics to ensure we keep our data convenient but private and our users happy but safe.

What is a protected system?

In most modern, enterprise cases, "the system" will consist of a diverse collection of entities, but let’s start with the most simple
use case (not quite a system, but bear with me): the monolith.

•

What is available? Ping SDKs

16 Copyright © 2025 Ping Identity Corporation

Single, "full-stack", server-side application

Figure 1. Architecture diagram of a monolith

This single application was responsible for everything, including identity and access management. These were applications
common around the turn of the century. Though these "systems" still exist, they are becoming much less common as they are
very hard to manage and engineer at large scale.

To take some baby steps, let’s consider one step up from this monolith, and separate out access management from the monolith.

Ping SDKs What is available?

Copyright © 2025 Ping Identity Corporation 17

Figure 2. Architecture diagram of a monolith paired with access management app

In this design, you have two entities:

Protected, full-stack, server-side application: An application managing the resources you want protected.

Access management application: An application managing all identity and access concerns.

The beauty of this system is how it scales. If you decide to add another protected application to the system, you just delegate the
access related needs to the access management application. (There are other great benefits to this, but let’s save that for another
article.) The new application introduced to the system could be a web app, mobile app, REST API service app, GraphQL app…
anything that potentially serves up a protected resource.

In an effort to avoid having to rebuild such a vital function over and over with each new app, you "connect them" to your access
management app. This dramatically reduces the surface area of risk in complex systems.

What’s more, this serves the users better. It means they log in once, and have access to everything their role or privileges allow.
With me so far? Okay, let’s go a bit further.

What’s a common system design?

In modern system architectures, it’s quite common to split the full-stack application into a backend with multiple, client-side apps,
often one per platform: iOS, Android, Web. In these situations, it’s advantageous to keep all data related concerns of our
protected app within a central API server—often referred to as a "service". Each client app requests data via an API. This prevents
business logic duplication across multiple applications and simplifies client-side development.

Let’s add these multiple client-side apps as a generic entity to our system from above. We now have three distinct entity types as
our "protected app" has been split into two application types:

Protected client-side applications (Mobile and Web)

1.

2.

1.

What is available? Ping SDKs

18 Copyright © 2025 Ping Identity Corporation

Protected server-side, resource API service

Access management application

The main access responsibility of the protected client apps and the API service is to distinguish authenticated users from
unauthenticated ones. This ensures those without access get denied, and converted to users with access by directing them to the
access management app.

Let’s break down the responsibility of each.

Client-side apps

The role of a protected client-side app is to not only distinguish between authenticated and unauthenticated users, but to assist
in converting unauthenticated users into authenticated with as little friction as necessary.

An app will typically have both public and private portions. The simplest way to protect the private portion is by route, page or
view. The protected routes will often have a reusable function that’s run before any response is given, often referred to as
"middleware". This function checks if the user has access by sending the access artifact, like a session cookie, to the access
management app for validation. If the validation succeeds, the app continues processing the request; if not, the app will redirect
the user to the login page.

This can be something as simple as this:

2.

3.

Ping SDKs What is available?

Copyright © 2025 Ping Identity Corporation 19

// Using a common client-side, middleware-style pattern (session-based example)
async function isAuthenticated(context, next) {
 const authResponse = await request(sessionValidateEndpoint);

 if (authResponse.valid) {
 next(); // continue with processing request
 } else {
 redirect(authenticationUrl); // send user to login
 }
}

routes('accounts/balances', isAuthenticated, (context) => {
 render(changePasswordForm);
});

Even though this client-side application cannot guarantee access protection, the implementation of such protection on the client
increases user-experience and performance. It also reduces unnecessary requests to the underlying services.

Resource API services

The role of a protected resource API service is to be the final arbiter for protecting access to resources within the system. Since
we can’t fully trust our client-side applications, our resource API will need to duplicate the same check for authentication.

It will use the authentication artifact sent from the client with every request to validate the access to the requested resource. If
validation passes, process the request. If it fails, send a 401 error message, and let the client-side app appropriately handle the
issue:

// Using a Node.js middleware-style pattern (session-based example)
async function isAuthenticated(req, res, next) {
 const authResponse = await request(sessionValidateEndpoint);

 if (authResponse.valid) {
 next(); // continue with processing request
 } else {
 res.status(401).send(); // respond with 401 unauthorized
 }
}

routes.get('accounts/balances', isAuthenticated, (req, res) => {
 const balances = db.query('balances');

 res.json(balances);
});

warning
It’s important to know that protected client-side apps are not truly secure, and should not have embedded within
them protected resources, secrets or private keys. They are inherently vulnerable as the entire codebase is sent to the
user agent—a device outside of your control—to be executed, so all code is subject to manipulation.

Warning

What is available? Ping SDKs

20 Copyright © 2025 Ping Identity Corporation

Access management application

The access management (generic) application has the most important role in a protected system. It manages users, login,
sessions, authorization, password management, and so on, all of which are vital functions.

At the simplest level, here are the main responsibilities of the application:

Handles redirection from client-side apps for login, redirecting users back to the respective application upon completion.

Provides an API for session/artifact validation.

Provides an API for termination of session or artifact.

In situations where the above responsibilities exceed your level of comfort or skill set, it’s often a good idea to delegate these
responsibilities to a platform service provider, like ForgeRock. Our services and products allow you to focus on the novel aspects
of your application development, and delegate the complexities of identity management (users, things, devices, and more), and
access management (what those identities can do) to us.

Let’s see how adopting Ping for our access management changes our system.

Integrate into a protected system

We provide a powerful, configurable Identity and Access Management solution out of the box. Whether it’s an PingOne Advanced
Identity Cloud tenant; self-hosted, cloud-ready container; or individual on-premise products, our products can provide a great
solution for nearly any system. For simplicity, let’s go with the PingOne Advanced Identity Cloud solution for the rest of this article.

PingOne Advanced Identity Cloud comes with its own login flow, registration and self-service journeys, as well as all the APIs
needed for validation, refreshing, termination, authorization and more. This all-in-one solution works perfect for internal
solutions or get-up-and-running quickly situations. But eventually, most companies want their user-facing experience to be fully
customizable to suit their branding requirements.

If I’m redirecting my users to ForgeRock’s platform, how do I provide a fully branded experience?

In ForgeRock’s PingOne Advanced Identity Cloud, you can choose how much control you want over your UIs. You can use it as-is,
"theme" the provided UIs, or build your own UI using the underlying APIs and our open-source SDKs.

Build a branded UX with PingOne Advanced Identity Cloud and the SDKs

A fully branded experience means moving the responsibility of rendering the user authentication journey from PingOne
Advanced Identity Cloud to an app that you will build. To facilitate this, we provide the Ping SDK for native Android and iOS apps,
and for JavaScript application development. This allows you to easily integrate APIs into a new or existing app.

There are two choices for fully customizing the user experience:

Move the user authentication experience into each protected app, providing a native UX.

Move the user authentication experience into a single web app to centralize the login experience.

warning
The above is route-level protection, which may not be granular enough for your system. Object-level protection, an
increase in access control precision, may be required for your system but is outside the scope of this article.

Warning

•

•

•

1.

2.

Ping SDKs What is available?

Copyright © 2025 Ping Identity Corporation 21

In both cases, our SDKs will help in developing these experiences. But, before we move on, it’s important to know that your
overall system has a significant impact on what choice suits you best.

What’s your intended system design?

There are a few important points to consider when choosing how to protect your system:

How many client-side apps will need protecting?

Are all your apps and services served from a single domain?

Will there be any third-party apps or services that will need protection?

Let’s dive into each concern and how it impacts your system.

How many client-side apps need protecting?

Say you have one app for each major platform: a web app, an iOS app, and an Android app. If the number of apps will not
increase, you may want to develop the user experience for login, registration, and so on, within each app. This ensures that each
app has full control over the best user experience for that platform.

By using our SDKs, you can more efficiently develop a dynamically responsive UI, handling each step within an authentication
journey. This just slightly changes our client-side app’s responsibilities.

Rather than redirecting unauthenticated users away from our application, we now just internally route the user to our native
login experience. But, we will still continue to validate the user’s session upon each navigation of our app.

Figure 3. Architecture diagram of a SPA with Embedded Login and access management app

1.

2.

3.

What is available? Ping SDKs

22 Copyright © 2025 Ping Identity Corporation

But, we have dozens/hundreds of client-side applications! We don’t have the resources to update all of them.

Now, if you have many apps, and each app needs to have within it a login (not to mention registration) flow, that’s a lot of
duplication. This will inevitably become a maintainability challenge, and a security liability as it increases your attack surface.
Within this context, we need to go one step further.

To deal with this challenge, it’s often recommended to extract the login (and possibly registration, self-service) related
responsibilities out of the client-side apps, and build a single web app exclusively around this functionality. All front-end
applications (mobile and web) can now redirect to this one, central application. This reduces your surface area for security
liabilities as well as reduces duplication across your system.

Let’s take a look at the system now:

Protected client-side apps (mobile & web)

Protected resource API services

Authentication (login, registration & self-service) web app

PingOne Advanced Identity Cloud

Figure 4. Architecture diagram of a SPA for resource app, a SPA for the login app, resource API server and access management app

With this design, we are now starting to organize the system components by scope of responsibility. For mobile applications,
they’ll have the availability of using the browser to authenticate, being redirected back to the native app when complete. Web
apps will do a full redirect to the authentication app and a redirect back when done. Single sign-on functionality is provided out-
of-the-box, as the browser is the shared platform for authentication between all apps, native or otherwise, on the user’s device.

1.

2.

3.

4.

Ping SDKs What is available?

Copyright © 2025 Ping Identity Corporation 23

This provides a more scalable system that’s optimized with apps having a more focused set of responsibilities while still providing
full control over your brand and UX. Now that we have the core system design out of the way, let’s discuss how all of these
components will be hosted.

How are you hosting all these applications?

Simply put, are all the applications in the above system on the same host? For example:

mydomain.com/auth

mydomain.com/app

mydomain.com/api

Another example would be the use of unique subdomains all on the same parent domain:

auth.mydomain.com

app.mydomain.com

api.mydomain.com

If using either of the two patterns, a session-based system may work well for you. Sessions are frequently based on browser
cookies, which are fundamentally restricted by the host or parent domain.

On the other hand, you may be using different hosts across your apps:

auth-server.com

web-app.com

rest-server.com

This will constrain your options as session-based auth (driven by cookies) will be a challenge with apps on multiple hosts. An
OAuth-based system is well-designed for this particular environment as it uses access tokens as the artifact passed around in the
system, rather than a cookie.

But, before we dive into OAuth 2.0, let’s discuss one more aspect of our system.

Any third-party companies involved?

Do you intend to extend access of your protected system to any third-party companies? For example, you may want to allow an
application or service from an external company to interact with your protected system. For this, you likely want to restrict the
scope of capabilities for these external entities, making an OAuth-based system a better choice.

What’s OAuth and why is it better than session-based access with diverse hosting environments and third-party entities? Let’s
differentiate these two models.

Let’s talk about access models (session v. OAuth)

To keep things simple, let’s focus on two of the most common models of access: session-based and OAuth-based. Your system
design, discussed above, should strongly influence the type of access model you want to implement, but it’s not the only factor in
making the choice.

•

•

•

•

•

•

•

•

•

What is available? Ping SDKs

24 Copyright © 2025 Ping Identity Corporation

Additional factors that can influence your access modeling are a bit more advanced and out of scope for this article, but they
include:

Transaction authorization (aka policy enforcement)

Finer control over expiry times and access lifetimes

Finer control over scope of access or privileges

Look out for more information about these factors in a future article. For the rest of this article, let’s talk a bit more about the
basics of two foundational access models.

Session-based (cookies) access

The session-based model traditionally uses the HTTP cookie as its artifact. It’s one of the oldest models for the web as the cookie
was invented around the mid 1990’s (though not originally for authentication). The HTTP cookie is a relatively simple way to
persist data (a simple string of text) within a Web browser. This small piece of information is stored natively in the browser, and is
tightly bound to the domain of the HTTP request the browser made to the server.

Let’s use a simple example:

There’s a web app running on https://dashboard.example.com , and an access management application running on https://
auth.example.com . After making a request to the access management app to login, a "session cookie" gets added to the browser.
This cookie is written because the server sent back a Set-Cookie header, so the cookie gets written to the full domain of the
server, auth.example.com , or the parent domain, example.com .

Example of browser cookie storage:

-------------------- -------------------- --------------------
COOKIE NAME VALUE DOMAIN

session_id AJi4QfFBCMzK3QFm... .example.com
-------------------- -------------------- --------------------

Now that we have this cookie, all requests from that browser to example.com (even subdomains that share the same parent) will
contain a cookie header with its value. It’s worth noting that this "Just Works" as it’s a seamless, almost invisible, mechanism of
the browser.

Example of request with cookie:

GET https://auth.example.com/sessions/validate

HEADERS
content-type: application/json
cookie: session_id=AJi4QfFBCMzK3Qc...s9dg7f6hyGHD
origin: https://dashboard.example.com

This means you can have multiple apps running on multiple subdomains. As long the same parent or root domain is used, this
session cookie will be sent automatically.

1.

2.

3.

Ping SDKs What is available?

Copyright © 2025 Ping Identity Corporation 25

For example:

www.example.com

accounts.example.com

profile.example.com

tasks.example.com

With servers running on:

auth.example.com

data.example.com

As long as all apps, both client and server, are running on the same parent domain (example.com), you can configure cookies to
work with this setup. In this case, we would configure the cookie to be written to the parent domain, example.com for the highest
amount of flexibility. Your applications can then have their own subdomains and will still receive the cookie (many browsers store
this as .example.com).

If you have apps running on different domains, say auth.example.com and data.userbase.com , this model unfortunately does
not work. The cookies written for auth.example.com would not be sent to our data.userbase.com server. In this case, OAuth
provides better support.

OAuth 2.0-based access

OAuth is an industry standard for handling authorization and has been around since the late 2000’s. OAuth 2.0 is the most recent
specification of the protocol and is a large rework from the original. In this writing, any reference to OAuth will always refer to the
2.0 specification.

OAuth is a complex specification and has many variations and nuances. The details of which are beyond the scope of this article,
so we will focus only on the basics.

The core artifact of OAuth is the access token, and like the value stored in a cookie for sessions, it is frequently just a simple string
of text (sometimes called a JWT). But, unlike the cookie, the browser does not have a native concept of an access token, so
obtaining and managing an Access Token doesn’t automatically happen within a browser.

•

•

•

•

•

•

info
The downside to this model is the tight coupling of cookies with their respective domains.

Note

warning
Third-party cookies: it’s worth noting that there’s still a nuance with cookies being written when browser-based apps
(SPAs) are running on a different domain than the servers.
These cookies are considered "Third-Party Cookies", and have been an important function of how the Web worked for
years. Unfortunately, most browsers will disable this functionality within the next few years, so relying on it will be
risky.
Safari has already disabled third-party cookies by default.

Warning

What is available? Ping SDKs

26 Copyright © 2025 Ping Identity Corporation

https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749

There are some choices about how to store and send the access tokens within a system. For the Web, as a simple example,
sessionStorage or localStorage can often be used to store the token. Access Tokens are also not automatically sent along
with all HTTP requests, so how one writes this token to HTTP requests is also something to be considered. Luckily, the industry
has already standardized around best practices.

So, why is OAuth 2.0 better than session-based cookies in certain circumstances?

OAuth is often mentioned in situations where you have third-party applications and services, or a multi-host setup with varying
domains. This is because of its granularity of permissions (for security/privacy) and complete decoupling from domains. This
provides more control over how it behaves. At the end of the day, an access token is just an opaque string that’s passed around
the system, frequently called a "bearer token", and written to the Authorization header of requests.

Example of request with authorization header:

GET https://rest.resource.com/activity

HEADERS
content-type: application/json
authorization: Bearer 3QcIFmU6r0q43U...LJKf807
origin: https://dashboard.example.com

Using OAuth doesn’t dramatically change your system design. The basic principles of how it’s used doesn’t significantly diverge
from the session-based model. You are still obtaining an access artifact from a server, passing it to APIs, and validating it where
necessary. The additional responsibilities with Access Tokens are storing it and removing it as needed.

For example, here are some minor changes to the middleware example from above:

// Using Node.js middleware-style pattern (oauth-based example)
async function isAuthorized(req, res, next) {
 const authResponse = await request(oauthIntrospectionEndpoint);

 if (authResponse.access) {
 next(); // continue with processing request
 } else {
 res.redirect(authorizationUrl); // send to authorization
 }
}

routes.get('accounts/balances', isAuthorized, (req, res) => {
 res.render(changePasswordForm);
});

info
There are other tokens frequently mentioned in texts about OAuth that are beyond the scope of this article, like
refresh tokens and ID tokens. These tokens will not be covered in order to keep this article more introductory.

Note

Ping SDKs What is available?

Copyright © 2025 Ping Identity Corporation 27

The only remaining difference between the OAuth and session-based model is the fact that an OAuth token has to be specially
obtained from your access management application. The most common flow for attaining an access token is called the
authorization code flow, and involves an additional interaction with the server after the user successfully authenticates.

The good thing is you do not have to reinvent the wheel to implement OAuth within your applications. PingOne Advanced Identity
Cloud and SDKs abstract away the need for requesting, storing, sharing, and revoking the access token, leaving you with more
time to build the novel aspects of your applications.

What’s the best design to protect my system?

The answer is… well, it depends. As discussed above, there are quite a few important aspects to the kind of system we are
discussing and the future plans for your products. Hopefully, after reading through the basics articulated above, you have a
better, foundational understanding of what it means to design a protected system.

If things are still a bit fuzzy, don’t worry. The good news is that Ping can help by providing the best tools and guidance to ensure
you have the right information to make the best choice for you.

Security

The Ping SDKs are built from the ground up to use best practices for securing token material and data.

Security is a very broad subject, and every environment is different. Readers are expected to do their own research and
complement the information found in these topics.

info
Validating access tokens can also be done without a network request. We refer to these as "stateless" tokens. They
can be introspected with a JWT decoding library for validation.

Note

Tokens and keys

Learn how the Ping SDKs secure your session
and OAuth 2.0-related tokens, and the

encryption used.



Authentication

Discover the protocols the Ping SDKs use when
your app authenticates your users.



What is available? Ping SDKs

28 Copyright © 2025 Ping Identity Corporation

Token and key security

The Ping SDKs handle and store keys and tokens based on the security best practices of each platform.

Token storage

Depending on the authentication use case, the SDKs will potentially have to store and be able to retrieve the session cookie, ID
tokens, access tokens, and refresh tokens.

Each token is serving a different use case, and as such how the SDKs handle them can be different.

The following sections cover how the SDKs handle different types of tokens.

Session tokens and cookies

On Android and iOS, the session tokens are stored in either the Android keystore or iOS keychain after authentication
completes. The tokens are encrypted using a hardware-backed security key when possible and can be retrieved by the
SDK on request.

When using the Ping SDK for JavaScript, cookies are stored in the browser’s cookie storage. The cookie name matches the
one provided by PingAM (such as iPlanetDirectoryPro) and its value is the actual session token. When making requests
to PingAM, the value is passed as an authentication cookie. This cookie is configured with the HTTPOnly and Secure
attributes, which provide additional layers of security.

ID, access, and refresh tokens

On Android and iOS when authorization is completed any OAuth 2.0-related tokens are stored securely locally, encrypted
using a hardware-backed security key when possible and can be retrieved by the SDK on request. Tokens are not
configured as cloud sharable by default.

When using the Ping SDK for JavaScript, the OAuth 2.0 Tokens are stored by using one of the web storage APIs provided by
the browser. By default, this uses the browser’s localStorage , but the SDK also supports sessionStorage .

Data

What data do the Ping SDKs use, and what
security measures help to protect it.



OAuth 2.0

See how the Ping SDKs use Proof Key for Code
Exchange (PKCE) to mitigate the risks of an

OAuth 2.0 attack.



•

•

•

•

Ping SDKs What is available?

Copyright © 2025 Ping Identity Corporation 29

https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://stash.forgerock.org/projects/DX/repos/sdks-docs/pull-requests/119/overview
https://stash.forgerock.org/projects/DX/repos/sdks-docs/pull-requests/119/overview

In addition to built-in storage schemes, Android and JavaScript app developers can provide a custom storage mechanism that can
be passed to the SDK. Learn more in Customize storage on JavaScript.

Token lifecycle

The session and OAuth 2.0-related tokens the SDKs handle all have associated expiry times. When a token reaches its expiry time
it becomes unusable.

A feature of the SDKs is that they manage the refresh of OAuth 2.0 tokens. The timing of the refresh is based on a threshold value
to improve the end-user experience. The SDKs refresh tokens automatically when the token is requested from storage to be used
in your application and its expiry is within the threshold.

In the case of access tokens, if a refresh token is present, then the Android and iOS SDKs will use it to obtain a new access token.
If the refresh token cannot be used, is not present, or if it has expired, then the SDKs fall back to using the session token to start a
new OAuth 2.0 flow.

When an OAuth 2.0 or session token expires, the SDK removes any respective tokens from the secure storage and performs a
cleanup. The Android and iOS SDKs also check if the current session token is the same one used to obtain the OAuth 2.0 tokens.
In case of a mismatch, then these orphaned tokens are cleaned.

When using SDK logout methods to perform a Logout event, the SDKs revoke existing OAuth 2.0 tokens, revoke the session, and
perform a local cleanup. If the SDKs are unable to revoke the session at the server—for example the network is unavailable—then
the SDKs remove the tokens from local storage.

When using the Ping SDK for JavaScript, if an access token expires within the threshold limit or returns an HTTP 401
Unauthorized error, the SDK attempts to renew it using the same session cookie that was performing the authorization code
OAuth 2.0 flow.

The Ping SDK for JavaScript calls the endSession and session?action=logout endpoints during logout, as well as calling
revoke whenever you use FRUser.logout . This ensures that the server invalidates the session cookie.

emergency_home
We recommend that JavaScript single-page applications do not use refresh tokens or any other long-running
authorization elements due to the potentially unsecure nature of the storage mechanisms provided by
browsers.

Important

info
The SDKs do not handle the refresh of session tokens. If a session token has expired, the app needs to re-authenticate
the user.

Note

info
The Ping SDK for JavaScript has no direct control over the session cookie; it can only make requests to the browser
that may or may not be acted upon. Instead, it must rely on the server to manage the cookie removal.

Note

What is available? Ping SDKs

30 Copyright © 2025 Ping Identity Corporation

Encryption key storage

On supported platforms and devices, the Ping SDKs generate Hardware-Backed encryption keys, and uses them to encrypt and
store tokens. This provides an extra level of security against attacks.

The Ping SDK for iOS uses the kSecKeyAlgorithmECIESEncryptionCofactorX963SHA256AESGCM encryption algorithm. The
key is stored in the Secure Enclave.

On unsupported devices, the SDK cannot not enforce hardware-backed encryption and will save the tokens in the iOS
keychain.

The Ping SDK for Android uses a number of different algorithms, depending on the OS version and device functionality. It
supports the following encryptors:

AndroidLEncryptor : RSA

AndroidMEncryptor : AES

AndroidNEncryptor : Similar to M, with the addition of setting setInvalidatedByBiometricEnrollment to true

AndroidPEncryptor : Similar to N, with the addition of using Android Strongbox

Hardware-backed key storage and encryption

Both the Android and iOS SDKs use platform-provided methods to create hardware-backed encryption keys.

On iOS the SDK creates keys within the SecuredKey.swift class. If SecuredKey generation fails, the KeychainManager
generates the KeychainService with no SecuredKey . The values in this case will be added to the iOS keychain as
kSecClassGenericPassword types.

If SecuredKey creation is successful then the value is encrypted before being stored. The SecuredKey.swift class
provides an isAvailable() public method that validates whether creation of the SecuredKey using Secure Enclave is
available on the device or not.

On Android, the SDK uses DefaultTokenManager and DefaultSingleSignOnManager for storing tokens, in addition to
SecuredSharedPreferences on supported devices.

Depending on the Android version, the SDK can use more specific encryptors. For more information, see getEncryptor .
For information about the different encryptor classes, see the auth folder in GitHub.

Authentication security

The Ping SDKs provide two methods for implementing authentication in your applications:

Auth journey (embedded) login

The app developer is responsible for building the login and registration UI.

•

•

◦

◦

◦

◦

•

lightbulb_2
The SDKs also support devices that do not have Secure Enclave or other hardware-backed encryption
functionality.

Tip

•

Ping SDKs What is available?

Copyright © 2025 Ping Identity Corporation 31

https://github.com/ForgeRock/forgerock-ios-sdk/blob/develop/FRCore/FRCore/Keychain/SecuredKey.swift#L63
https://github.com/ForgeRock/forgerock-ios-sdk/blob/develop/FRCore/FRCore/Keychain/SecuredKey.swift#L63
https://github.com/ForgeRock/forgerock-android-sdk/blob/develop/forgerock-core/src/main/java/org/forgerock/android/auth/Encryptor.kt#L36
https://github.com/ForgeRock/forgerock-android-sdk/blob/develop/forgerock-core/src/main/java/org/forgerock/android/auth/Encryptor.kt#L36
https://github.com/ForgeRock/forgerock-android-sdk/tree/develop/forgerock-core/src/main/java/org/forgerock/android/auth
https://github.com/ForgeRock/forgerock-android-sdk/tree/develop/forgerock-core/src/main/java/org/forgerock/android/auth

Uses the Authorization code grant with PKCE flow, based on RFC7636.

When using auth journeys for authentication, the SDKs do not store user credentials on the device or in the browser.

OIDC (centralized) login

We provide a central login UI that app developers can use with a redirect for JavaScript apps, or by using an in-app
browser in Android and iOS applications.

Android and iOS use the OAuth 2.0 for Native Apps, based on RFC8252, which is recommended way for third-party
applications to authenticate in terms of security, as user credentials are never exposed to the third-party web or native
application.

Both options have their merits and drawbacks, and the choice usually depends on your use case. For more information, refer to:

Auth journey (embedded) login

OIDC (centralized) login

The Ping SDKs also use the following protocols for authentication:

WebAuthn for Mobile and Web Biometrics

Based on the WebAuthn W3C spec.

The Ping SDK for iOS uses a custom implementation of the protocol that has been created to offer backward
compatibility older iOS versions including iOS 12. For more information, see Supported operating systems.

The Ping SDK for Android uses the Google FIDO2 API.

Data security

The Ping SDKs do not save or load any user data, such as username or password, or personal information in memory. The only
stored keys and data are the Session and OAuth 2.0 tokens required for authentication, and security-related certificates hashes.

The Ping SDKs for iOS and Android support SSL Pinning. The certificate information used is passed in the form of certificate key
hashes in the SDKs configuration file. This means you do not have to bundle certificates with your iOS .ipa or Android .apk
files.

OAuth 2.0 security with PKCE

Proof Key for Code Exchange (PKCE) mitigates the risks of an OAuth 2.0 attack. Without PKCE, a malicious application running in
the same browser as your public client app could compromise the security of your app.

It is good practice to use PKCE for native apps and SPAs, because the code is stored on browsers and devices. Without PKCE,
you’d have to include a client secret in those public-facing apps. For enhanced security, you should use PKCE whenever you have
the option to use it.

How PKCE works

Your app, with the help of our code, generates a code_verifier (nonce). When a user make a request, your app creates a hash
of that code_verifier as a code_challenge . ForgeRock, as an authorization server, saves the hash value.

•

•

•

•

What is available? Ping SDKs

32 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-authz-grant-pkce.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-authz-grant-pkce.html
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc8252
https://datatracker.ietf.org/doc/html/rfc8252
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://developers.google.com/identity/fido/android/native-apps
https://developers.google.com/identity/fido/android/native-apps

After the hash is confirmed as valid, your app exchanges its authorization code grant for an access token. Your client app, as the
bearer, can use the token to access to the user’s resources.

This diagram depicts the authorization code grant flow in detail:

If you’re familiar with OpenID Connect (OIDC) specifications, the web app is the relying party, and PingOne Advanced Identity
Cloud or PingAM is the authorization server.

For more information on PKCE standards, see the following IETF document: Proof key for code exchange by OAuth public clients
.

For more information on how we implement PKCE for native and SPA apps, refer to Authorization code grant with PKCE.

Authentication for browser-based apps with PKCE

Web App

Web App

End User
(Browser)

End User
(Browser)

AM

AM

Resource Server

Resource Server

1 Generate code verifier; create hash as a code challenge

2 Send code challenge and code verifier

3 Authenticate and send code challenge hash

4 Store code challenge

Authenticate user

5 Request credentials

6 Supply credentials

7 Return authorization code

8 Pass authorization code

9 Send authorization code, code verifier; request access token

10 Confirm matching hash, return access token

11 Request resource with access token

Ping SDKs What is available?

Copyright © 2025 Ping Identity Corporation 33

https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7636
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-authz-grant-pkce.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-authz-grant-pkce.html

What’s New

Subscribe to get automatic updates:

 Ping SDKs Changelog RSS feed

 Ping SDKs Changelog email notifications

Latest updates

SDK for Android 4.8.1 released NEW

25 June, 2025

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Improved performance by adding caching for KeyStore, Cipher, and Symmetric Key encryption and decryption.

Added a strongBoxPreferred=false parameter to allow conditional use of StrongBox for key storage.

Learn more in Preventing the Keystore System from using StrongBox.

Full changelog

SDK for Android 4.8.0 released

16 May, 2025

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added the ability to update the Firebase Cloud Messaging (FCM) device token for existing devices registered for push
notifications.

Learn more in Updating device tokens for existing accounts.

Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud.

Learn more in Accessing WebAuthn authenticator information.

Full changelog

SDK for iOS 4.8.0 released NEW

16 May, 2025

•

•

emergency_home
SDKs Renamed
Prior to November 2024, the Ping SDKs were known as the ForgeRock SDKs.

Important

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 35

file:///home/jenkins/target/_pdf/changelogs/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added the ability to update the Apple Push Notification Service (APNs) device token for existing devices registered for push
notifications.

Learn more in Updating device tokens for existing accounts.

Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud.

Learn more in Accessing WebAuthn authenticator information.

Full changelog

SDK for JavaScript 4.8.0 released NEW

16 May, 2025

A new version of the SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added a flag to skip immediately to the OAuth 2.0 flow rather than attempting to get tokens without redirecting.

Learn more in Configure JavaScript apps for OIDC login.

Added support for signing out of PingOne by using an ID token.

Full changelog

DaVinci Client for Android 1.1.0 released NEW

15 April, 2025

A new version of the DaVinci Client for Android is now available with improvements and fixes over earlier versions:

Added social sign on with supported external IDPs.

Learn more in Set up social sign on with external IDPs.

Added Accept-Language header customization to support localization.

Learn more in Localizing the user interface.

Added support for additional PingOne Form fields.

Learn more in Supported PingOne fields and collectors.

Full changelog

DaVinci Client for iOS 1.1.0 released NEW

15 April, 2025

A new version of the DaVinci Client for iOS is now available with improvements and fixes over earlier versions:

Added social sign on with supported external IDPs.

•

•

•

•

•

•

•

•

What’s New Ping SDKs

36 Copyright © 2025 Ping Identity Corporation

Learn more in Set up social sign on with external IDPs.

Added Accept-Language header customization to support localization.

Learn more in Localizing the user interface.

Added support for additional PingOne Form fields.

Learn more in Supported PingOne fields and collectors.

Added support for Swift 6.

Full changelog

DaVinci Client for JavaScript 1.1.0 released NEW

15 April, 2025

A new version of the DaVinci Client for JavaScript is now available with improvements and fixes over earlier versions:

Added social sign on with supported external IDPs.

Learn more in Set up social sign on with external IDPs.

Added middleware support to alter Accept-Language header to support localization.

Learn more in Localizing the user interface.

Added support for additional PingOne Form fields.

Learn more in Supported PingOne fields and collectors.

Full changelog

SDK for Android 4.7.0 released NEW

11 February, 2025

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added support for user profile self-service.

Learn more in Set up user profile self service.

Added support for managing registered devices.

Learn more in Set up registered device self service.

Added support for signing-out of PingOne with an ID token.

Full changelog

SDK for iOS 4.7.0 released

11 February, 2025

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 37

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added support for user profile self-service.

Learn more in Set up user profile self service.

Added support for managing registered devices.

Learn more in Set up registered device self service.

Added support for signing-out of PingOne with an ID token.

Full changelog

SDK for JavaScript 4.7.0 released NEW

11 February, 2025

A new version of the SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added

Added support for managing registered devices.

Learn more in Set up registered device self service.

Changed

Prioritized displayName field over userName when saving a WebAuthn or passkey to an account. Previously the SDK
displayed a UUID for saved credentials rather than the user’s name.

Full changelog

DaVinci client 1.0.0 released

16 December, 2024

The first version of the DaVinci client for Android, iOS and JavaScript is now available.

Supports the Custom HTML Template capability of the HTTP Connector.

Supports the following fields:

Text field

Password field

Submit button

Flow button

•

•

•

•

•

info
The Ping SDK DaVinci clients are constantly evolving to meet your business needs.
Check back from time to time on latest updates and enhancements.

Note

•

•

◦

◦

◦

◦

What’s New Ping SDKs

38 Copyright © 2025 Ping Identity Corporation

To learn more, refer to Supported DaVinci fields.

Follow the DaVinci client tutorials to quickly setup a demo app to connect to your DaVinci flows.

Read how to configure the DaVinci client to leverage DaVinci flows in your native or single-page apps.

Full changelog

SDK for Android 4.6.0 released

17 October, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added the ability to customize how the ForgeRock SDK stores tokens and data.

To learn more, refer to Customizing storage.

Added support for Android App Links that use the http/https scheme for redirect URIs in centralized login apps.

Added support for Android 15.

Added support for the PingOne Protect Marketplace nodes.

Full changelog

SDK for iOS 4.6.0 released

17 October, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added support for the PingOne Protect Marketplace nodes.

Exposed the realm, success URL and failure URL values within Token .

Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback.

Full changelog

SDK for JavaScript 4.6.0 released

17 October, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added centralized login support for PingFederate servers.

Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback.

Added support for the PingOne Protect Marketplace nodes.

Full changelog

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 39

SDK for Android 4.5.0 released

9 July, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added support for signing off from PingOne to the centralized login flow.

To learn more, follow the Android tutorial for PingOne.

Added the ability to dynamically configure the SDK by collecting values from a PingOne or server’s OpenID
Connect .well-known endpoint.

To learn more, refer to Using the .well-known endpoint for dynamic configuration.

Full changelog

SDK for iOS 4.5.0 released

9 July, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added support for signing off from PingOne when using the centralized login flow with OAuth 2.0.

To learn more, follow the iOS tutorial for PingOne.

Added the ability to dynamically configure the SDK by collecting values from the server’s OpenID Connect .well-known
endpoint.

To learn more, refer to Using the .well-known endpoint for dynamic configuration.

Full changelog

Ping (ForgeRock) Login Widget 1.3.0 released NEW

30 May, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added support for integration with PingOne Protect.

Added the name of the device to the recovery codes page.

Full changelog

SDK for JavaScript 4.4.2 released

15 May, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added a logoutRedirectUri parameter to the FRUser.logout() method.

Add the parameter to invoke a redirect flow, for revoking tokens and ending sessions created by a PingOne server.

•

•

•

•

•

•

•

What’s New Ping SDKs

40 Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

To learn more, follow the JavaScript tutorial for PingOne.

Added a platformHeader configuration property to control whether the SDK adds the X-Requested-Platform header to
all outgoing connections.

Full changelog

SDK for iOS 4.4.1 released

25 April, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added privacy manifest files to ForgeRock SDK for iOS modules.

Full changelog

SDK for iOS 4.4.0 released

4 April, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added a new module for future integration with PingOne Protect.

Learn more at Integrate with PingOne Protect for risk evaluations.

Added an interface for customizing the biometric UI prompts when device binding or signing.

Learn more at Bind and verify devices.

Added support for the TextInput callback.

Full changelog

SDK for Android 4.4.0 released

28 March, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added a new module for future integration with PingOne Protect.

Learn more at Integrate with PingOne Protect for risk evaluations.

Added an interface for customizing the biometric UI prompts when device binding or signing.

Learn more at Bind and verify devices.

Added support for the TextInput callback.

Full changelog

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 41

https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

SDK for JavaScript 4.4.0 released

13 March, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added a new module for future integration with PingOne Protect.

Added the ability to include the supplied device name when displaying recovery codes.

Learn more at Using the device name.

Added the ability to use values from an OpenID Connect .well-known URL to automatically configure the SDK paths.

This simplifies using the SDKs with OIDC-compliant identity providers, such as PingOne.

For more information, refer to the ForgeRock SDK for JavaScript PingOne tutorial.

Full changelog

SDK for Android 4.3.1 released

9 February, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Fixed an SDK crash during device binding on Android 9 devices.

Full changelog

Ping (ForgeRock) Login Widget 1.2.1 released

8 January, 2024

A new version of the Ping (ForgeRock) Web Login Framework is now available with improvements and fixes over earlier versions:

Support for CAPTCHA nodes.

Full changelog

SDK for JavaScript 4.3.0 released

4 January, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added ability to override default prefix string given to storage keys.

For more information, refer to prefix in the ForgeRock SDK for JavaScript Properties.

Added an FRQRCode utility class to determine if a step has a QR code and handle the data to display.

For more information, refer to Set up QR code handling.

Full changelog

•

•

•

•

•

•

•

What’s New Ping SDKs

42 Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services

SDK for Android 4.3.0 released

28 December, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added ability to customize cookie headers in outgoing requests from the SDK.

Added ability to add custom claims when verifying signatures from bound devices.

Added client-side support for the upcoming AppIntegrity callback.

Full changelog

SDK for iOS 4.3.0 released

28 December, 2023

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added client-side support for the upcoming AppIntegrity callback.

Added a new ephemeralAuthSession browser type for iOS13 and later.

Added iat and nbf claims to the device binding JWS payload.

Added ability to insert custom claims when performing device signing verification.

Updated the detection of Jailbreak status.

Full changelog

SDK for Android 4.2.0 released

3 October, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added Gradle 8 and JDK 17 support.

Added Android 14 support.

Added verification of key pairs during device binding enrollment by using Google Key Attestation.

Added issued at (iat) and not before (nbf) claims to JSON Web tokens used for device binding and signing verification.

Full changelog

Token Vault 4.2.0 released

11 September, 2023

A new version of the Token Vault is now available with improvements and fixes over earlier versions:

Added a requirement to declare a list of URLs in the Token Vault Proxy configuration. These generate an allowlist of origins
to which the proxy can forward requests.

•

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 43

Full changelog

SDK for JavaScript 4.2.0 released

11 September, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added a logLevel configuration property to specify the level of logging the SDK performs.

Added a customLogger configuration property to specify a replacement for the native console.log that the SDK uses by
default.

For example, you could write a replacement that captures SDK log output to services such as Relic or Rocket.

Full changelog

SDK for Android 4.1.0 released

31 July, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added support for interceptors in the authenticator module

Added an interface for refreshing access tokens

Added support for policy advice from IG in JSON format

Full changelog

SDK for iOS 4.1.0 released

28 July, 2023

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added support for interceptors in the authenticator module.

Added support for mfauth deep links in the authenticator sample app.

Added an interface for refreshing access tokens.

Added support for policy advice from IG in JSON format.

Full changelog

Token Vault 4.1.2 released

24 July, 2023

Token Vault provides an additional layer of security for storing and using OAuth 2.0 and OpenID Connect 1.0 tokens in your
JavaScript single-page applications (SPAs).

Implemented as a plugin for the ForgeRock SDK for JavaScript, Token Vault provides a feature called origin isolation.

•

•

•

•

•

•

•

•

•

What’s New Ping SDKs

44 Copyright © 2025 Ping Identity Corporation

https://newrelic.com/
https://newrelic.com/
https://logrocket.com/
https://logrocket.com/

Full changelog

SDK for JavaScript 4.1.2 released

20 July, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added support in preparation for upcoming Token Vault.

Full changelog

Ping (ForgeRock) Login Widget 1.1.0 released

17 July, 2023

A new version of the Ping (ForgeRock) Web Login Framework is now available with improvements and fixes over earlier versions:

Support for device profiling callbacks (DeviceProfileCallback)

Support for web authentication (WebAuthn) journeys and trees.

Full changelog

SDK for JavaScript 4.1.1 released

29 June, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added support in the HTTPClient for receiving transactional authorization advice in JSON format.

Full changelog

SDK for iOS 4.0.0 released

9 June, 2023

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added support for Passkeys.

Added the ability to provide a device name when registering WebAuthN devices.

Added support for enforcing policies in the Authenticator SDK.

Added SwiftUI quick start sample code.

Full changelog

•

•

•

•

•

•

•

•

emergency_home
This release contains changes that could affect the functionality of your app.
Refer to Incompatible changes.

Important

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 45

SDK for Android 4.0.0 released

30 May, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Upgraded the Google Fido client to support Passkeys.

Added the ability to provide a device name when registering WebAuthN devices.

Added support for enforcing policies in the Authenticator SDK.

Full changelog

SDK for JavaScript 4.0.0 released

23 May, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added the ability to provide a device name when registering WebAuthN devices.

Updated ESModule (ESM) bundle.

Updated tags in the GitHub repo to be prefixed with the package name. For example, javascript-sdk-${tag} .

Full changelog

Ping (ForgeRock) Login Widget 1.0.0 released

18 April, 2023

The Ping (ForgeRock) Login Widget is an all-inclusive UI component to help you add authentication, user registration, and other
self-service journeys into your web applications.

The Ping (ForgeRock) Login Widget uses the Ping SDK for JavaScript internally, and adds a user interface and state management.
This rendering layer helps eliminate the need to develop and maintain the UI components for providing complex authentication
experiences.

Full changelog

•

•

•

emergency_home
This release contains changes that could affect the functionality of your app.
Refer to Incompatible changes.

Important

•

•

•

emergency_home
This release contains changes that could affect the functionality of your app.
Refer to the following pages for details:

Incompatible changes
Deprecations

Important

•
•

What’s New Ping SDKs

46 Copyright © 2025 Ping Identity Corporation

Full changelogs



Ping SDK for Android



Ping SDK for iOS



Ping SDK for JavaScript DaVinci client



Ping (ForgeRock) Login Widget



Token Vault



Legacy releases



Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 47

Release timeline

Key:

N.N.N = Latest version

Release date Platform SDK version Release type(1)

2025-MAY-16 Ping SDK for Android 4.8.0 Minor

2025-MAY-16 Ping SDK for JavaScript 4.8.0 Minor

2025-MAY-16 Ping SDK for iOS 4.8.0 Minor

2025-APR-15 DaVinci client for Android 1.1.0 Minor

2025-APR-15 DaVinci client for iOS 1.1.0 Minor

2025-APR-15 DaVinci client for JavaScript 1.1.0 Minor

2025-FEB-11 Ping SDK for Android 4.7.0 Minor

2024-FEB-11 Ping SDK for iOS 4.7.0 Minor

2025-FEB-11 Ping SDK for JavaScript 4.7.0 Minor

2024-DEC-16 DaVinci client 1.0.0 Major

2024-OCT-17 Ping SDK for Android 4.6.0 Minor

2024-OCT-17 Ping SDK for iOS 4.6.0 Minor

2024-OCT-17 Ping SDK for JavaScript 4.6.0 Minor

2024-JUL-11 Ping SDK for Android 4.5.0 Minor

2024-JUL-11 Ping SDK for iOS 4.5.0 Minor

2024-JUN-05 Login Widget 1.3.0 Minor

2024-MAY-15 Ping SDK for JavaScript 4.4.2 Patch

2024-APR-25 Ping SDK for iOS 4.4.1 Patch

2024-APR-04 Ping SDK for iOS 4.4.0 Minor

2024-MAR-28 Ping SDK for Android 4.4.0 Minor

2024-MAR-13 Ping SDK for JavaScript 4.4.0 Minor

What’s New Ping SDKs

48 Copyright © 2025 Ping Identity Corporation

Release date Platform SDK version Release type(1)

2024-FEB-09 Ping SDK for Android 4.3.1 Patch

2024-JAN-08 Login Widget 1.2.1 Minor

2024-JAN-04 Ping SDK for JavaScript 4.3.0 Minor

2023-DEC-28 Ping SDK for Android 4.3.0 Minor

2023-DEC-28 Ping SDK for iOS 4.3.0 Minor

2023-JUL-31 Ping SDK for Android 4.2.0 Minor

2023-SEP-11 Token Vault 4.2.0 Minor

2023-SEP-11 Ping SDK for JavaScript 4.2.0 Minor

2023-JUL-31 Ping SDK for Android 4.1.0 Minor

2023-JUL-28 Ping SDK for iOS 4.1.0 Minor

2023-JUL-24 Token Vault 4.1.2 Major

2023-JUL-20 Ping SDK for JavaScript 4.1.2 Patch

2023-JUL-17 Login Widget 1.1.0 Minor

2023-JUN-29 Ping SDK for JavaScript 4.1.1 Patch

2023-JUN-09 Ping SDK for iOS 4.0.0 Major

2023-MAY-30 Ping SDK for Android 4.0.0 Major

2023-MAY-23 Ping SDK for JavaScript 4.0.0 Major

2023-APR-18 Login Widget 1.0.0 Major

Release date Platform SDK version Release type(1)

2022-NOV-15 Ping SDK for iOS 3.4.1 Patch

2022-OCT-10 Ping SDK for JavaScript 3.4.0 Minor

2022-SEP-29 Ping SDK for Android 3.4.0 Minor

2022-SEP-22 Ping SDK for iOS 3.4.0 Minor

2022-JUN-22 Ping SDK for Android 3.3.3 Patch

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 49

(1) For details about the scope of expected changes for different release types, see Interface stability.

Release date Platform SDK version Release type(1)

2022-JUN-21 Ping SDK for Android 3.3.2 Patch

2022-JUN-20 Ping SDK for iOS 3.3.2 Patch

2022-JUN-08 Ping SDK for iOS 3.3.1 Patch

2022-MAY-19 Ping SDK for iOS 3.3.0 Minor

2022-MAY-18 Ping SDK for Android 3.3.0 Minor

2022-APR-25 Ping SDK for JavaScript 3.3.0 Minor

2022-JAN-27 Ping SDK for iOS 3.2.0 Minor

2022-JAN-26 Ping SDK for Android 3.2.0 Minor

Release date Platform SDK version Release type(1)

2021-NOV-17 Ping SDK for iOS 3.1.1 Patch

2021-OCT-28 Ping SDK for Android 3.1.2 Patch

2021-SEP-25 Ping SDK for iOS 3.1.0 Minor

2021-SEP-09 Ping SDK for Android 3.1.1 Patch

2021-MAY-24 All 3.0.0 Major

Release date Platform SDK version Release type(1)

2020-DEC-18 All 2.2.0 Minor

2020-AUG-21 All 2.1.0 Minor

2020-JUN-30 All 2.0.0 Major

Release date Platform SDK version Release type(1)

2019-DEC-10 All GA.12.10.2019 Technology Preview

2019-OCT-21 All Beta.10.21.2019 Technology Preview

What’s New Ping SDKs

50 Copyright © 2025 Ping Identity Corporation

What’s New

Subscribe to get automatic updates:

 Ping SDKs Changelog RSS feed

 Ping SDKs Changelog email notifications

Latest updates

SDK for Android 4.8.1 released NEW

25 June, 2025

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Improved performance by adding caching for KeyStore, Cipher, and Symmetric Key encryption and decryption.

Added a strongBoxPreferred=false parameter to allow conditional use of StrongBox for key storage.

Learn more in Preventing the Keystore System from using StrongBox.

Full changelog

SDK for Android 4.8.0 released

16 May, 2025

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added the ability to update the Firebase Cloud Messaging (FCM) device token for existing devices registered for push
notifications.

Learn more in Updating device tokens for existing accounts.

Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud.

Learn more in Accessing WebAuthn authenticator information.

Full changelog

SDK for iOS 4.8.0 released NEW

16 May, 2025

•

•

emergency_home
SDKs Renamed
Prior to November 2024, the Ping SDKs were known as the ForgeRock SDKs.

Important

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 51

file:///home/jenkins/target/_pdf/changelogs/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added the ability to update the Apple Push Notification Service (APNs) device token for existing devices registered for push
notifications.

Learn more in Updating device tokens for existing accounts.

Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud.

Learn more in Accessing WebAuthn authenticator information.

Full changelog

SDK for JavaScript 4.8.0 released NEW

16 May, 2025

A new version of the SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added a flag to skip immediately to the OAuth 2.0 flow rather than attempting to get tokens without redirecting.

Learn more in Configure JavaScript apps for OIDC login.

Added support for signing out of PingOne by using an ID token.

Full changelog

DaVinci Client for Android 1.1.0 released NEW

15 April, 2025

A new version of the DaVinci Client for Android is now available with improvements and fixes over earlier versions:

Added social sign on with supported external IDPs.

Learn more in Set up social sign on with external IDPs.

Added Accept-Language header customization to support localization.

Learn more in Localizing the user interface.

Added support for additional PingOne Form fields.

Learn more in Supported PingOne fields and collectors.

Full changelog

DaVinci Client for iOS 1.1.0 released NEW

15 April, 2025

A new version of the DaVinci Client for iOS is now available with improvements and fixes over earlier versions:

Added social sign on with supported external IDPs.

•

•

•

•

•

•

•

•

What’s New Ping SDKs

52 Copyright © 2025 Ping Identity Corporation

Learn more in Set up social sign on with external IDPs.

Added Accept-Language header customization to support localization.

Learn more in Localizing the user interface.

Added support for additional PingOne Form fields.

Learn more in Supported PingOne fields and collectors.

Added support for Swift 6.

Full changelog

DaVinci Client for JavaScript 1.1.0 released NEW

15 April, 2025

A new version of the DaVinci Client for JavaScript is now available with improvements and fixes over earlier versions:

Added social sign on with supported external IDPs.

Learn more in Set up social sign on with external IDPs.

Added middleware support to alter Accept-Language header to support localization.

Learn more in Localizing the user interface.

Added support for additional PingOne Form fields.

Learn more in Supported PingOne fields and collectors.

Full changelog

SDK for Android 4.7.0 released NEW

11 February, 2025

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added support for user profile self-service.

Learn more in Set up user profile self service.

Added support for managing registered devices.

Learn more in Set up registered device self service.

Added support for signing-out of PingOne with an ID token.

Full changelog

SDK for iOS 4.7.0 released

11 February, 2025

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 53

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added support for user profile self-service.

Learn more in Set up user profile self service.

Added support for managing registered devices.

Learn more in Set up registered device self service.

Added support for signing-out of PingOne with an ID token.

Full changelog

SDK for JavaScript 4.7.0 released NEW

11 February, 2025

A new version of the SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added

Added support for managing registered devices.

Learn more in Set up registered device self service.

Changed

Prioritized displayName field over userName when saving a WebAuthn or passkey to an account. Previously the SDK
displayed a UUID for saved credentials rather than the user’s name.

Full changelog

DaVinci client 1.0.0 released

16 December, 2024

The first version of the DaVinci client for Android, iOS and JavaScript is now available.

Supports the Custom HTML Template capability of the HTTP Connector.

Supports the following fields:

Text field

Password field

Submit button

Flow button

•

•

•

•

•

info
The Ping SDK DaVinci clients are constantly evolving to meet your business needs.
Check back from time to time on latest updates and enhancements.

Note

•

•

◦

◦

◦

◦

What’s New Ping SDKs

54 Copyright © 2025 Ping Identity Corporation

To learn more, refer to Supported DaVinci fields.

Follow the DaVinci client tutorials to quickly setup a demo app to connect to your DaVinci flows.

Read how to configure the DaVinci client to leverage DaVinci flows in your native or single-page apps.

Full changelog

SDK for Android 4.6.0 released

17 October, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added the ability to customize how the ForgeRock SDK stores tokens and data.

To learn more, refer to Customizing storage.

Added support for Android App Links that use the http/https scheme for redirect URIs in centralized login apps.

Added support for Android 15.

Added support for the PingOne Protect Marketplace nodes.

Full changelog

SDK for iOS 4.6.0 released

17 October, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added support for the PingOne Protect Marketplace nodes.

Exposed the realm, success URL and failure URL values within Token .

Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback.

Full changelog

SDK for JavaScript 4.6.0 released

17 October, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added centralized login support for PingFederate servers.

Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback.

Added support for the PingOne Protect Marketplace nodes.

Full changelog

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 55

SDK for Android 4.5.0 released

9 July, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added support for signing off from PingOne to the centralized login flow.

To learn more, follow the Android tutorial for PingOne.

Added the ability to dynamically configure the SDK by collecting values from a PingOne or server’s OpenID
Connect .well-known endpoint.

To learn more, refer to Using the .well-known endpoint for dynamic configuration.

Full changelog

SDK for iOS 4.5.0 released

9 July, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added support for signing off from PingOne when using the centralized login flow with OAuth 2.0.

To learn more, follow the iOS tutorial for PingOne.

Added the ability to dynamically configure the SDK by collecting values from the server’s OpenID Connect .well-known
endpoint.

To learn more, refer to Using the .well-known endpoint for dynamic configuration.

Full changelog

Ping (ForgeRock) Login Widget 1.3.0 released NEW

30 May, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added support for integration with PingOne Protect.

Added the name of the device to the recovery codes page.

Full changelog

SDK for JavaScript 4.4.2 released

15 May, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added a logoutRedirectUri parameter to the FRUser.logout() method.

Add the parameter to invoke a redirect flow, for revoking tokens and ending sessions created by a PingOne server.

•

•

•

•

•

•

•

What’s New Ping SDKs

56 Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

To learn more, follow the JavaScript tutorial for PingOne.

Added a platformHeader configuration property to control whether the SDK adds the X-Requested-Platform header to
all outgoing connections.

Full changelog

SDK for iOS 4.4.1 released

25 April, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added privacy manifest files to ForgeRock SDK for iOS modules.

Full changelog

SDK for iOS 4.4.0 released

4 April, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added a new module for future integration with PingOne Protect.

Learn more at Integrate with PingOne Protect for risk evaluations.

Added an interface for customizing the biometric UI prompts when device binding or signing.

Learn more at Bind and verify devices.

Added support for the TextInput callback.

Full changelog

SDK for Android 4.4.0 released

28 March, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added a new module for future integration with PingOne Protect.

Learn more at Integrate with PingOne Protect for risk evaluations.

Added an interface for customizing the biometric UI prompts when device binding or signing.

Learn more at Bind and verify devices.

Added support for the TextInput callback.

Full changelog

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 57

https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

SDK for JavaScript 4.4.0 released

13 March, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added a new module for future integration with PingOne Protect.

Added the ability to include the supplied device name when displaying recovery codes.

Learn more at Using the device name.

Added the ability to use values from an OpenID Connect .well-known URL to automatically configure the SDK paths.

This simplifies using the SDKs with OIDC-compliant identity providers, such as PingOne.

For more information, refer to the ForgeRock SDK for JavaScript PingOne tutorial.

Full changelog

SDK for Android 4.3.1 released

9 February, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Fixed an SDK crash during device binding on Android 9 devices.

Full changelog

Ping (ForgeRock) Login Widget 1.2.1 released

8 January, 2024

A new version of the Ping (ForgeRock) Web Login Framework is now available with improvements and fixes over earlier versions:

Support for CAPTCHA nodes.

Full changelog

SDK for JavaScript 4.3.0 released

4 January, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added ability to override default prefix string given to storage keys.

For more information, refer to prefix in the ForgeRock SDK for JavaScript Properties.

Added an FRQRCode utility class to determine if a step has a QR code and handle the data to display.

For more information, refer to Set up QR code handling.

Full changelog

•

•

•

•

•

•

•

What’s New Ping SDKs

58 Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services

SDK for Android 4.3.0 released

28 December, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added ability to customize cookie headers in outgoing requests from the SDK.

Added ability to add custom claims when verifying signatures from bound devices.

Added client-side support for the upcoming AppIntegrity callback.

Full changelog

SDK for iOS 4.3.0 released

28 December, 2023

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added client-side support for the upcoming AppIntegrity callback.

Added a new ephemeralAuthSession browser type for iOS13 and later.

Added iat and nbf claims to the device binding JWS payload.

Added ability to insert custom claims when performing device signing verification.

Updated the detection of Jailbreak status.

Full changelog

SDK for Android 4.2.0 released

3 October, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added Gradle 8 and JDK 17 support.

Added Android 14 support.

Added verification of key pairs during device binding enrollment by using Google Key Attestation.

Added issued at (iat) and not before (nbf) claims to JSON Web tokens used for device binding and signing verification.

Full changelog

Token Vault 4.2.0 released

11 September, 2023

A new version of the Token Vault is now available with improvements and fixes over earlier versions:

Added a requirement to declare a list of URLs in the Token Vault Proxy configuration. These generate an allowlist of origins
to which the proxy can forward requests.

•

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 59

Full changelog

SDK for JavaScript 4.2.0 released

11 September, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added a logLevel configuration property to specify the level of logging the SDK performs.

Added a customLogger configuration property to specify a replacement for the native console.log that the SDK uses by
default.

For example, you could write a replacement that captures SDK log output to services such as Relic or Rocket.

Full changelog

SDK for Android 4.1.0 released

31 July, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Added support for interceptors in the authenticator module

Added an interface for refreshing access tokens

Added support for policy advice from IG in JSON format

Full changelog

SDK for iOS 4.1.0 released

28 July, 2023

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added support for interceptors in the authenticator module.

Added support for mfauth deep links in the authenticator sample app.

Added an interface for refreshing access tokens.

Added support for policy advice from IG in JSON format.

Full changelog

Token Vault 4.1.2 released

24 July, 2023

Token Vault provides an additional layer of security for storing and using OAuth 2.0 and OpenID Connect 1.0 tokens in your
JavaScript single-page applications (SPAs).

Implemented as a plugin for the ForgeRock SDK for JavaScript, Token Vault provides a feature called origin isolation.

•

•

•

•

•

•

•

•

•

What’s New Ping SDKs

60 Copyright © 2025 Ping Identity Corporation

https://newrelic.com/
https://newrelic.com/
https://logrocket.com/
https://logrocket.com/

Full changelog

SDK for JavaScript 4.1.2 released

20 July, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added support in preparation for upcoming Token Vault.

Full changelog

Ping (ForgeRock) Login Widget 1.1.0 released

17 July, 2023

A new version of the Ping (ForgeRock) Web Login Framework is now available with improvements and fixes over earlier versions:

Support for device profiling callbacks (DeviceProfileCallback)

Support for web authentication (WebAuthn) journeys and trees.

Full changelog

SDK for JavaScript 4.1.1 released

29 June, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added support in the HTTPClient for receiving transactional authorization advice in JSON format.

Full changelog

SDK for iOS 4.0.0 released

9 June, 2023

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

Added support for Passkeys.

Added the ability to provide a device name when registering WebAuthN devices.

Added support for enforcing policies in the Authenticator SDK.

Added SwiftUI quick start sample code.

Full changelog

•

•

•

•

•

•

•

•

emergency_home
This release contains changes that could affect the functionality of your app.
Refer to Incompatible changes.

Important

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 61

SDK for Android 4.0.0 released

30 May, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

Upgraded the Google Fido client to support Passkeys.

Added the ability to provide a device name when registering WebAuthN devices.

Added support for enforcing policies in the Authenticator SDK.

Full changelog

SDK for JavaScript 4.0.0 released

23 May, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

Added the ability to provide a device name when registering WebAuthN devices.

Updated ESModule (ESM) bundle.

Updated tags in the GitHub repo to be prefixed with the package name. For example, javascript-sdk-${tag} .

Full changelog

Ping (ForgeRock) Login Widget 1.0.0 released

18 April, 2023

The Ping (ForgeRock) Login Widget is an all-inclusive UI component to help you add authentication, user registration, and other
self-service journeys into your web applications.

The Ping (ForgeRock) Login Widget uses the Ping SDK for JavaScript internally, and adds a user interface and state management.
This rendering layer helps eliminate the need to develop and maintain the UI components for providing complex authentication
experiences.

Full changelog

•

•

•

emergency_home
This release contains changes that could affect the functionality of your app.
Refer to Incompatible changes.

Important

•

•

•

emergency_home
This release contains changes that could affect the functionality of your app.
Refer to the following pages for details:

Incompatible changes
Deprecations

Important

•
•

What’s New Ping SDKs

62 Copyright © 2025 Ping Identity Corporation

Full changelogs



Ping SDK for Android



Ping SDK for iOS



Ping SDK for JavaScript DaVinci client



Ping (ForgeRock) Login Widget



Token Vault



Legacy releases



Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 63

Release timeline

Key:

N.N.N = Latest version

Release date Platform SDK version Release type(1)

2025-MAY-16 Ping SDK for Android 4.8.0 Minor

2025-MAY-16 Ping SDK for JavaScript 4.8.0 Minor

2025-MAY-16 Ping SDK for iOS 4.8.0 Minor

2025-APR-15 DaVinci client for Android 1.1.0 Minor

2025-APR-15 DaVinci client for iOS 1.1.0 Minor

2025-APR-15 DaVinci client for JavaScript 1.1.0 Minor

2025-FEB-11 Ping SDK for Android 4.7.0 Minor

2024-FEB-11 Ping SDK for iOS 4.7.0 Minor

2025-FEB-11 Ping SDK for JavaScript 4.7.0 Minor

2024-DEC-16 DaVinci client 1.0.0 Major

2024-OCT-17 Ping SDK for Android 4.6.0 Minor

2024-OCT-17 Ping SDK for iOS 4.6.0 Minor

2024-OCT-17 Ping SDK for JavaScript 4.6.0 Minor

2024-JUL-11 Ping SDK for Android 4.5.0 Minor

2024-JUL-11 Ping SDK for iOS 4.5.0 Minor

2024-JUN-05 Login Widget 1.3.0 Minor

2024-MAY-15 Ping SDK for JavaScript 4.4.2 Patch

2024-APR-25 Ping SDK for iOS 4.4.1 Patch

2024-APR-04 Ping SDK for iOS 4.4.0 Minor

2024-MAR-28 Ping SDK for Android 4.4.0 Minor

2024-MAR-13 Ping SDK for JavaScript 4.4.0 Minor

What’s New Ping SDKs

64 Copyright © 2025 Ping Identity Corporation

Release date Platform SDK version Release type(1)

2024-FEB-09 Ping SDK for Android 4.3.1 Patch

2024-JAN-08 Login Widget 1.2.1 Minor

2024-JAN-04 Ping SDK for JavaScript 4.3.0 Minor

2023-DEC-28 Ping SDK for Android 4.3.0 Minor

2023-DEC-28 Ping SDK for iOS 4.3.0 Minor

2023-JUL-31 Ping SDK for Android 4.2.0 Minor

2023-SEP-11 Token Vault 4.2.0 Minor

2023-SEP-11 Ping SDK for JavaScript 4.2.0 Minor

2023-JUL-31 Ping SDK for Android 4.1.0 Minor

2023-JUL-28 Ping SDK for iOS 4.1.0 Minor

2023-JUL-24 Token Vault 4.1.2 Major

2023-JUL-20 Ping SDK for JavaScript 4.1.2 Patch

2023-JUL-17 Login Widget 1.1.0 Minor

2023-JUN-29 Ping SDK for JavaScript 4.1.1 Patch

2023-JUN-09 Ping SDK for iOS 4.0.0 Major

2023-MAY-30 Ping SDK for Android 4.0.0 Major

2023-MAY-23 Ping SDK for JavaScript 4.0.0 Major

2023-APR-18 Login Widget 1.0.0 Major

Release date Platform SDK version Release type(1)

2022-NOV-15 Ping SDK for iOS 3.4.1 Patch

2022-OCT-10 Ping SDK for JavaScript 3.4.0 Minor

2022-SEP-29 Ping SDK for Android 3.4.0 Minor

2022-SEP-22 Ping SDK for iOS 3.4.0 Minor

2022-JUN-22 Ping SDK for Android 3.3.3 Patch

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 65

(1) For details about the scope of expected changes for different release types, see Interface stability.

Release date Platform SDK version Release type(1)

2022-JUN-21 Ping SDK for Android 3.3.2 Patch

2022-JUN-20 Ping SDK for iOS 3.3.2 Patch

2022-JUN-08 Ping SDK for iOS 3.3.1 Patch

2022-MAY-19 Ping SDK for iOS 3.3.0 Minor

2022-MAY-18 Ping SDK for Android 3.3.0 Minor

2022-APR-25 Ping SDK for JavaScript 3.3.0 Minor

2022-JAN-27 Ping SDK for iOS 3.2.0 Minor

2022-JAN-26 Ping SDK for Android 3.2.0 Minor

Release date Platform SDK version Release type(1)

2021-NOV-17 Ping SDK for iOS 3.1.1 Patch

2021-OCT-28 Ping SDK for Android 3.1.2 Patch

2021-SEP-25 Ping SDK for iOS 3.1.0 Minor

2021-SEP-09 Ping SDK for Android 3.1.1 Patch

2021-MAY-24 All 3.0.0 Major

Release date Platform SDK version Release type(1)

2020-DEC-18 All 2.2.0 Minor

2020-AUG-21 All 2.1.0 Minor

2020-JUN-30 All 2.0.0 Major

Release date Platform SDK version Release type(1)

2019-DEC-10 All GA.12.10.2019 Technology Preview

2019-OCT-21 All Beta.10.21.2019 Technology Preview

What’s New Ping SDKs

66 Copyright © 2025 Ping Identity Corporation

Ping SDK for Android changelog

Subscribe to get automatic updates:

 Ping SDKs Changelog RSS feed

 Ping SDKs Changelog email notifications

Ping SDK for Android 4.8.1

June 25, 2025

Added

Added caching for KeyStore, Cipher, and Symmetric Key encryption and decryption, improving performance. [SDKS-4090]

Added a strongBoxPreferred=false parameter to allow conditional use of StrongBox for key storage. [SDKS-4090]

Ping SDK for Android 4.8.0

May 16, 2025

Added

Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud. [SDKS-3843]

Added the ability to update the Firebase Cloud Messaging (FCM) device token for existing devices registered for push
notifications. [SDKS-3684]

Updated

Improved logging for errors and warning exceptions. [SDKS-3990]

Fixed

Fixed an issue causing a crash when the killing the app process in the background during the OIDC (centralized login) flow.
[SDKS-3993]

Ping SDK for Android 4.7.0

February 11, 2025

Added

Added support for user profile self-service. [SDKS-3408]

Added support for managing registered devices.

Added support for signing-out of PingOne with an ID token. [SDKS-3423]

Updated

Improved compatibility with certain devices by implementing a fallback mechanism that uses asymmetric key generation if
symmetric key generation in the AndroidKeyStore fails. [SDKS-3467]

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 67

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

Fixed

Fixed an issue that caused duplicate PUSH notifications in the Authenticator module. [SDKS-3533]

Ping SDK for Android 4.6.0

October 17, 2024

Added

Added support for Android 15. [SDKS-3098]

Added the ability to customize how the SDK stores tokens and data. [SDKS-3378]

Added support for Android App Links that use the http/https scheme for redirect URIs in centralized login apps.
[SDKS-3433]

Added support for the PingOne Protect Marketplace nodes. [SDKS-3297]

Exposed the realm and success URL values within SSOToken . [SDKS-3351]

Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback. [SDKS-2499]

Updated

Updated the SDK to ignore any type 4 TextOutputCallback callbacks, as these contain JavaScript that Android cannot
execute. [SDKS-3227]

Fixed

Fixed a potential ServiceConnection leak in CustomTabManager . [SDKS-3346]

Ping SDK for Android 4.5.0

July 12, 2024

Added

Added support for signing off from PingOne to the centralized login flow. [SDKS-3020]

Added the ability to dynamically configure the SDK by collecting values from the server’s OpenID Connect .well-known
endpoint. [SDKS-3022]

Fixed

Resolved security vulnerability warnings related to the commons-io-2.6.jar and bcprov-jdk15on-1.68.jar libraries.
[SDKS-3072, SDKS-3073]

Fixed a NullPointerException in the centralized login flow. [SDKS-3079]

Improved multi-threaded performance when caching access tokens. [SDKS-3104]

Synchronized the encryption and decryption block to avoid keystore crashes. [SDKS-3199]

Fixed an issue related to handling HiddenValueCallback if isMinifyEnabled is set to true . [SDKS-3201]

Fixed an issue where device binding using an application PIN was failing when Arabic language was used. [SDKS-3221]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

What’s New Ping SDKs

68 Copyright © 2025 Ping Identity Corporation

Fixed an issue where browser sessions were not properly signed out when a non-default browser was used in centralized
login. [SDKS-3276]

Fixed an unexpected behavior in the authentication flow caused by AppAuthConfiguration settings being ignored during
centralized login. [SDKS-3277]

Fixed the FRUser.revokeAccessToken() method to not end the user’s session during the centralized login flow.
[SDKS-3282]

Ping SDK for Android 4.4.0

March 28, 2024

Added

Added a new module for integration with PingOne Protect. [SDKS-2900]

Added support for the TextInput callback. [SDKS-545]

Added an interface for customizing the biometric UI prompts when device binding or signing. [SDKS-2991]

Added x-requested-with: forgerock-sdk and x-requested-platform: android immutable HTTP headers to each
outgoing request. [SDKS-3033]

Fixed

Addressed a null pointer exception during centralized login by using ActivityResultContract in place of the deprecated
onActivityResult method. [SDKS-3079]

Addressed nimbus-jose-jwt:9.25 library security vulnerability (CVE-2023-52428). [SDKS-2988]

Ping SDK for Android 4.3.1

February 9, 2024

Fixed

Fixed an issue where the SDK crashes during device binding on Android 9 devices. [SDKS-2948]

Ping SDK for Android 4.3.0

December 28, 2023

Added

Added ability to customize cookie headers in outgoing requests from the SDK. [SDKS-2780]

Added ability to add custom claims when verifying signatures from bound devices. [SDKS-2787]

Added client-side support for the upcoming AppIntegrity callback. [SDKS-2631]

Updated

The SDK now uses auth-per-use keys for Device Binding. [SDKS-2797]

Improved handling of WebAuthn cancellations. [SDKS-2819]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 69

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

The forgerock_url , forgerock_realm , and forgerock_cookie_name parameters are now mandatory when dynamically
configuring the SDK. [SDKS-2782]

Addressed woodstox-core:6.2.4 library security vulnerability CVE-2022-40152. [SDKS-2751]

Ping SDK for Android 4.2.0

October 3, 2023

Added

Added Gradle 8 and JDK 17 support. [SDKS-2451]

Added Android 14 support. [SDKS-2636]

Added verification of key pairs during device binding enrollment by using Google Key Attestation. [SDKS-2412]

Added issued at (iat) and not before (nbf) claims to JSON Web tokens used for device binding and signing verification.
[SDKS-2747]

Ping SDK for Android 4.1.0

July 31, 2023

Added

Added support for interceptors in the authenticator module. [SDKS-2544]

Added an interface for refreshing access tokens. [SDKS-2567]

Added support for policy advice from IG in JSON format. [SDKS-2240]

Fixed

Fixed an issue with parsing the issuer value in the URI provided by the combined MFA registration node. [SDKS-2542]

Added an error message about duplicated accounts while using the combined MFA registration node. [SDKS-2627]

Fixed an issue that caused loss of WebAuthn credentials when upgrading the SDK from 4.0.0-beta4 to newer versions.
[SDKS-2576]

Ping SDK for Android 4.0.0

May 30, 2023

Added

Upgraded the Google Fido client to support Passkeys. [SDKS-2243]

Added the FRWebAuthn interface to remove WebAuthn reference keys. [SDKS-2272]

Added an interface to specify a device name during WebAuthn registration. [SDKS-2296]

Added DeviceBinding callback support. [SDKS-1747]

Added DeviceSigningVerifier callback support. [SDKS-2022]

Added support for combined MFA registration in the Authenticator SDK. [SDKS-1972]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

What’s New Ping SDKs

70 Copyright © 2025 Ping Identity Corporation

https://github.com/advisories/GHSA-3f7h-mf4q-vrm4
https://github.com/advisories/GHSA-3f7h-mf4q-vrm4

Added support for enforcing policies in the Authenticator SDK. [SDKS-2166]

Fixed

Fixed WebAuthn authentication on devices that use a full-screen biometric prompt. [SDKS-2340]

Fixed functionality of the NetworkCollector method. [SDKS-2445]

Incompatible changes

Removed support for native single sign-on (SSO).

Changed the signature for a number of methods.

For more information, refer to Incompatible changes.

Ping SDK for Android 3.4.0

September 29, 2022

Added

Dynamic SDK Configuration. [SDKS-1759]

Android 13 support. [SDKS-1944]

Changed

Changed activity type used as parameter in PushNotification.accept . [SDKS-1968]

Updated deserialization of objects to use a class allowlist to prevent access to untrusted data. [SDKS-1818]

Updated the Authenticator module and sample app to handle the new POST_NOTIFICATIONS permission in Android 13.
[SDKS-2033]

Fixed an issue where the DefaultTokenManager was not caching the AccessToken in memory upon retrieval from Shared
Preferences. [SDKS-2066]

Deprecated the forgerock_enable_cookie configuration. [SDKS-2069]

Align forgerock_logout_endpoint configuration name with the Ping SDK for iOS. [SDKS-2085]

Allow leading slash on custom endpoint path. [SDKS-2074]

Fixed bug where the state parameter value was not being verified upon calling the Authorize endpoint. [SDKS-2078]

Ping SDK for Android 3.3.3

June 22, 2022

Changed

Updated the version of the com.squareup.okhttp3 library in the SDK to 4.10.0 [SDKS-1957]

Ping SDK for Android 3.3.2

June 21, 2022

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 71

Added

Interface for log management [SDKS-1864]

Ping SDK for Android 3.3.0

May 18, 2022

Added

Support SSL pinning [SDKS-80]

Restore session token when it is out of sync with the session token that bound with the access token [SDKS-1664]

Session token should be included in the header instead of request parameter for /authorize endpoint [SDKS-1670]

Support to broadcast logout event to clear application tokens when user logout the app [SDKS-1663]

Obtain timestamp from new PushNotification payload [SDKS-1666]

Add new payload attributes to the PushNotification [SDKS-1776]

Allow processing of push notifications without device token [SDKS-1844]

Fixed

Dispose AuthorizationService when no longer required [SDKS-1636]

Authenticator sample app crash after scanning push mechanism [SDKS-1454]

Ping SDK for Android 3.2.0

January 26, 2022

Features

Google Sign-In Security Enhancement.

Fix for WebAuthn Registration & Authentication prompt.

Ping SDK for Android 3.1.2

October 28, 2021

Features

Disable native SSO when the SDK fails to access the Android AccountManager.

Ping SDK for Android 3.1.1

September 09, 2021

Features

Support for Android 12.

Unlocked device is not required for data decryption.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

What’s New Ping SDKs

72 Copyright © 2025 Ping Identity Corporation

Introduced FRLifecycle interface and exposed interfaces to allow custom native SSO implementation.

Ping SDK for iOS changelog

Subscribe to get automatic updates:

 Ping SDKs Changelog RSS feed

 Ping SDKs Changelog email notifications

Ping SDK for iOS 4.8.0

May 16, 2025

Added

Added the ability to update the Apple Push Notification Service (APNs) device token for existing devices registered for push
notifications. [SDKS-3684]

Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud. [SDKS-3842]

Updated

Upgraded ReCAPTCHA Enterprise to version 18.7.0 (from 18.6.0) [SDKS-3927]

Fixed

Resolved an issue where updating device biometrics didn’t enforce device re-binding as expected. [SDKS-3963]

Corrected the missing PingProtect scheme. [SDKS-3856]

Resolved a race condition in the device network collector that prevented NetworkReachabilityMonitor from completing.
[SDKS-3827]

Ping SDK for iOS 4.7.0

February 11, 2025

Added

Added support for user profile self-service. [SDKS-3409]

Added support for managing registered devices.

Added support for signing-out of PingOne with an ID token. [SDKS-3424]

Updated

Updated jailbreak detectors to reduce false-positive detections. [SDKS-3693]

Fixed

Fixed an issue that caused duplicate PUSH notifications in the Authenticator module. [SDKS-3533]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 73

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

Ping SDK for iOS 4.6.0

October 17, 2024

Added

Added support for the PingOne Protect Marketplace nodes. [SDKS-3296]

Exposed the realm, success URL, and failure URL values within Token . [SDKS-3352]

Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback. [SDKS-3324]

Added support for Device Binding in iOS simulators, by setting Authentication Type in the Device Binding node to None.

Updated

Updated the SDK to skip any type 4 TextOutputCallback callbacks, as these contain JavaScript that iOS cannot execute.
[SDKS-3226]

Made PolicyAdviceCreator public. [SDKS-3349]

Fixed

Fixed missing UIKit import issue for SPM. [SDKS-3348]

Fixed an issued preventing SSL pinning from working with root certificates. [SDKS-3334]

Fixed a build failure because FRCore.swiftmodule is not built for arm64 . [SDKS-3347]

Ping SDK for iOS 4.5.0

July 12, 2024

Added

Added support for signing off from PingOne when using the centralized login flow with OAuth 2.0. [SDKS-3021]

Added the ability to dynamically configure the SDK by collecting values from the server’s OpenID Connect .well-known
endpoint. [SDKS-3023]

Fixed

Fixed issue causing SSL pinning configuration to be ignored in FRURLProtocol class. [SDKS-3239]

Removed scope validation from AccessToken initialization. [SDKS-3305]

Ping SDK for iOS 4.4.1

April 25, 2024

Added

Added privacy manifest files to Ping SDK for iOS modules. [SDKS-3086]

Updated

Updated PingOne Signals (Protect) SDK to version 5.2.3. [SDKS-3086]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

What’s New Ping SDKs

74 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk

Updated Google SDK to version 7.1.0. [SDKS-3086]

Changed

Removed storage field from the HardwareCollector class. [SDKS-3086]

Ping SDK for iOS 4.4.0

April 4, 2024

Added

Added a new module for integration with PingOne Protect. [SDKS-2901]

Added support for the TextInput callback. [SDKS-546]

Added an interface for customizing the biometric UI prompts when device binding or signing. [SDKS-2990]

Added x-requested-with: forgerock-sdk and x-requested-platform: ios immutable HTTP headers to each
outgoing request. [SDKS-2997]

Changed

Prevented the operation of device binding and signing features on simulators. [SDKS-2995]

Ping SDK for iOS 4.3.0

December 15, 2023

Added

Added client-side support for the upcoming AppIntegrity callback. [SDKS-2630/SDKS-2761]

Added a new ephemeralAuthSession browser type for iOS13 and later. [SDKS-2707]

Added iat and nbf claims to the device binding JWS payload. [SDKS-2748]

Added ability to insert custom claims when performing device signing verification. [SDKS-2788]

Fixed

Fixed an issue where the issuer parameter was not properly parsed when using PingAM 7.2.x. [SDKS-2653]

Fixed an issue related to inadequate cache control. [SDKS-2700]

Fixed an issue when the sfViewController setting in centralized login had entersReaderIfAvailable set to true .
[SDKS-2746]

Fixed an issue with the device profile collector that affected phones with multiple sim cards in iOS 16.3 and earlier.
[SDKS-2776]

Fixed an issue with device binding API access levels. [SDKS-2886]

Fixed an issue with removing a userkey from the local device repo. [SDKS-2887]

Updated

Updated the detection of Jailbreak status. [SDKS-2796]

•

•

•

◦

◦

◦

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 75

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

Improved unit and end-to-end tests. [SDKS-2637]

Ping SDK for iOS 4.1.0

July 28, 2023

Added

Added support for interceptors in the authenticator module. [SDKS-2545]

Added support for mfauth deep links in the authenticator sample app. [SDKS-2524]

Added an interface for refreshing access tokens. [SDKS-2563]

Added support for policy advice from IG in JSON format. [SDKS-2239]

Fixed

Fixed an issue with parsing the issuer value in the URI provided by the combined MFA registration node. [SDKS-2542]

Added an error message about duplicated accounts while using the combined MFA registration node. [SDKS-2627]

Ping SDK for iOS 4.0.0

June 9, 2023 major

Added

Added support for Passkeys. [SDKS-2140]

Added DeviceBinding callback support. [SDKS-1748]

Added DeviceSigningVerifier callback support. [SDKS-2023]

Added support for combined MFA registration in the Authenticator SDK. [SDKS-1972]

Added support for enforcing policies in the Authenticator SDK. [SDKS-2166]

Added an interface for listing and deleting WebAuthn credentials from the device. [SDKS-2279]

Added an interface to specify a device name during WebAuthn registration. [SDKS-2297]

Added a SwiftUI quick start example. [SDKS-2405]

Fixed

Added error message description to the WebAuthnError enum. [SDKS-2226]

Updated the order of presenting the registered WebAuthN keys on the device. [SDKS-2251]

Updated Facebook SDK version to 16.0.1. [SDKS-1839]

Updated Google SDK version to 7.0.0. [SDKS-2426]

Incompatible changes

Changed the signature for a number of methods.

For more information, refer to Incompatible changes.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

What’s New Ping SDKs

76 Copyright © 2025 Ping Identity Corporation

Ping SDK for iOS 3.4.1

November 15, 2022

Changed

Updated legacy encryption algorithm used for generation of cryptographic keys stored in Secure Enclave [SDKS-1994]

Fixed an issue related to push notifications timeout [SDKS-2164]

Fixed an unexpected error occurring during the decoding of some push notifications [SDKS-2199]

Ping SDK for iOS 3.4.0

September 22, 2022

Added

Dynamic SDK Configuration [SDKS-1760]

iOS 16 Support [SDKS-1932]

Changed

Fixed build errors on Xcode 14 [SDKS-2073]

Fixed bug where the state parameter value was not verified upon calling the Authorize endpoint [SDKS-2077]

Ping SDK for iOS 3.3.2

June 20, 2022

Added

Interface for log management [SDKS-1863]

Changed

Fixed memory leak in the NetworkCollector class [SDKS-1931]

Ping SDK for iOS 3.3.1

June 08, 2022

Added

Add PushType.biometric support and BiometricAuthentication class for biometric authentication. Updated sample
app to handle new Push types [SDKS-1865]

Changed

Fixed the bug when refreshing the access token we return the old token [SDKS-1824]

Fixed bug when multiple threads are trying to access the same resource in the deviceCollector and ProfileCollector
[SDKS-1912]

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 77

Ping SDK for iOS 3.3.0

May 19, 2022

Added

SSL pinning support [SDKS-1627]

Obtain timestamp from new push notification payload [SDKS-1665]

Add new payload attributes in the push notification [SDKS-1775]

Apple Sign In enhancements to get user profile info [SDKS-1632]

Changed

Remove "Accept: application/x-www-form-urlencoded" header from /authorize endpoint for GET requests [SDKS-1729]

Remove iPlanetDirectoryPro (or session cookie name) from the query parameter, and inject it into the header instead
[SDKS-1708]

Fix issue when expired push notification displayed as "Approved" in the notification history list [SDKS-1491]

Fix issues with registering TOTP accounts with invalid period [SDKS-1405]

Ping SDK for iOS 3.2.0

January 27, 2022

Changed

Updated GoogleSignIn library to the latest version 6.1.0 .

FRGoogleSignIn is now available through SPM.

Ping SDK for iOS 3.1.1

November 17, 2021

Features

Added custom implementation for HTTPCookie for iOS 11+ devices, to support NSSecureCoding for storing cookies.

Changed all instances of Archiving/Unarchiving to use NSSecureCoding.

SecuredKey initializer now supports passing a Keychain accessibility flag.

SecuredKey now has the same default Keychain accessibility flag as the KeychainService ".afterFirstUnlock".

Ping SDK for iOS 3.1.0

September 25, 2021

Features

Fixed an issue where the MetadataCallback was overriding the stage property of a node.

Fixed an issue which was affecting the centralized login feature.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

What’s New Ping SDKs

78 Copyright © 2025 Ping Identity Corporation

Various bug fixes and enhancements for the Authenticator SDK.

Ping SDK for JavaScript changelog

Subscribe to get automatic updates:

 Ping SDKs Changelog RSS feed

 Ping SDKs Changelog email notifications

Ping SDK for JavaScript 4.8.0

May 16, 2025 minor

Added

Added a flag to skip immediately to the OAuth 2.0 flow rather than attempting to get tokens without redirecting.
[SDKS-3866]

Added support for signing out of PingOne by using an ID token. [SDKS-3757]

Changed

Removed an unneeded call to the /session endpoint. [SDKS-3757]

Ping SDK for JavaScript 4.7.0

February 11, 2025 minor

Added

Added a device client module to manage registered devices.

Changed

Prioritized displayName field over userName when saving a WebAuthn or passkey to an account. Previously the SDK
displayed a UUID for saved credentials rather than the user’s name. [SDKS-3473]

Ping SDK for JavaScript 4.6.0

October 17, 2024 minor

Added

Added centralized login support for PingFederate servers. [SDKS-3250]

Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback. [SDKS-3326]

Added support for the PingOne Protect Marketplace nodes. [SDKS-3298]

Changed

Refactored authorize URL utilities for upcoming DaVinci module. [SDKS-3183]

Updated allowed message list to include PingFederate "requires consent" response. [SDKS-3478]

•

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 79

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

Changed the PKCE utility to return a storage function.

Ping SDK for JavaScript 4.4.2

May 15, 2024 patch

Added

Added a logoutRedirectUri parameter to the FRUser.logout() method.

Add the parameter to invoke a redirect flow, for revoking tokens and ending sessions created by a PingOne server.

To learn more, follow the JavaScript tutorial for PingOne.

Added a platformHeader configuration property to control whether the SDK adds the X-Requested-Platform header to
all outgoing connections.

Updated

Updated the embedded PingOne Signals (Protect) SDK to the latest version.

Updated the SDK to import the PingOne Signals (Protect) SDK dynamically and start it with a method call rather than on
load.

Updated the build system to use Vite.

Fixed

Wrapped the PingOne Signals (Protect) SDK to protect it from being called when running server-side.

Ping SDK for JavaScript 4.4.0

March 13, 2024 minor

Added

Added a new module for integration with PingOne Protect. [SDKS-2902]

Added the ability to include the supplied device name when displaying recovery codes. [SDKS-2536]

Added the ability to use the OpenID Connect .well-known endpoint to override the default path configuration.
[SDKS-2966]

This simplifies using the SDKs with OIDC-compliant identity providers, such as PingOne.

For more information, refer to the Ping SDK for JavaScript PingOne tutorial.

Added StepOptions type to the public API.

•

•

•

•

•

•

•

•

•

•

info
The SDK is currently unable to revoke PingOne-issued OIDC tokens when using Firefox and Safari, due to third-
party cookie restrictions.

Note

•

What’s New Ping SDKs

80 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk
https://vitejs.dev/
https://vitejs.dev/
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/enums/fr-auth_enums.StepType.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/enums/fr-auth_enums.StepType.html

Fixed

Fixed a naming collision when using sessionStorage for tokens, state, and PKCE data and performing centralized login.
[SDKS-2945]

Ping SDK for JavaScript 4.3.0

January 4, 2024 minor

Added

Added ability to override default prefix string given to storage keys.

For more information, refer to prefix in the Ping SDK for JavaScript Properties.

Added an FRQRCode utility class to determine if a step has a QR code and handle the data to display.

For more information, refer to Set up QR code handling.

Fixed

Fixed undefined main and module fields in package.json.

Ping SDK for JavaScript 4.2.0

September 11, 2023 minor

Added

Added a logLevel configuration property to specify the level of logging the SDK performs.

For more information, refer to About the default Ping SDK for JavaScript logger.

Added a customLogger configuration property to specify a replacement for the native console.log that the SDK uses by
default.

For example, you could write a replacement that captures SDK log output to services such as Relic or Rocket.

For more information, refer to Customize the Ping SDK for JavaScript logger .

Ping SDK for JavaScript 4.1.2

July 20, 2023 patch

Added

Added support in preparation for upcoming Token Vault.

Fixed

Fixed an issue with the getTokens() method failing if no parameters are provided and you perform certain down-leveling
of code in the build process.

Ping SDK for JavaScript 4.1.1

June 29, 2023 minor

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 81

https://newrelic.com/
https://newrelic.com/
https://logrocket.com/
https://logrocket.com/

Added

Added support in the HTTPClient for receiving transactional authorization advice in JSON format.

Changed

Improved types when using strict mode with TypeScript.

Ping SDK for JavaScript 4.0.0

May 23, 2023 major

Added

Added the ability to provide a device name when registering WebAuthN devices.

Changed

Updated ESModule (ESM) bundle.

Updated tags in the GitHub repo to be prefixed with the package name. For example, javascript-sdk-${tag} .

Inserted a prompt=none parameter into OAuth 2.0 calls to the /authorize endpoint to prevent console error about
frames.

Incompatible changes

No longer provides Universal Module Definition (UMD) support

Updated Policy types

Removed duplicate modules

For more information, refer to Incompatible changes.

Deprecated

JavaScript support configuration property deprecated.

For more information, refer to Deprecations.

Ping SDK for JavaScript 3.4.0

October 10, 2022 minor

Changed

Fixed HTTP headers by capitalizing all header names

Added support for TextInput callback

Updated device profile collection code:

Added optional chaining to protect object checks in both browser and node environments

Changed usage of window.crypto to globalThis.crypto to improve compatibility

•

•

•

•

•

•

•

•

•

•

•

•

•

◦

◦

What’s New Ping SDKs

82 Copyright © 2025 Ping Identity Corporation

Ping SDK for JavaScript 3.3.0

April 25, 2022 minor

Added

Added Angular sample app.

Added token threshold feature.

DaVinci client changelog

Subscribe to get automatic updates:

 Ping SDKs Changelog RSS feed

 Ping SDKs Changelog email notifications

DaVinci client for Android 1.1.0

April 17, 2025

Added

Added support for additional PingOne Form fields. [SDKS-3649]

Label

Checkbox

Dropdown

Combobox

Radio list

Flow link

Added an external-idp module to support social sign on with supported external IDPs by using browser redirects.
[SDKS-3662]

Supported external IDPs:

Apple

Facebook

Google

Added Accept-Language header to support localization. [SDKS-3622]

Added ability to validate PingOne Form fields. [SDKS-3649]

Added support for default values in PingOne Form fields. [SDKS-3649]

Added an interface to access ErrorNode and validation errors. [SDKS-3649]

•

•

•

•

•

◦

◦

◦

◦

◦

◦

•

◦

◦

◦

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 83

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

Added a browser module. [SDKS-3662]

Added dynamic environment switching in the test sample app. [SDKS-3642]

Fixed

Fixed an issue affecting the global logger when configuring a logger in DaVinci client configuration. [SDKS-3616]

DaVinci client for iOS 1.1.0

April 17, 2025

Added

Added support for additional PingOne Form fields. [SDKS-3671, SDKS-3672]

Label

Checkbox

Dropdown

Combobox

Radio list

Flow link

Added an external-idp module to support social sign on with supported external IDPs by using browser redirects.
[SDKS-3720, SDKS-3920]

Supported external IDPs:

Apple

Facebook

Google

Added Accept-Language header to support localization. [SDKS-3623]

Added ability to validate PingOne Form fields. [SDKS-3671, SDKS-3672]

Added support for default values in PingOne Form fields. [SDKS-3674]

Added a PingBrowser module. [SDKS-3920]

Added Swift 6 support. [SDKS-3728]

DaVinci client for JavaScript 1.1.0

April 17, 2025

Added

Added support for additional PingOne Form fields.

Label

•

•

•

•

◦

◦

◦

◦

◦

◦

•

◦

◦

◦

•

•

•

•

•

•

◦

What’s New Ping SDKs

84 Copyright © 2025 Ping Identity Corporation

Checkbox

Dropdown

Combobox

Radio list

Flow link

Added support for social sign on with supported external IDPs.

Supported external IDPs:

Apple

Facebook

Google

Added the ability to call start with query parameters which the DaVinci client appends to the /authorize call.

Added request middleware to amend outgoing HTTP requests, for example to override Accept-Language headers.

Added ability to validate PingOne Form fields.

Added support for default values in PingOne Form fields.

Updated

Updated dependency on @forgerock/javascript-sdk to 4.7.0 .

Updated error node to now be submittable to help the app recover from an error state.

Updated the checks to determine what node state the DaVinci Client is in based on the response from PingOne.

DaVinci client 1.0.0

December 16, 2024

Added

Initial release of the DaVinci client, for Android, iOS and JavaScript.

Login Widget changelog

Subscribe to get automatic updates:

 Ping SDKs Changelog RSS feed

 Ping SDKs Changelog email notifications

Ping (ForgeRock) Login Widget 1.3.0

June 5, 2024 minor

◦

◦

◦

◦

◦

•

◦

◦

◦

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 85

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

Added

Added support for integration with PingOne Protect.

Added the name of the device to the recovery codes page.

Fixed

Corrected an issue that prevented use of the logLevel parameter in the Ping (ForgeRock) Login Widget configuration.

Fixed an issue with configuration literals that caused ZodError messages in the console.

Ping (ForgeRock) Login Widget 1.2.1

January 8, 2024 minor

Added

Support for CAPTCHA nodes.

Ping (ForgeRock) Login Widget 1.1

July 17, 2023 minor

Added

Support for device profiling callbacks (DeviceProfileCallback)

Support for web authentication (WebAuthn) journeys and trees.

Ping (ForgeRock) Login Widget 1.0

April 18, 2023 major

Changed

First public release

Token Vault changelog

Subscribe to get automatic updates:

 Ping SDKs Changelog RSS feed

 Ping SDKs Changelog email notifications

Token Vault 4.2.0

September 11, 2023 minor

Added

Added a requirement to declare a list of URLs in the Token Vault Proxy configuration. These generate an allowlist of origins
to which the proxy can forward requests.

•

•

•

•

•

•

•

•

•

•

•

What’s New Ping SDKs

86 Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

Token Vault 4.1.2

July 24, 2023 major

Added

Initial release of Token Vault.

Limitations

This page lists the known issues and limitations of the Ping SDKs.

All platforms

The Ping SDKs do not support authentication chains nor modules.

The FRUI module is for prototyping your UI, and is not intended for production use, as-is.

As of ForgeRock SDKs 3.0, the Identity Providers supported for social login are limited to Apple, Facebook, and Google.

Ping SDK for Android

Displaying CAPTCHAs or using the Ping (ForgeRock) Authenticator module in your application requires the presence of the
Google Play Services.

The Authenticator module of the Ping SDK for Android only supports Firebase Cloud Messaging service as a Push
Notification provider.

Social Login requires PingAM 7.1 or the latest version of PingOne Advanced Identity Cloud.

Calling FRUser.logout() will only sign out the session from PingAM but not the Social Identity Provider. Every
subsequent, social login attempt will automatically log in without asking for credentials.

Biometric authentication is only supported on Android 7.0 or newer.

Biometric authentication requires PingAM 7.1 or the latest version of PingOne Advanced Identity Cloud.

Biometric authentication requires the use of Google Play Services.

When a biometric dialog, such as the provide fingerprint dialog, is dismissed, the application may become unresponsive.

Biometric authentication does not distinguish individual biometrics (fingerprints or faces), but is limited to any registered
for the device’s current user account.

As of ForgeRock SDKs 3.0, only platform authenticators can be used for WebAuthn; roaming/USB authenticators, like
Yubikey, are not currently supported.

•

emergency_home
SDKs Renamed
Prior to November 2024, the Ping SDKs were known as the ForgeRock SDKs.

Important

•

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 87

Ping SDK for Android apps do not function correctly if they are minimized to picture-in-picture mode in Android custom
tabs.

The Ping SDK is not able to detect being minimized until API support from Google is available in Android.

Ping SDK for iOS

Data encryption with Secure Enclave is only available for iOS 10+ devices with TouchID or FaceID.

DeviceCollector customization is only available in Swift.

JailbreakDetector customization is only available in Swift.

HiddenValueCallback and SuspendedTextOutputCallback are not accessible in Objective-C.

FRAuthenticator SDK is only available in Swift.

Social Login requires PingAM 7.1 or the latest version of PingOne Advanced Identity Cloud.

Calling FRUser.logout() will only sign out the session from PingAM but not the Social Identity Provider. Every
subsequent, social login attempt will automatically log in without asking for credentials.

The Google Sign-In SDK is only compatible with CocoaPods (Swift Package Manager is not supported).

Sign In With Apple is only supported in iOS 13 and above.

Biometric authentication requires PingAM 7.1 or the latest version of PingOne Advanced Identity Cloud.

Biometric authentication does not distinguish between individual biometrics (fingerprints or faces), but is limited to the
collection of biometrics registered for the device’s current user account.

For Biometric authentication, iOS only supports the ES256 signing algorithm, this is configured in the WebAuthn
Registration node.

For "usernameless" biometric authentication support, "limit registrations" must be disabled within the WebAuthn
Registration node.

As of ForgeRock SDKs 3.0, only the platform authenticator can be used for WebAuthn; roaming/USB authenticators, like
Yubikey, are not supported.

Device Binding is not supported on iOS simulators. You must use a physical device to test Device Binding.

Ping SDK for JavaScript

The Ping SDK for JavaScript is currently unable to revoke PingOne-issued OIDC tokens when using Firefox and Safari, due
to third-party cookie protection.

When resources are protected by PingGateway, the Ping SDK for JavaScript can only support transactional authorization if
PingAM and PingGateway are on the same origin.

FireFox does not support Touch ID as a WebAuthn device on Mac therefore it limits some WebAuthn node configurations.

The SDK requires polyfills to function in IE 11 and Legacy Edge.

In WebKit for both macOS and iOS, the "Prevent Cross-site Tracking" option, which is enabled by default, can prevent the
SDK from functioning when the app and PingAM are under different origins.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

What’s New Ping SDKs

88 Copyright © 2025 Ping Identity Corporation

https://developer.chrome.com/docs/android/custom-tabs
https://developer.chrome.com/docs/android/custom-tabs
https://developer.chrome.com/docs/android/custom-tabs

Collecting location information requires the user’s system preferences to allow browser access to location information.

IndexedDB as a token storage strategy has a known issue with Firefox Private Mode. (Use localStorage as an
alternative.)

Social login with Apple requires the use of a form POST, so the "Redirect URL" cannot be an SPA as they are unable to
handle a POST request; the use of the special PingAM endpoint explained in Set up social login is recommended.

Calling FRUser.logout() will only sign out the session from PingAM but not the social identity provider. Every subsequent
social login attempt will automatically log in without asking for credentials.

Ping (ForgeRock) Authenticator module

The default storage client for Android that is built on SharedPreferences can behave unpredictably on devices from
certain manufacturers that customize the Android operating system.

For maximum compatibility with devices from different manufacturers we highly recommend that you implement your
own custom storage client for Android devices.

Incompatible changes

Incompatible changes refer to changes that impact existing functionality and might have an effect on your deployment. Before you
upgrade, review these lists and make the appropriate changes to your scripts and plugins.

ForgeRock SDK for iOS 4.0.0

Exception changes

The FRAClient.updateAccount() method now throws AccountError.accountLocked when attempting to update
a locked account.

The HOTPMechanism.generateCode() and TOTPMechanism.generateCode() methods now throw
AccountError.accountLocked when attempting to get an OATH token for a locked account.

Method signature changes

The signature of the following methods has changed:

•

•

•

•

•

emergency_home
SDKs Renamed
Prior to November 2024, the Ping SDKs were known as the ForgeRock SDKs.

Important

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 89

WebAuthnRegistrationCallback

Old

public func register(
 node: Node? = nil,
 onSuccess: @escaping StringCompletionCallback,
 onError: @escaping ErrorCallback
)

New

public func register(
 node: Node? = nil,
 window: UIWindow? = UIApplication.shared.windows.first,
 deviceName: String? = nil,
 usePasskeysIfAvailable: Bool = false,
 onSuccess: @escaping StringCompletionCallback,
 onError: @escaping ErrorCallback
)

WebAuthnAuthenticationCallback

Old

public func authenticate(
 node: Node? = nil,
 onSuccess: @escaping StringCompletionCallback,
 onError: @escaping ErrorCallback
)

New

public func authenticate(
 node: Node? = nil,
 window: UIWindow? = UIApplication.shared.windows.first,
 preferImmediatelyAvailableCredentials: Bool = false,
 usePasskeysIfAvailable: Bool = false,
 onSuccess: @escaping StringCompletionCallback,
 onError: @escaping ErrorCallback
)

FacebookSignInHandler

Old

public static func handle(
 _ application: UIApplication,
 _ url: URL,
 _ options: [UIApplication.OpenURLOptionsKey : Any] = [:]
) -> Bool

What’s New Ping SDKs

90 Copyright © 2025 Ping Identity Corporation

New

public static func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [UIApplication.LaunchOptionsKey : Any]? = nil
) -> Bool

ForgeRock SDK for Android 4.0.0

Removed support for native single sign-on (SSO)

The Android platform has deprecated sharedUserId that underpins the ForgeRock SDK for Android native SSO
implementation.

This native SSO implementation will not be viable after sharedUserId is removed from the Android platform.

Due to this deprecation, ForgeRock SDK for Android 4.0.0 removes support for Android native single sign-on, as well as the
following related changes:

AuthenticatorService is removed. Remove <service> from your AndroidManifest.xml file.

The ForgeRock SDK for Android no longer requires the following permissions:

android.permission.AUTHENTICATE_ACCOUNTS

android.permission.GET_ACCOUNTS

android.permission.MANAGE_ACCOUNTS

android.permission.USE_CREDENTIALS

The ForgeRock SDK for Android no longer requires the following configuration properties:

forgerock

forgerock_account_name

forgerock_webauthn_account_name

forgerock_webauthn_max_credential

forgerock_enable_sso

Method signature changes

The signature of the following methods has changed:

info
In ForgeRock SDK for Android 4.0.0 and later, make calls to the method using:
application(_ application:, didFinishLaunchingWithOptions launchOptions:)

Not the previous call:
application(_ app:, open url:, options:)

Note

•

•

◦

◦

◦

◦

•

◦

◦

◦

◦

◦

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 91

WebAuthnRegistrationCallback

Old

public void register(Node node,FRListener<Void> listener)

New

suspend fun register(context: Context, node: Node)

WebAuthAuthenticationCallback

Old

public void authenticate(
 @NonNull Fragment fragment,
 @NonNull Node node,
 @Nullable WebAuthnKeySelector selector,
 FRListener<Void> listener
)

New

suspend fun authenticate(
 context: Context,
 node: Node,
 selector: WebAuthnKeySelector = WebAuthnKeySelector.DEFAULT
)

org.forgerock.android.auth.FRAClient

Old

public boolean updateAccount(@NonNull Account account)

New

public boolean updateAccount(@NonNull Account account)
 throws AccountLockException

org.forgerock.android.auth.HOTPMechanism

Old

public OathTokenCode getOathTokenCode()
 throws OathMechanismException

New

public OathTokenCode getOathTokenCode()
 throws OathMechanismException, AccountLockException

What’s New Ping SDKs

92 Copyright © 2025 Ping Identity Corporation

org.forgerock.android.auth.OathMechanism

Old

public abstract OathTokenCode getOathTokenCode()
 throws OathMechanismException

New

public abstract OathTokenCode getOathTokenCode()
 throws OathMechanismException, AccountLockException

org.forgerock.android.auth.TOTPMechanism

Old

public OathTokenCode getOathTokenCode()
 throws OathMechanismException

New

public OathTokenCode getOathTokenCode()
 throws OathMechanismException, AccountLockException

ForgeRock SDK for JavaScript 4.0.0

No longer provides Universal Module Definition (UMD) support

This version of the ForgeRock SDK for JavaScript does not provide a UMD bundle.

If you require UMD support, you can:

Use an earlier version of the ForgeRock SDK for JavaScript, such as 3.4.0.

Clone the repository with the latest source code and configure it locally to provide UMD support.

Removal of indexedDB token store

The indexedDB option has been removed from the tokenStore configuration property in ForgeRock SDK for JavaScript
4.0.0. The indexedDB option did not offer sufficient functionality or reliability when the browser is using a private or
incognito window.

If you are using the indexedDB option after upgrading to ForgeRock SDK for JavaScript 4.0.0 it is ignored and the SDK
defaults to using the localStorage option instead. A warning message is output to the browser console.

This change will not affect the functionality of your app.

For more information on options for the token store, refer to Configure the Ping SDKs for Auth Journeys.

•

•

info
Support for CommonJS (CJS) and ES Modules (ESM) is not affected and still provided in ForgeRock SDK
for JavaScript 4.0.0

Note

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 93

Updated Policy types

Updated policy types so that a PolicyRequirement array is output from failedPolicies .

Removed duplicate modules

Removed the FRUI and Event modules from the ForgeRock SDK for JavaScript repository.

These modules were incorrectly duplicated from the forgerock-javascript-sdk-ui  repository.

Deprecated

The functionality listed here is deprecated, and likely to be removed in a future release.

Deprecated since Ping SDK for JavaScript 4.0

JavaScript support configuration property

The support configuration property has been removed in Ping SDK for JavaScript 4.0.

This property could be used to change the way the SDK would make requests to the /authorize endpoint in OAuth 2.0
interactions.

If you configured the SDK to use the modern option, you might notice that your app uses the default iframe method to call
the /authorize endpoint if you upgrade to this version of the SDK. This technical difference will not negatively impact
your app’s user-experience or require any code changes.

If you were using the legacy option or not providing a value for the support property at all, you will likely obtain
improvements in latency and a reduction of errors in the logs when upgrading to Ping SDK for JavaScript 4.0.

Interface stability

Interfaces labelled as Evolving in the documentation may change without warning. In addition, the following rules apply:

Interfaces that are not described in released product documentation should be considered Internal/Undocumented.

Also refer to Deprecated features and Incompatible changes.

Product release levels

Ping Identity defines Major, Minor, Maintenance, and Patch product release levels. The version number reflects release level. The
release level tells you what sort of compatibility changes to expect.

•

•

What’s New Ping SDKs

94 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/forgerock-javascript-sdk-ui
https://github.com/ForgeRock/forgerock-javascript-sdk-ui
https://github.com/ForgeRock/forgerock-javascript-sdk-ui

Product stability labels

Ping Identity Platform software supports many features, protocols, APIs, GUIs, and command-line interfaces. Some of these are
standard and very stable. Others offer new functionality that is continuing to evolve.

Ping Identity acknowledges you invest in these features and interfaces and so need to understand when they are expected to
change. For that reason, we define stability labels and use these definitions in Ping Identity Platform products.

Release level definitions

Release Label Version Numbers Characteristics

Major Version: x[.0.0] (trailing 0s are
optional) Bring major new features, minor features, and bug fixes.

Can include changes even to Stable interfaces.
Can remove previously Deprecated functionality, and in rare
cases remove Evolving functionality that has not been explicitly
Deprecated.
Include changes present in previous Minor and Maintenance
releases.

Minor Version: x.y[.0] (trailing 0s are
optional) Bring minor features, and bug fixes.

Can include backwards-compatible changes to Stable interfaces
in the same Major release, and incompatible changes to
Evolving interfaces.
Can remove previously Deprecated functionality.
Include changes present in previous Minor and Maintenance
releases.

Maintenance,
Patch

Version: x.y.z[.p]
The optional p reflects a Patch
version.

Bring bug fixes
Are intended to be fully compatible with previous versions from
the same Minor release.

•
•
•

•

•
•

•
•

•
•

Stability label definitions

Stability Label Definition

Stable This documented feature or interface is expected to undergo backwards-compatible changes only for
major releases.
Changes may be announced at least one minor release before they take effect.

Evolving This documented feature or interface is continuing to evolve and so is expected to change, potentially in
backwards-incompatible ways even in a minor release. Changes are documented at the time of product
release.
While new protocols and APIs are still in the process of standardization, they are Evolving. This applies,
for example, to recent Internet-Draft implementations and to newly developed functionality.

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 95

Getting support

Ping Identity provides support services, professional services, training, and partner services to assist you in setting up and
maintaining your deployments. For a general overview of these services, see https://www.pingidentity.com.

Ping Identity has staff members around the globe who support our international customers and partners. For details on Ping
Identity’s support offering, visit https://www.pingidentity.com/support.

Ping Identity publishes comprehensive documentation online:

The Ping Identity Knowledge Base offers a large and increasing number of up-to-date, practical articles that help you
deploy and manage Ping Identity Platform software.

While many articles are visible to everyone, Ping Identity customers have access to much more, including advanced
information for customers using Ping Identity Platform software in a mission-critical capacity.

Stability Label Definition

Legacy This feature or interface has been replaced with an improved version, and is no longer receiving
development effort from Ping Identity.
You should migrate to the newer version, however the existing functionality will remain.
Legacy features or interfaces will be marked as Deprecated if they are scheduled to be removed from the
product.

Deprecated This feature or interface is deprecated, and likely to be removed in a future release.
For previously stable features or interfaces, the change was likely announced in a previous release.
Deprecated features or interfaces will be removed from Ping Identity products.

Removed This feature or interface was deprecated in a previous release, and has now been removed from the
product.

Technology
Preview

Technology previews provide access to new features that are considered as new technology that is not
yet supported. Technology preview features may be functionally incomplete, and the function as
implemented is subject to change without notice.
DO NOT DEPLOY A TECHNOLOGY PREVIEW INTO A PRODUCTION ENVIRONMENT.
Customers are encouraged to test drive the technology preview features in a non-production
environment, and are welcome to make comments and suggestions about the features in the associated
forums.
Ping Identity does not guarantee that a technology preview feature will be present in future releases, the
final complete version of the feature is liable to change between preview and the final version. Once a
technology preview moves into the completed version, said feature will become part of Ping Identity
Platform.
Technology previews are provided on an “AS-IS” basis for evaluation purposes only, and Ping Identity
accepts no liability or obligations for the use thereof.

Internal/
Undocumented

Internal and undocumented features or interfaces can change without notice.
If you depend on one of these features or interfaces, contact support to discuss your needs.

•

What’s New Ping SDKs

96 Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com
https://www.pingidentity.com
https://www.pingidentity.com/support
https://www.pingidentity.com/support
https://support.pingidentity.com/s/knowledge-base
https://support.pingidentity.com/s/knowledge-base

Ping Identity product documentation, such as this document, aims to be technically accurate and complete with respect to
the software documented. It is visible to everyone and covers all product features and examples of how to use them.

Troubleshooting

For troubleshooting information, see the following articles in the Knowledge Base:

Ping SDK for Android Troubleshooting

Ping SDK for iOS Troubleshooting

Ping SDK for JavaScript Troubleshooting

Additional Articles

How do I troubleshoot issues with the CORS filter in PingAM/AM/OpenAM (All versions)?

•

•

•

•

•

Ping SDKs What’s New

Copyright © 2025 Ping Identity Corporation 97

https://backstage.forgerock.com/knowledge/kb/article/a68547609
https://backstage.forgerock.com/knowledge/kb/article/a68547609
https://backstage.forgerock.com/knowledge/kb/article/a79362752
https://backstage.forgerock.com/knowledge/kb/article/a79362752
https://backstage.forgerock.com/knowledge/kb/article/a83789945
https://backstage.forgerock.com/knowledge/kb/article/a83789945
https://backstage.forgerock.com/knowledge/kb/article/a43149209
https://backstage.forgerock.com/knowledge/kb/article/a43149209

Compatibility

Supported server versions

The Ping SDKs support the following server versions:

PingOne

PingOne Advanced Identity Cloud

PingAM 6.5, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 8.0, and later

PingFederate

Supported operating systems and browsers

Select a platform below to view the supported operating systems and browsers.

•

•

•

•

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 99

The Ping SDK for Android supports the following versions of the Android operating system:

Supported browsers on Android

Chrome - Two most recent major versions.

Android

Supported Android versions and original release dates

Release API Levels Released

Android 15 35 September, 2024

Android 14 34 October, 2023

Android 13 33 March, 2022

Android 12 31, 32 October, 2021

Android 11 30 September, 2020

Android 10 29 September, 2019

Android 9 (Pie) 28 August, 2018

emergency_home
Since March 1st, 2025, the Ping SDKs support policy is as follows:

Every public major release of Android within the last 6 years.

Important

•

•

Compatibility Ping SDKs

100 Copyright © 2025 Ping Identity Corporation

The Ping SDK for iOS supports the following versions of the iOS operating system:

Supported browsers on iOS

Safari - Two most recent major versions.

The Ping SDK for JavaScript, and the Ping (ForgeRock) Login Widget support the desktop and mobile browsers listed
below.

Minimum supported Desktop browser versions

Chrome 83

Firefox 77

Safari 13

Microsoft Edge 83 (Chromium)

Supported Mobile browsers

iOS (Safari) - Two most recent major versions of the operating system.

Android (Chrome) - Two most recent major versions of the operating system.

iOS

Supported iOS versions and original release dates

Release Released

iOS 18 September, 2024

iOS 17 September, 2023

iOS 16 September, 2022

emergency_home
Since March 1st, 2025, the Ping SDKs support policy is as follows:

Every public major release of iOS within the last 3 years.

Important

•

•

JavaScript / Login Widget

•

•

•

•

•

•

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 101

JavaScript Compatibility with WebViews

A WebView allows you to embed a web browser into your native Android or iOS application to display HTML pages, and run
JavaScript apps.

For example, the Android system WebView is based on the Google Chrome engine, and the iOS WebView is based on the Safari
browser engine.

However, it is important to note that WebViews do not implement the full feature set of their respective browsers. For example,
some of the browser-provided APIs that the Ping SDK for JavaScript requires are not available in a WebView, such as the
WebAuthn APIs.

In addition, there are concerns that a WebView does not provide the same level of security as their full browser counterparts.

As the SDK requires full, spec-compliant, browser-supplied APIs for full functionality we do not support usage within a WebView.

We also do not support or test usage with any wrappers around WebViews.

Whilst you might be able to implement simple use-cases using the Ping SDK for JavaScript within a WebView, we recommend that
you use an alternative such as opening a full browser, or using an in-app instance of a full browser such as Custom Tabs for
Android or SFSafariViewController for iOS.

Supported authentication journey callbacks

The Ping SDKs support the following authentication journey callbacks when using the following servers:

PingOne Advanced Identity Cloud

PingAM

•

•

Callback name Callback description Android iOS JavaScript

BooleanAttributeInputCallback
SDK 2.1

Collects true or false.
✅ ✅ ✅

ChoiceCallback Collects single user input from
available choices, retrieves
selected choice from user
interaction.

✅ ✅ ✅

ConfirmationCallback Retrieve a selected option from a
list of options.

✅ ✅ ✅

ConsentMappingCallback
SDK 2.0

Prompts the user to consent to
share their profile data. ✅ ❌ ❌

DeviceBindingCallback Cryptographically bind a mobile
device to a user account.

✅

SDK 4.0

✅

SDK 4.0
❌

Compatibility Ping SDKs

102 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

Callback name Callback description Android iOS JavaScript

DeviceProfileCallback
SDK 2.0

Collects meta and/or location data
about the authenticating device. ✅ ✅ ✅

DeviceSigningVerifierCallback Verify ownership of a bound device
by signing a challenge.

✅

SDK 4.0

✅

SDK 4.0
❌

HiddenValueCallback Returns form values that are not
visually rendered to the end user.

✅ ✅ ✅

IdPCallback Provides the information required
for connecting to an identity
provider (IdP) for social sign-on.

✅ ✅ ✅

KbaCreateCallback SDK 2.0 Collects knowledge-based answers.
For example, the name of your first
pet.

✅ ✅ ✅

MetadataCallback (1) Injects key-value metadata into the
authentication process.
For example, the WebAuthn nodes
use this callback to return the data
the SDK requires to perform
authentication and registration.

✅ ✅ ✅

NameCallback Collects a username. ✅ ✅ ✅

NumberAttributeInputCallback
SDK 2.1

Collects a number.
✅ ✅ ✅

PasswordCallback Collects a password or one-time
pass code.

✅ ✅ ✅

PingOneProtectEvaluationCallback
SDK 4.4

Collects captured contextual data
from the client to perform risk
evaluations.

✅ ✅ ✅

PingOneProtectInitializeCallback
SDK 4.4

Instructs the client to start
capturing contextual data for risk
evaluations

✅ ✅ ✅

PollingWaitCallback Instructs the client to wait for the
given period and resubmit the
request.

✅ ✅ ✅

ReCaptchaCallback Provides data required to use a
CAPTCHA in your apps.

✅ (2) ✅ ✅

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 103

The table below lists the nodes that might return supported callbacks.

The actual callbacks a node returns depends on its configuration. It might not return all the callbacks listed in this table.

Callback name Callback description Android iOS JavaScript

ReCaptchaEnterpriseCallback Provides data required to use
reCAPTCHA Enterprise in your
apps.

✅ (2)

SDK 4.6

✅

SDK 4.6

✅

SDK 4.6

RedirectCallback Redirects the user’s browser or
user-agent.

❌ ❌ ✅

SelectIdPCallback Provides a list of identity providers
(IdPs) users can choose from to
perform social sign-on.

✅ ✅ ✅

StringAttributeInputCallback
SDK 2.0

Collects the values of attributes for
use elsewhere in a tree. ✅ ✅ ✅

SuspendedTextOutputCallback
SDK 2.1

Pause and resume authentication,
sometimes known as "magic links". ✅ ✅ ✅

TermsAndConditionsCallback
SDK 2.0

Collects a user’s acceptance of the
configured Terms & Conditions. ✅ ✅ ✅

TextInputCallback Collects text input from the end
user. For example, a nickname for
their account.

✅

SDK 4.4

✅

SDK 4.4

✅

SDK 3.4

TextOutputCallback Provides a message to be
displayed to a user with a given
message type.

✅ ✅ ✅

TextOutputCallback

(messageType === 4)
Some nodes use the
TextOutputCallback callback to
include JavaScript that is intended
to be run on the client.
In this case the mesageType
property equals 4 .

❌ ❌ ✅

ValidatedPasswordCallback
SDK 2.0

Collects a password value with
optional password policy
validation.

✅ ✅ ✅

ValidatedUsernameCallback
SDK 2.0

Collects a username value with
optional username policy
validation.

✅ ✅ ✅

Compatibility Ping SDKs

104 Copyright © 2025 Ping Identity Corporation

Callback Auth nodes that might return callback

BooleanAttributeInputCallback
Attribute Collector node

ChoiceCallback
Choice Collector node

ConfirmationCallback
LDAP Decision node

Message node

MFA Registration Options node

OATH Token Verifier node

Polling Wait node

Push Wait node

WebAuthn Authentication node

OATH Registration node

ConsentMappingCallback
Consent Collector node

DeviceBindingCallback
Device Binding node

DeviceProfileCallback
Device Profile Collector node

DeviceSigningVerifierCallback
Device Signing Verifier node

HiddenValueCallback
Amster Jwt Decision node

Push Wait node

WebAuthn Authentication node

WebAuthn Registration node

IdPCallback
Social Provider Handler node

KbaCreateCallback
KBA Definition node

MetaDataCallback
WebAuthn Authentication node

WebAuthn Registration node

•

•

•
•
•
•
•
•
•
•

•

•

•

•

•
•
•
•

•

•

•
•

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 105

https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html

Callback Auth nodes that might return callback

NameCallback
Username Collector node

Datastore Decision node

OATH Token Verifier node

Platform Username node

Configuration Provider node

NumberAttributeInputCallback
Attribute Collector node

PasswordCallback
Create Password node

Password Collector node

Datastore Decision node

KBA Verification node

LDAP Decision node

One-time Password Collector Decision node

Platform Password node

PingOneProtectEvaluationCallback
PingOne Protect Evaluation node

PingOneProtectInitializeCallback
PingOne Protect Initialization node

PollingWaitCallback
Combined MFA Registration node

Push Registration node

ReCaptchaCallback
CAPTCHA node

Legacy CAPTCHA node (deprecated)

ReCaptchaEnterpriseCallback
reCAPTCHA Enterprise node

RedirectCallback
Provision IDM Account node

Identity Assertion node

Social Provider Handler node

SelectIdPCallback
Select Identity Provider node

•
•
•
•
•

•

•
•
•
•
•
•
•

•

•

•
•

•
•

•

•
•
•

•

Compatibility Ping SDKs

106 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html

The table below lists the supported callbacks that a node might return.

The actual callbacks a node returns depends on its configuration. It might not return all the callbacks listed in this table.

Callback Auth nodes that might return callback

StringAttributeInputCallback
Attribute Collector node

SuspendedTextOutputCallback
Email Suspend node

TermsAndConditionsCallback
Accept Terms and Conditions node

TextInputCallback
Configuration Provider node

TextOutputCallback
Create Password node

Display Username node

LDAP Decision node

Message node

MFA Registration Options node

TextOutputCallback (messageType == 4)
WebAuthn Authentication node

WebAuthn Registration node

ValidatedPasswordCallback
Platform Password node

ValidatedUsernameCallback
Platform Username node

•

•

•

•

•
•
•
•
•

•
•

•

•

Auth node Callbacks the node might return

Accept Terms and Conditions node TermsAndConditionsCallback

Amster Jwt Decision node HiddenValueCallback

Attribute Collector node BooleanAttributeInputCallback

NumberAttributeInputCallback

StringAttributeInputCallback

CAPTCHA node ReCaptchaCallback

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 107

https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html

Choice Collector node ChoiceCallback

Combined MFA Registration node PollingWaitCallback

Configuration Provider node NameCallback

TextInputCallback

Consent Collector node ConsentMappingCallback

Create Password node PasswordCallback

TextOutputCallback

Datastore Decision node NameCallback

PasswordCallback

Device Binding node DeviceBindingCallback

Device Profile Collector node DeviceProfileCallback

Device Signing Verifier node DeviceSigningVerifierCallback

Display Username node TextOutputCallback

Email Suspend node SuspendedTextOutputCallback

Identity Assertion node RedirectCallback

KBA Definition node KbaCreateCallback

KBA Verification node PasswordCallback

LDAP Decision node ConfirmationCallback

PasswordCallback

TextOutputCallback

Legacy CAPTCHA node (deprecated) ReCaptchaCallback

Message node ConfirmationCallback

TextOutputCallback

MFA Registration Options node ConfirmationCallback

TextOutputCallback

OATH Registration node ConfirmationCallback

OATH Token Verifier node ConfirmationCallback

NameCallback

One-time Password Collector Decision node PasswordCallback

Compatibility Ping SDKs

108 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html

(1) The WebAuthn Authentication node and the WebAuthn Registration node both use a MetaDataCallback when the
Return challenge as JavaScript is NOT enabled.

You must not enable this option when handling WebAuthn journeys with the Ping SDK for Android and iOS.

The Ping SDK for JavaScript handles either the MetaDataCallback or the JavaScript-based payload.

(2) Requires the presence of Google Play Services.

Password Collector node PasswordCallback

PingOne Protect Evaluation node PingOneProtectEvaluationCallback

PingOne Protect Initialization node PingOneProtectInitializeCallback

Platform Password node PasswordCallback

ValidatedPasswordCallback

Platform Username node NameCallback

ValidatedUsernameCallback

Polling Wait node ConfirmationCallback

Provision IDM Account node RedirectCallback

Push Registration node PollingWaitCallback

Push Wait node ConfirmationCallback

HiddenValueCallback

reCAPTCHA Enterprise node ReCaptchaEnterpriseCallback

Select Identity Provider node SelectIdPCallback

Social Provider Handler node IdPCallback

RedirectCallback

Username Collector node NameCallback

WebAuthn Authentication node ConfirmationCallback

HiddenValueCallback

MetaDataCallback

TextOutputCallback (messageType == 4)

WebAuthn Registration node HiddenValueCallback

MetaDataCallback

TextOutputCallback (messageType == 4)

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 109

https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://developers.google.com/android/guides/overview
https://developers.google.com/android/guides/overview

Supported PingOne fields and collectors

The DaVinci clients support the following connectors and capabilities when connecting to PingOne:

PingOne Forms Connector

Show Form capability

HTTP Connector

Custom HTML capability

•

◦

•

◦

Compatibility Ping SDKs

110 Copyright © 2025 Ping Identity Corporation

Custom Fields support

Toolbox support

PingOne Form Connector fields

•

•

Custom Fields support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Text Input
(TextCollector)

Collects a single text string. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Password
(PasswordCollector)

Collects a single text string that cannot be
read from the screen.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Dropdown
(SingleSelectCollector)

Collects a value from a dropdown
containing one or more text strings.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Combobox
(MultiSelectCollector)

Collects a value from a dropdown
containing one or more text strings, the
user can enter their own text string.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Radio Button List
(SingleSelectCollector)

Collects a value from one or radio
buttons.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Checkbox List
(MultiSelectCollector)

Collects the value of one or more
checkboxes.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Toolbox support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Flow Button
(FlowCollector)

Presents a customized button. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Flow Link
(FlowCollector)

Presents a customized link. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 111

Translatable Rich Text
(TextCollector)

Presents rich text that you can translate
into multiple languages.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Social Login
(IdpCollector)

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Compatibility Ping SDKs

112 Copyright © 2025 Ping Identity Corporation

HTTP Connector field and collector support

HTTP Connector SK-Component support

Unsupported features:

HTTP Connector fields

•

•

HTTP Connector field and collector support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Text field
(TextCollector)

Collects a single text string. ✅

1.0.0

✅

1.0.0

✅

1.0.0

Password field
(PasswordCollector)

Collects a single text string that cannot be
read from the screen.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Submit Button
(SubmitCollector)

Sends the collected data to PingOne to
continue the DaVinci flow.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Flow Button
(FlowCollector)

Triggers an alternative flow without
sending the data collected so far to
PingOne.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Label
(LabelCollector)

Display a read-only text label. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Radio / Dropdown
(SingleSelectCollector)

Collects a single value from a choice of
multiple options.

✅

1.1.0

✅

1.1.0

✅

1.1.0

HTTP Connector SK-Component support

SK-Component
(Collector)

Description DaVinci module

Android iOS JavaScript

skIDP
(IdpCollector)

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 113

Verify that your flow does not depend on any unsupported elements:

SKPolling components

The SKPolling component cannot be processed by the DaVinci Client and should not be included in flows.

Features such as Magic Link authentication require the SKPolling component and therefore cannot be used with
the DaVinci Client.

Images

Images included in the flow cannot be passed to the SDK.

Compatibility Ping SDKs

114 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling
https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling

Introducing the Ping SDKs for
Authentication Journeys

The Ping SDKs can leverage PingOne Advanced Identity Cloud authentication journeys and PingAM authentication trees, and their
associated callbacks.

For more information, refer to Supported callbacks.

They let you step through each node in a journey, where you render the appropriate user interface to collect input from your
users. The Ping SDKs then return the input and continue the journey.

For example, let’s say you want to use this authentication flow:

Collect username and password.

Request KBA information.

Request the user to accept the terms and conditions.

You can use the SDK to make each callback call the next step in the tree. You don’t have to traverse the REST APIs to call the next
step.

Server support:

 PingOne
 PingOne Advanced Identity Cloud
 PingAM
 PingFederate

SDK support:

 Ping SDK for Android
 Ping SDK for iOS
 Ping SDK for JavaScript

1.

2.

3.

Introducing the Ping SDKs for Authentication Journeys Ping SDKs

116 Copyright © 2025 Ping Identity Corporation

Real time response to authentication tree changes

The Ping SDKs empower developers to build applications that can handle the changes to your authentication journeys in
real time, without having to redeploy your app.

Token management

The Ping SDKs use the OAuth 2.0 auth code flow, and support PKCE.

This method is the best practice for first-party applications. The SDK automatically handles token exchange for you, and
also securely stores the tokens.

Token refresh is automatically handled by the SDK, so you don’t have to think about it.

forum

key

Ping SDKs Introducing the Ping SDKs for Authentication Journeys

Copyright © 2025 Ping Identity Corporation 117

Single sign-on (SSO)

In some scenarios, your company may have multiple native applications that customers have installed on their devices.

You can use the SDK to seamlessly sign users in to multiple applications on a device.

When the customer signs in to one application, they are automatically signed in to a second application on that device—
without having to authenticate again.

Push authentication and OTP

The Ping SDKs can help you integrate push authentication or one-time password (OTP) capabilities into your mobile
applications so your end users don’t have to download and use a dedicated Authenticator application. The SDK’s
Authenticator module can support:

 Time-based one-time passwords (TOTP)

 HMAC-based one-time password (HOTP)

 Push notifications

Pluggability and extensibility

The SDK has a modular architecture and is designed with flexibility in mind.

Don’t want to use our method for jailbreak detection? No problem! Just plug in your own method, or use any 3rd-party
plug-in instead.

Device security profile

Using the SDK, you have the option to collect device profile information to use in your authentication journeys.

You might use this data to compare a user sign-in to a prior sign-in event.

If the device profile has changed too much from the prior event, you can deny the sign-in.

person_check

devices

widgets

smartphone

Introducing the Ping SDKs for Authentication Journeys Ping SDKs

118 Copyright © 2025 Ping Identity Corporation

Jailbreak detection

Detecting whether a device is jailbroken or rooted assures developers that a device is managed by the authorized device
owner.

Jailbroken devices may be running outdated OS versions, or could be missing security patches.

Detecting whether a device is jailbroken can provide valuable insight into the security posture of a device. You can feed that
insight into your authentication journey.

The iOS and Android SDKs generate a score to determine if a device is jailbroken or rooted. There are a number of factors
that go into creating this score. The score ranges from 0 to 1.0, where 1 indicates the device is an emulator.

You can use this information as part of an authentication flow to ask the user for another factor, or to deny access entirely.

Device ID and meta data

Ping SDKs can automatically generate a device ID for you. You can use the ID with PingIDM or PingAM to allow your users to
manage their devices.

For example, you can insert the device ID and associated data into a user’s profile. This lets them view their devices and set
the devices as trusted. You can also decide to use a recognized device in an authentication flow to avoid asking a user for
another factor.

Location information

You can collect latitude and longitude information from your users via the Android and iOS SDKs.

Apps that use location services must request location permissions from users.

smartphone

smartphone

info
It is up to you what information you collect from users and devices.
You should always use data responsibly and provide your users appropriate control over data they share with
you.
You are responsible for complying with any regulations or data protection laws.

Note

article

Ping SDKs Introducing the Ping SDKs for Authentication Journeys

Copyright © 2025 Ping Identity Corporation 119

Web biometrics

The Ping SDK for JavaScript supports web biometrics functionality provided by PingAM.

Web biometrics lets users authenticate by using an authenticator device; for example, the fingerprint scanner on their
laptop or phone, or a USB key such as those provided by Yubico, or Google’s Titan security keys.

Communication with authentication devices is handled by the SDK. PingAM requests that the SDK activates authenticators
with certain criteria; for example, it must be built-in to the platform, or is a cross-platform roaming USB device. You can
also specify that the device must verify the identity of the user, rather than simply that a user is present.

The Ping SDKs have two methods for handling web biometrics: one for registering devices, and another for authenticating
using a registered device.

For more information, refer to Web biometrics.

Mobile biometric authentication

Mobile biometric authentication lets users authenticate by using a mobile device’s biometric authentication.
Communication with the platform authenticator, for example, with a fingerprint reader or facial recognition system, is
handled by the Ping SDK.

The Ping SDK communicates with PingAM to perform biometric registration and authentication using the WebAuthn nodes.
Similar to WebAuthn with the Ping SDK for JavaScript, you can configure the nodes in PingAM to request that the SDK
activates authenticators with certain criteria.

The Ping SDKs enable passkey support on supported platforms. Passkeys can be synchronized across a user’s devices
and browsers, simplifying device registration and enabling passwordless experiences.

This feature is available in the ForgeRock SDK for Android 3.0 and the ForgeRock SDK for iOS v3.0 or later. It requires
PingOne Advanced Identity Cloud, or PingAM 7.1 or later.

For more information, refer to What are mobile biometrics?.

person_check

person_check

Introducing the Ping SDKs for Authentication Journeys Ping SDKs

120 Copyright © 2025 Ping Identity Corporation

https://developers.google.com/identity/passkeys
https://developers.google.com/identity/passkeys

Social authentication

You can authenticate by using a trusted Identity Provider (IdP), like Apple, Facebook, Google, and many others.

These IdPs are used for authentication and identity verification.

This is often referred to as Social Login or Social Authentication.

These IdPs return the necessary information to integrate user information into your user’s profile.

Depending on the device platform (Android, Web or iOS), the user is redirected from the current web application or login
page to the IdP’s authorization server. Or, if on a native mobile app, the user is directed to the IdP’s authentication SDK, if
available.

Once on the IdP via a web page or SDK, the user will authenticate and provide the necessary consent required for sharing
the information.

When complete, the user is redirected back to your app or to your server to complete the authentication journey.

For more information, refer to Set up social login.

forum

Ping SDKs Introducing the Ping SDKs for Authentication Journeys

Copyright © 2025 Ping Identity Corporation 121

Compatibility

Supported server versions

The Ping SDKs support the following server versions:

PingOne

PingOne Advanced Identity Cloud

PingAM 6.5, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 8.0, and later

PingFederate

Supported operating systems and browsers

Select a platform below to view the supported operating systems and browsers.

•

•

•

•

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 123

The Ping SDK for Android supports the following versions of the Android operating system:

Supported browsers on Android

Chrome - Two most recent major versions.

Android

Supported Android versions and original release dates

Release API Levels Released

Android 15 35 September, 2024

Android 14 34 October, 2023

Android 13 33 March, 2022

Android 12 31, 32 October, 2021

Android 11 30 September, 2020

Android 10 29 September, 2019

Android 9 (Pie) 28 August, 2018

emergency_home
Since March 1st, 2025, the Ping SDKs support policy is as follows:

Every public major release of Android within the last 6 years.

Important

•

•

Compatibility Ping SDKs

124 Copyright © 2025 Ping Identity Corporation

The Ping SDK for iOS supports the following versions of the iOS operating system:

Supported browsers on iOS

Safari - Two most recent major versions.

The Ping SDK for JavaScript, and the Ping (ForgeRock) Login Widget support the desktop and mobile browsers listed
below.

Minimum supported Desktop browser versions

Chrome 83

Firefox 77

Safari 13

Microsoft Edge 83 (Chromium)

Supported Mobile browsers

iOS (Safari) - Two most recent major versions of the operating system.

Android (Chrome) - Two most recent major versions of the operating system.

iOS

Supported iOS versions and original release dates

Release Released

iOS 18 September, 2024

iOS 17 September, 2023

iOS 16 September, 2022

emergency_home
Since March 1st, 2025, the Ping SDKs support policy is as follows:

Every public major release of iOS within the last 3 years.

Important

•

•

JavaScript / Login Widget

•

•

•

•

•

•

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 125

JavaScript Compatibility with WebViews

A WebView allows you to embed a web browser into your native Android or iOS application to display HTML pages, and run
JavaScript apps.

For example, the Android system WebView is based on the Google Chrome engine, and the iOS WebView is based on the Safari
browser engine.

However, it is important to note that WebViews do not implement the full feature set of their respective browsers. For example,
some of the browser-provided APIs that the Ping SDK for JavaScript requires are not available in a WebView, such as the
WebAuthn APIs.

In addition, there are concerns that a WebView does not provide the same level of security as their full browser counterparts.

As the SDK requires full, spec-compliant, browser-supplied APIs for full functionality we do not support usage within a WebView.

We also do not support or test usage with any wrappers around WebViews.

Whilst you might be able to implement simple use-cases using the Ping SDK for JavaScript within a WebView, we recommend that
you use an alternative such as opening a full browser, or using an in-app instance of a full browser such as Custom Tabs for
Android or SFSafariViewController for iOS.

Supported authentication journey callbacks

The Ping SDKs support the following authentication journey callbacks when using the following servers:

PingOne Advanced Identity Cloud

PingAM

•

•

Callback name Callback description Android iOS JavaScript

BooleanAttributeInputCallback
SDK 2.1

Collects true or false.
✅ ✅ ✅

ChoiceCallback Collects single user input from
available choices, retrieves
selected choice from user
interaction.

✅ ✅ ✅

ConfirmationCallback Retrieve a selected option from a
list of options.

✅ ✅ ✅

ConsentMappingCallback
SDK 2.0

Prompts the user to consent to
share their profile data. ✅ ❌ ❌

DeviceBindingCallback Cryptographically bind a mobile
device to a user account.

✅

SDK 4.0

✅

SDK 4.0
❌

Compatibility Ping SDKs

126 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

Callback name Callback description Android iOS JavaScript

DeviceProfileCallback
SDK 2.0

Collects meta and/or location data
about the authenticating device. ✅ ✅ ✅

DeviceSigningVerifierCallback Verify ownership of a bound device
by signing a challenge.

✅

SDK 4.0

✅

SDK 4.0
❌

HiddenValueCallback Returns form values that are not
visually rendered to the end user.

✅ ✅ ✅

IdPCallback Provides the information required
for connecting to an identity
provider (IdP) for social sign-on.

✅ ✅ ✅

KbaCreateCallback SDK 2.0 Collects knowledge-based answers.
For example, the name of your first
pet.

✅ ✅ ✅

MetadataCallback (1) Injects key-value metadata into the
authentication process.
For example, the WebAuthn nodes
use this callback to return the data
the SDK requires to perform
authentication and registration.

✅ ✅ ✅

NameCallback Collects a username. ✅ ✅ ✅

NumberAttributeInputCallback
SDK 2.1

Collects a number.
✅ ✅ ✅

PasswordCallback Collects a password or one-time
pass code.

✅ ✅ ✅

PingOneProtectEvaluationCallback
SDK 4.4

Collects captured contextual data
from the client to perform risk
evaluations.

✅ ✅ ✅

PingOneProtectInitializeCallback
SDK 4.4

Instructs the client to start
capturing contextual data for risk
evaluations

✅ ✅ ✅

PollingWaitCallback Instructs the client to wait for the
given period and resubmit the
request.

✅ ✅ ✅

ReCaptchaCallback Provides data required to use a
CAPTCHA in your apps.

✅ (2) ✅ ✅

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 127

The table below lists the nodes that might return supported callbacks.

The actual callbacks a node returns depends on its configuration. It might not return all the callbacks listed in this table.

Callback name Callback description Android iOS JavaScript

ReCaptchaEnterpriseCallback Provides data required to use
reCAPTCHA Enterprise in your
apps.

✅ (2)

SDK 4.6

✅

SDK 4.6

✅

SDK 4.6

RedirectCallback Redirects the user’s browser or
user-agent.

❌ ❌ ✅

SelectIdPCallback Provides a list of identity providers
(IdPs) users can choose from to
perform social sign-on.

✅ ✅ ✅

StringAttributeInputCallback
SDK 2.0

Collects the values of attributes for
use elsewhere in a tree. ✅ ✅ ✅

SuspendedTextOutputCallback
SDK 2.1

Pause and resume authentication,
sometimes known as "magic links". ✅ ✅ ✅

TermsAndConditionsCallback
SDK 2.0

Collects a user’s acceptance of the
configured Terms & Conditions. ✅ ✅ ✅

TextInputCallback Collects text input from the end
user. For example, a nickname for
their account.

✅

SDK 4.4

✅

SDK 4.4

✅

SDK 3.4

TextOutputCallback Provides a message to be
displayed to a user with a given
message type.

✅ ✅ ✅

TextOutputCallback

(messageType === 4)
Some nodes use the
TextOutputCallback callback to
include JavaScript that is intended
to be run on the client.
In this case the mesageType
property equals 4 .

❌ ❌ ✅

ValidatedPasswordCallback
SDK 2.0

Collects a password value with
optional password policy
validation.

✅ ✅ ✅

ValidatedUsernameCallback
SDK 2.0

Collects a username value with
optional username policy
validation.

✅ ✅ ✅

Compatibility Ping SDKs

128 Copyright © 2025 Ping Identity Corporation

Callback Auth nodes that might return callback

BooleanAttributeInputCallback
Attribute Collector node

ChoiceCallback
Choice Collector node

ConfirmationCallback
LDAP Decision node

Message node

MFA Registration Options node

OATH Token Verifier node

Polling Wait node

Push Wait node

WebAuthn Authentication node

OATH Registration node

ConsentMappingCallback
Consent Collector node

DeviceBindingCallback
Device Binding node

DeviceProfileCallback
Device Profile Collector node

DeviceSigningVerifierCallback
Device Signing Verifier node

HiddenValueCallback
Amster Jwt Decision node

Push Wait node

WebAuthn Authentication node

WebAuthn Registration node

IdPCallback
Social Provider Handler node

KbaCreateCallback
KBA Definition node

MetaDataCallback
WebAuthn Authentication node

WebAuthn Registration node

•

•

•
•
•
•
•
•
•
•

•

•

•

•

•
•
•
•

•

•

•
•

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 129

https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html

Callback Auth nodes that might return callback

NameCallback
Username Collector node

Datastore Decision node

OATH Token Verifier node

Platform Username node

Configuration Provider node

NumberAttributeInputCallback
Attribute Collector node

PasswordCallback
Create Password node

Password Collector node

Datastore Decision node

KBA Verification node

LDAP Decision node

One-time Password Collector Decision node

Platform Password node

PingOneProtectEvaluationCallback
PingOne Protect Evaluation node

PingOneProtectInitializeCallback
PingOne Protect Initialization node

PollingWaitCallback
Combined MFA Registration node

Push Registration node

ReCaptchaCallback
CAPTCHA node

Legacy CAPTCHA node (deprecated)

ReCaptchaEnterpriseCallback
reCAPTCHA Enterprise node

RedirectCallback
Provision IDM Account node

Identity Assertion node

Social Provider Handler node

SelectIdPCallback
Select Identity Provider node

•
•
•
•
•

•

•
•
•
•
•
•
•

•

•

•
•

•
•

•

•
•
•

•

Compatibility Ping SDKs

130 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html

The table below lists the supported callbacks that a node might return.

The actual callbacks a node returns depends on its configuration. It might not return all the callbacks listed in this table.

Callback Auth nodes that might return callback

StringAttributeInputCallback
Attribute Collector node

SuspendedTextOutputCallback
Email Suspend node

TermsAndConditionsCallback
Accept Terms and Conditions node

TextInputCallback
Configuration Provider node

TextOutputCallback
Create Password node

Display Username node

LDAP Decision node

Message node

MFA Registration Options node

TextOutputCallback (messageType == 4)
WebAuthn Authentication node

WebAuthn Registration node

ValidatedPasswordCallback
Platform Password node

ValidatedUsernameCallback
Platform Username node

•

•

•

•

•
•
•
•
•

•
•

•

•

Auth node Callbacks the node might return

Accept Terms and Conditions node TermsAndConditionsCallback

Amster Jwt Decision node HiddenValueCallback

Attribute Collector node BooleanAttributeInputCallback

NumberAttributeInputCallback

StringAttributeInputCallback

CAPTCHA node ReCaptchaCallback

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 131

https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html

Choice Collector node ChoiceCallback

Combined MFA Registration node PollingWaitCallback

Configuration Provider node NameCallback

TextInputCallback

Consent Collector node ConsentMappingCallback

Create Password node PasswordCallback

TextOutputCallback

Datastore Decision node NameCallback

PasswordCallback

Device Binding node DeviceBindingCallback

Device Profile Collector node DeviceProfileCallback

Device Signing Verifier node DeviceSigningVerifierCallback

Display Username node TextOutputCallback

Email Suspend node SuspendedTextOutputCallback

Identity Assertion node RedirectCallback

KBA Definition node KbaCreateCallback

KBA Verification node PasswordCallback

LDAP Decision node ConfirmationCallback

PasswordCallback

TextOutputCallback

Legacy CAPTCHA node (deprecated) ReCaptchaCallback

Message node ConfirmationCallback

TextOutputCallback

MFA Registration Options node ConfirmationCallback

TextOutputCallback

OATH Registration node ConfirmationCallback

OATH Token Verifier node ConfirmationCallback

NameCallback

One-time Password Collector Decision node PasswordCallback

Compatibility Ping SDKs

132 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html

(1) The WebAuthn Authentication node and the WebAuthn Registration node both use a MetaDataCallback when the
Return challenge as JavaScript is NOT enabled.

You must not enable this option when handling WebAuthn journeys with the Ping SDK for Android and iOS.

The Ping SDK for JavaScript handles either the MetaDataCallback or the JavaScript-based payload.

(2) Requires the presence of Google Play Services.

Password Collector node PasswordCallback

PingOne Protect Evaluation node PingOneProtectEvaluationCallback

PingOne Protect Initialization node PingOneProtectInitializeCallback

Platform Password node PasswordCallback

ValidatedPasswordCallback

Platform Username node NameCallback

ValidatedUsernameCallback

Polling Wait node ConfirmationCallback

Provision IDM Account node RedirectCallback

Push Registration node PollingWaitCallback

Push Wait node ConfirmationCallback

HiddenValueCallback

reCAPTCHA Enterprise node ReCaptchaEnterpriseCallback

Select Identity Provider node SelectIdPCallback

Social Provider Handler node IdPCallback

RedirectCallback

Username Collector node NameCallback

WebAuthn Authentication node ConfirmationCallback

HiddenValueCallback

MetaDataCallback

TextOutputCallback (messageType == 4)

WebAuthn Registration node HiddenValueCallback

MetaDataCallback

TextOutputCallback (messageType == 4)

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 133

https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://developers.google.com/android/guides/overview
https://developers.google.com/android/guides/overview

Configure the Ping SDKs for Auth Journeys

The Ping SDKs are designed to be flexible and can be customized to suit many different situations.

Learn more about configuring and customizing the Ping SDKs in the sections below:

Configure Ping SDK properties

Learn how to configure properties in the SDKs so they can connect to your authorization server to authenticate your users
and obtain tokens.

Learn more 

Configure logging in the Ping SDKs

Utilize logging messages in the Ping SDKs during development an testing to identify, reproduce and fix issues you might
encounter.

Customize the loggers to get exactly the right level of information, in the right formats.

Learn more 

Customize REST requests

Intercept the outgoing REST calls the Ping SDKs make to customize or add data that is important to you or your
environment.

Learn more 

widgets

menu_book

quiz

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 135

Customize how the Ping SDKs store data

There are use cases where you might need to customize how to store data. For example, you might be running on
hardware that provides specialized security features.

For these cases, you can provide your own storage classes.

Learn more 

Verify servers with SSL/certificate pinning

The Ping SDKs support SSL pinning, sometimes referred to as certificate pinning.

SSL pinning is the security practice of validating the certificates presented by the server against known values, improving
the security of your system.

Learn more 

Configure Ping SDK properties

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

You need to configure certain settings in the SDKs so they can connect to your authorization server to authenticate your users
and obtain tokens.

The method you use to configure these settings depends on which SDK you are using.

devices

key

Configure the Ping SDKs for Auth Journeys Ping SDKs

136 Copyright © 2025 Ping Identity Corporation

Configure Ping SDK for Android properties

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

To configure the Ping SDK for Android, use the FROptionsBuilder methods to build an FROptions object, and pass the object to
the FRAuth.start() method.

Properties

The following properties are available for configuring the Ping SDK for Android:

Server

FROptionsBuilder attribute

server



Ping SDK for Android

Configure Ping SDK for Android properties



Ping SDK for iOS

Configure Ping SDK for iOS properties



Ping SDK for JavaScript

Configure Ping SDK for JavaScript properties

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 137

Journeys

FROptionsBuilder attribute

service

Properties

Property name Description Required

Java
setUrl

Kotlin
url

The base URL of the PingAM instance to connect to, including port and
deployment path.
Identity Cloud example:
https://openam-forgerock-sdks.forgeblocks.com/am

Self-hosted example:
https://openam.example.com:8443/openam

 1

Java
setRealm

Kotlin
realm

The realm in which the OAuth 2.0 client profile and authentication
journeys are configured.
For example, alpha .
Defaults to the self-hosted top-level realm root .

 1

Java
setTimeout

Kotlin
timeout

A timeout, in seconds, for each request that communicates with PingAM.
Default: 30



Java
setCookieName

Kotlin
cookieName

The name of the cookie that contains the session token.
For example, with a self-hosted PingAM server this value might be
iPlanetDirectoryPro .

Default: iPlanetDirectoryPro

 1

Java
setCookieCache

Kotlin
cookieCache

Time, in seconds, to cache the session token cookie in memory.
Default: 0



lightbulb_2
PingOne Advanced Identity Cloud tenants use a random alpha-
numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud
tenant, navigate to Tenant settings > Global Settings, and copy the
value of the Cookie property.

Tip

Configure the Ping SDKs for Auth Journeys Ping SDKs

138 Copyright © 2025 Ping Identity Corporation

OAuth 2.0

FROptionsBuilder attribute

oauth

Properties

Property name Description Required

Java
setAuthService

Kotlin
authService

The name of a user authentication tree configured in your server.
For example, sdkUsernamePasswordJourney .



Java
setRegistrationService

Kotlin
registrationService

The name of a user registration tree configured in your server.
For example, sdkRegistrationJourney .



Properties

Property name Description Required

Java
setOauthClientId

Kotlin
oauthClientId

The client_id of the OAuth 2.0 client profile to use.
For example, sdkNativeClient .

 1

Java
setOauthRedirectUri

Kotlin
oauthRedirectUri

The redirect_uri as configured in the OAuth 2.0 client profile.

For example, org.forgerock.demo://oauth2redirect .

 1

Java
setOauthSignOutRedirect

Uri

Kotlin
oauthSignOutRedirectUri

The URI to redirect to after signing the user out of the authorization
server.
For example, org.forgerock.demo://oauth2redirect .

 1

emergency_home
This value must match a value configured in your OAuth 2.0 client.
Important

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 139

Storage

FROptionsBuilder attribute

store

Property name Description Required

Java
SetOauthScope

Kotlin
oauthScope

A list of scopes to request when performing an OAuth 2.0 authorization
flow, separated by spaces.
For example, openid profile email address .

 1

Java
setOauthThreshold

Kotlin
oauthThreshold

A threshold, in seconds, to refresh an OAuth 2.0 token before the
access_token expires (defaults to 30 seconds).



Java
setOauthCache

Kotlin
oauthCache

Time, in seconds, to cache an OAuth 2.0 token in memory (defaults to 0
seconds).



Properties

Property name Description Required

Java
setOidcStorage

Kotlin
oidcStorage

A custom class for the storage of OpenID Connect-related items, such as
access tokens.



Java
SetSsoTokenStorage

Kotlin
ssoTokenStorage

A custom class for the storage of single sign-on-related items, such as SSO
tokens.



Configure the Ping SDKs for Auth Journeys Ping SDKs

140 Copyright © 2025 Ping Identity Corporation

SSL pinning

FROptionsBuilder attribute

sslPinning

Endpoints

FROptionsBuilder attribute

urlPath

Property name Description Required

Java
SetCookiesStorage

Kotlin
cookiesStorage

A custom class for the storage of cookies.



Properties

Property name Description Required

Java
setPins

Kotlin
pins

An array of public key certificate hashes (strings) for trusted sites and
services.



Java
setBuildSteps

Kotlin
buildSteps

An array of BuildStep objects to provide additional SSL pinning
parameters to OkHttpClient instances.



Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 141

Properties

Property name Description Required

Java
setAuthenticateEndpoint

Kotlin
authenticateEndpoint

Override the path to the authorization server’s authenticate endpoint.
Default: /json/realms/{forgerock_realm}/authenticate



Java
setAuthorizeEndpoint

Kotlin
authorizeEndpoint

Override the path to the authorization server’s authorize endpoint.
Default: /oauth2/realms/{forgerock_realm}/authorize



Java
setTokenEndpoint

Kotlin
tokenEndpoint

Override the path to the authorization server’s access_token endpoint.
Default: /oauth2/realms/{forgerock_realm}/access_token



Java
setRevokeEndpoint

Kotlin
revokeEndpoint

Override the path to the authorization server’s revoke endpoint.
Default: /oauth2/realms/{forgerock_realm}/token/revoke



Java
setUserinfoEndpoint

Kotlin
userinfoEndpoint

Override the path to the authorization server’s userinfo endpoint.
Default: /oauth2/realms/{forgerock_realm}/userinfo



Java
setSessionEndpoint

Kotlin
sessionEndpoint

Override the path to the authorization server’s sessions endpoint.



Configure the Ping SDKs for Auth Journeys Ping SDKs

142 Copyright © 2025 Ping Identity Corporation

Examples

The following examples show how to configure the Ping SDK in your Android applications:

FROptions options = FROptionsBuilder.build(frOptionsBuilder -> {
 frOptionsBuilder.server(serverBuilder -> {
 serverBuilder.setUrl("https://tenant.forgeblocks.com/am");
 serverBuilder.setRealm("alpha");
 serverBuilder.setCookieName("46b42b4229cd7a3");
 return null;
 });
 frOptionsBuilder.oauth(oAuthBuilder -> {
 oAuthBuilder.setOauthClientId("androidClient");
 oAuthBuilder.setOauthRedirectUri("https://localhost:8443/callback");
 oAuthBuilder.setOauthScope("openid profile email address");
 return null;
 });
 frOptionsBuilder.service(serviceBuilder -> {
 serviceBuilder.setAuthServiceName("Login");
 serviceBuilder.setRegistrationServiceName("Registration");
 return null;
 });
 return null;
});
FRAuth.start(this, options);

info
Session and token lifecycle
The SDK revokes and removes persisted tokens if you programmatically change any of the following properties:

setUrl / url
setRealm / realm
setCookieName / cookieName
setOauthClientId / oauthClientId
setOauthRedirectUri / oauthRedirectUri
setOauthScope / oauthScope

Note

•
•
•
•
•
•

Android - Java

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 143

val options = FROptionsBuilder.build {
 server {
 url = "https://openam-forgerock-sdks.forgeblocks.com/am"
 realm = "alpha"
 cookieName = "iPlanetDirectoryPro"
 }
 oauth {
 oauthClientId = "sdkPublicClient"
 oauthRedirectUri = "https://localhost:8443/callback"
 oauthScope = "openid profile email address"
 }
 service {
 authServiceName = "Login"
 registrationServiceName = "Registration"
 }
}

FRAuth.start(this, options);

When the application calls FRAuth.start() , the FRAuth class checks for the presence of an FROptions object. If the object is
not present, static initialization from strings.xml happens. If the object is present, the FRAuth class uses the options object
and calls the same internal initialization method.

The app can call FRAuth.start() multiple times in its lifecycle:

When the app calls FRAuth.start() for the first time in its lifecycle, the SDK checks for the presence of session and
access tokens in the local storage. If an existing session is present, initialization does not log the user out.

If the app calls FRAuth.start() again, the SDK checks whether session managers and token managers are initialized, and
cleans the existing session and token storage. This ensures that changes to the app configuration remove and revoke
existing sessions and tokens.

Using the .well-known endpoint

You can configure the SDKs to obtain many required settings from your authorization server’s .well-known OpenID Connect
endpoint.

Settings gathered from the endpoint include the paths to use for OAuth 2.0 authorization requests, and login endpoints.

Use the FROptions.discover method to use the .well-known endpoint to configure OAuth 2.0 paths:

val options =
 options.discover("https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/alpha/.well-known/
openid-configuration")

FRAuth.start(context, options)

Android - Kotlin

•

•

Configure the Ping SDKs for Auth Journeys Ping SDKs

144 Copyright © 2025 Ping Identity Corporation

Configure Ping SDK for iOS properties

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

Use the FROptions interface to build an options object and pass the object to the FRAuth.start() method.

Properties

The following properties are available for configuring the Ping SDK for iOS:

Server

Properties

Property name Description Required

FROptions
url

Properties file
forgerock_url

The base URL of the PingAM instance to connect to, including port and
deployment path.
Identity Cloud example:
https://openam-forgerock-sdks.forgeblocks.com/am

Self-hosted example:
https://openam.example.com:8443/openam

 1

FROptions
realm

Properties file
forgerock_realm

The realm in which the OAuth 2.0 client profile and authentication
journeys are configured.
For example, alpha .
Defaults to the self-hosted top-level realm root .

 1

FROptions
timeout

Properties file
forgerock_timeout

A timeout, in seconds, for each request that communicates with PingAM.
Default: 30



Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 145

Journeys

Property name Description Required

FROptions
cookieName

Properties file
forgerock_cookie_name

The name of the cookie that contains the session token.
For example, with a self-hosted PingAM server this value might be
iPlanetDirectoryPro .

Default: iPlanetDirectoryPro

 1

FROptions
enableCookie

Properties file
forgerock_enable_cookie

When true , enables cookie use.
Default: true



lightbulb_2
PingOne Advanced Identity Cloud tenants use a random alpha-
numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud
tenant, navigate to Tenant settings > Global Settings, and copy the
value of the Cookie property.

Tip

Properties

FROptions
authServiceName

Properties file
forgerock_auth_service_

name

The name of a user authentication tree configured in your server.
For example, sdkUsernamePasswordJourney .



FROptions
registrationServiceName

Properties file
forgerock_registration_

service_name

The name of a user registration tree configured in your server.
For example, sdkRegistrationJourney .



Configure the Ping SDKs for Auth Journeys Ping SDKs

146 Copyright © 2025 Ping Identity Corporation

OAuth 2.0

Properties

FROptions
oauthClientId

Properties file
forgerock_oauth_client_

id

The client_id of the OAuth 2.0 client profile to use.
For example, sdkNativeClient .

 1

FROptions
oauthRedirectUri

Properties file
forgerock_oauth_redirec

t_uri

The redirect_uri as configured in the OAuth 2.0 client profile.

For example, org.forgerock.demo://oauth2redirect .

 1

FROptions
oauthSignoutRedirectUri

Properties file
forgerock_oauth_sign_ou

t_redirect_uri

The URI to redirect to after signing the user out of the authorization
server.
For example, org.forgerock.demo://oauth2redirect .



FROptions
oauthScope

Properties file
forgerock_oauth_scope

A list of scopes to request when performing an OAuth 2.0 authorization
flow, separated by spaces.
For example, openid profile email address .

 1

FROptions
oauthThreshold

Properties file
forgerock_oauth_thresho

ld

A threshold, in seconds, to refresh an OAuth 2.0 token before the
access_token expires (defaults to 30 seconds).



emergency_home
This value must match a value configured in your OAuth 2.0 client.
Important

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 147

SSL pinning

Endpoints

Properties

FROptions
sslPinningPublicKeyHash

es

Properties file
forgerock_ssl_pinning_p

ublic_key_hashes

An array of public key certificate hashes (strings) for trusted sites and
services.



FROptions
keychainAccessGroup

Properties file
forgerock_keychain_acce

ss_group

Keychain access group for the shared keychain.



Properties

FROptions
authenticateEndpoint

Properties file
forgerock_authenticate_

endpoint

Override the path to the authorization server’s authenticate endpoint.
Default: /json/realms/{forgerock_realm}/authenticate



FROptions
authorizeEndpoint

Properties file
forgerock_authorize_end

point

Override the path to the authorization server’s authorize endpoint.
Default: /oauth2/realms/{forgerock_realm}/authorize



FROptions
tokenEndpoint

Properties file
forgerock_token_endpoin

t

Override the path to the authorization server’s access_token endpoint.
Default: /oauth2/realms/{forgerock_realm}/access_token



Configure the Ping SDKs for Auth Journeys Ping SDKs

148 Copyright © 2025 Ping Identity Corporation

Example

The following Swift example shows how to configure the Ping SDK in your iOS applications:

FROptions
revokeEndpoint

Properties file
forgerock_revoke_endpoi

nt

Override the path to the authorization server’s token/revoke endpoint.
Default: /oauth2/realms/{forgerock_realm}/token/revoke



FROptions
userinfoEndpoint

Properties file
forgerock_userinfo_endp

oint

Override the path to the authorization server’s userinfo endpoint.
Default: /oauth2/realms/{forgerock_realm}/userinfo



FROptions
sessionEndpoint

Properties file
forgerock_session_endpo

int

Override the path to the authorization server’s sessions endpoint.



FROptions
endSessionEndpoint

Properties file
forgerock_endsession_en

dpoint

Override the path to the authorization server’s endSession endpoint.



info
Session and token lifecycle
The SDK revokes and removes persisted tokens if you programmatically change any of the following properties:

url

realm

cookieName

oauthClientId

oauthRedirectUri

oauthScope

Note

•
•
•
•
•
•

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 149

let options = FROptions(
 url: "https://tenant.forgeblocks.com/am",
 realm: "alpha",
 cookieName: "46b42b4229cd7a3",
 oauthClientId: "sdkNativeClient",
 oauthRedirectUri: "org.forgerock.demo://oauth2redirect",
 oauthScope: "openid profile email address",
 authServiceName: "Login",
 registrationServiceName: "Register")
try FRAuth.start(options: options)

When the application calls FRAuth.start() , the FRAuth class checks for the presence of an FROptions object.

If the object is not present, the static initialization from FRAuthConfig.plist happens.

If the object is present, the FRAuth class converts it to a [String, Any] dictionary and calls the same internal initialization
method.

The app can call FRAuth.start() multiple times in its lifecycle:

When the app calls FRAuth.start() for the first time in its lifecycle, the SDK checks for the presence of session and
access tokens in the local storage.

If an existing session is present, initialization does not log the user out.

If the app calls FRAuth.start() again, the SDK checks whether session managers and token managers are initialized, and
cleans the existing session and token storage.

This ensures that changes to the app configuration remove and revoke existing sessions and tokens.

Using the .well-known endpoint

You can configure the SDKs to obtain many required settings from your authorization server’s .well-known OpenID Connect
endpoint.

Settings gathered from the endpoint include the paths to use for OAuth 2.0 authorization requests, and login endpoints.

Use the FROptions.discover method to use the .well-known endpoint to configure OAuth 2.0 paths:

let options = try await FROptions(config: config).discover(
 discoveryURL: "https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/alpha/.well-known/openid-
configuration")

try FRAuth.start(options: options)

•

•

Configure the Ping SDKs for Auth Journeys Ping SDKs

150 Copyright © 2025 Ping Identity Corporation

Configure Ping SDK for JavaScript properties

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

Configure SDK properties in your JavaScript app by editing a serverConfig object, a parameter of the forgerock.Config.set()
function.

Properties

The following properties are available for configuring the Ping SDK for JavaScript:

Server

Properties

Property Description

serverConfig An interface for configuring how the SDK contacts the PingAM instance.
Contains baseUrl and timeout .

serverConfig: {baseUrl} The base URL of the server to connect to, including port and deployment path.
Identity Cloud example:
https://openam-forgerock-sdks.forgeblocks.com/am

Self-hosted example:
https://openam.example.com:8443/openam

serverConfig: {wellknown} A URL to the server’s .well-known/openid-configuration endpoint.
Use the Config.setAsync() method to set SDK configuration using values derived
from those provided at the URL.
Example:
https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/

realms/alpha/.well-known/openid-configuration

Self-hosted example:
https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/

openid-configuration

serverConfig: {timeout} A timeout, in milliseconds, for each request that communicates with your server.
For example, for 30 seconds specify 30000 .
Defaults to 5000 (5 seconds).

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 151

OAuth 2.0

Property Description

realmPath The realm in which the OAuth 2.0 client profile and authentication journeys are
configured.
For example, alpha .
Defaults to the self-hosted top-level realm root .

tree The name of the user authentication tree configured in your server.
For example, sdkUsernamePasswordJourney .

Properties

Property Description

clientId The client_id of the OAuth 2.0 client profile to use.

redirectUri The redirect_uri as configured in the OAuth 2.0 client profile.

For example, https://localhost:8443/callback.html .

scope A list of scopes to request when performing an OAuth 2.0 authorization flow,
separated by spaces.
For example, openid profile email address .

oauthThreshold A threshold, in seconds, to refresh an OAuth 2.0 token before the access_token
expires.
Defaults to 30 seconds.

lightbulb_2
The Ping SDK for JavaScript attempts to load the redirect page to capture the
OAuth 2.0 code and state query parameters that the server appended to
the redirect URL.
If the page you redirect to does not exist, takes a long time to load, or runs
any JavaScript you might get a timeout, delayed authentication, or
unexpected errors.
To ensure the best user experience, we highly recommend that you redirect
to a static HTML page with minimal HTML and no JavaScript when obtaining
OAuth 2.0 tokens.

Tip

Configure the Ping SDKs for Auth Journeys Ping SDKs

152 Copyright © 2025 Ping Identity Corporation

Storage

Logging

Properties

Property Description

tokenStore The API to use for storing tokens on the client:

sessionStorage
Store tokens using the sessionStorage API. The browser clears session
storage when a page session ends.

localStorage
Store tokens using the localStorage API. The browser saves local storage
data across browser sessions. This is the default setting, as it provides the
highest browser compatibility.

{{custom}}
Specify a custom implementation that has functions that can set, retrieve,
and remove, items from a custom storage scheme.
Learn more in Customize storage on JavaScript.

prefix Override the default fr prefix string applied to the keys used for storing data on
the client, such as tokens, device IDs, and information about the steps in a journey.
For example, the key used for storing tokens consists of the prefix , followed by
the ID of the OAuth 2.0 client:
fr-sdkPublicClient .

Properties

Property Description

logLevel Specify whether the SDK should output its log messages in the console and the
level of messages to display.
One of:

none (default)
info

warn

error

debug

logger Specify a function to override the default logging behavior.
Refer to Customize the Ping SDK for JavaScript logger.

•
•
•
•
•

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 153

General

Endpoints

Examples

The following examples show how to configure the Ping SDK in your JavaScript applications:

Properties

Property Description

platformHeader Specify whether to include an X-Requested-Platform header in outgoing
requests.
The server can use the value of this header to alter the logic of an authentication
flow. For example, if the value indicates a JavaScript web app, the journey could
avoid device binding nodes, as they are only supported by Android and iOS apps.
Defaults to false .

Properties

Property Description

serverConfig: { paths:

{ authenticate }}

Override the path to the authorization server’s authenticate endpoint.
Default: json/{realmPath}/authenticate

serverConfig: { paths:

{ authorize }}

Override the path to the authorization server’s authorize endpoint.
Default: oauth2/{realmPath}/authorize

serverConfig: { paths:

{ accessToken }}

Override the path to the authorization server’s access_token endpoint.
Default: oauth2/{realmPath}/access_token

serverConfig: { paths: { revoke }} Override the path to the authorization server’s revoke endpoint.
Default: oauth2/{realmPath}/token/revoke

serverConfig: { paths:

{ userInfo }}

Override the path to the authorization server’s userinfo endpoint.
Default: oauth2/{realmPath}/userinfo

serverConfig: { paths:

{ sessions }}

Override the path to the authorization server’s sessions endpoint.
Default: json/{realmPath}/sessions

serverConfig: { paths:

{ endSession }}

Override the path to the authorization server’s endSession endpoint.
Default: oauth2/{realmPath}/connect/endSession

Configure the Ping SDKs for Auth Journeys Ping SDKs

154 Copyright © 2025 Ping Identity Corporation

forgerock.Config.set({
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 3000,
 paths: {
 authenticate: 'iam/endpoints/authN',
 authorize: 'iam/endpoints/authZ'
 },
 },
 clientId: 'sdkPublicClient',
 scope: 'openid profile email address',
 redirectUri: `${window.location.origin}/callback.html`,
 realmPath: 'alpha'
});

Using the .well-known endpoint

You can configure the SDKs to obtain many required settings from your authorization server’s .well-known OpenID Connect
endpoint.

Settings gathered from the endpoint include the paths to use for OAuth 2.0 authorization requests, and login endpoints.

Use the Config.setAsync method to use the .well-known endpoint to configure OAuth 2.0 paths:

await Config.setAsync({
 serverConfig: {
 wellknown: 'https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/alpha/.well-known/openid-
configuration'
 },
 clientId: 'sdkPublicClient',
 scope: 'openid profile email address',
 redirectUri: `${window.location.origin}/callback.html`
});

Configure logging

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

This page covers how to use the default logging in the Ping SDKs, and how to customize logging.

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 155

Android

Configure default Android logging

The Ping SDK for Android does all of its logging through a custom interface called FRLogger . The default implementation of this
interface logs the messages through the native Android Log class. This displays messages from the SDK in real-time in the
Logcat window in Android Studio.

The log severity levels defined in the Ping SDK for Android are as follows:



Ping SDK for Android

Configure Ping SDK for Android logging



Ping SDK for iOS

Configure Ping SDK for iOS logging



Ping SDK for JavaScript

Configure Ping SDK for JavaScript logging

Log level Description

DEBUG Show debug log messages intended only for development, as well as the message levels lower
in this list; INFO , WARN , and ERROR .
In addition, all network activities of the SDK are included in the logs.

INFO Show expected log messages for regular usage, as well as the message levels lower in this list,
WARN , and ERROR .

WARN Show possible issues that are not yet errors, as well as the messages of ERROR log level.

ERROR Show issues that caused errors.

Configure the Ping SDKs for Auth Journeys Ping SDKs

156 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/reference/android/util/Log
https://developer.android.com/reference/android/util/Log

Customize Android logging

The Ping SDK for Android allows developers to customize the default logger behavior:

Create a class that implements the FRLogger interface:

Log level Description

NONE No log messages are shown.

info
The log levels are cumulative.
If you select a lower severity level, all messages logged at higher severity levels are also included. For example, if you
select the DEBUG level, the log includes all events logged at the DEBUG , INFO , WARN , and ERROR levels.
By default, the log level of the Ping SDK for Android is set to Logger.Level.WARN .

Note

1.

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 157

import androidx.annotation.Nullable;
import org.forgerock.android.auth.FRLogger;

public class MyCustomLogger implements FRLogger {
 @Override
 public void error(@Nullable String tag, @Nullable Throwable t, @Nullable String message, @Nullable
Object... values) {
 /// Custom error message handling...
 }

 @Override
 public void error(@Nullable String tag, @Nullable String message, @Nullable Object... values) {
 /// Custom error message handling...
 }

 @Override
 public void warn(@Nullable String tag, @Nullable String message, @Nullable Object... values) {
 /// Custom warning message handling...
 }

 @Override
 public void warn(@Nullable String tag, @Nullable Throwable t, @Nullable String message, @Nullable
Object... values) {
 /// Custom warning message handling...
 }

 @Override
 public void debug(@Nullable String tag, @Nullable String message, @Nullable Object... values) {
 /// Custom debug message handling...
 }

 @Override
 public void info(@Nullable String tag, @Nullable String message, @Nullable Object... values) {
 /// Custom info message handling...
 }

 @Override
 public void network(@Nullable String tag, @Nullable String message, @Nullable Object... values) {
 /// Custom network details handling...
 }

 @Override
 public boolean isNetworkEnabled() {
 return true; // include network call details in the logs
 }
}

In your application, set the custom logger and desired log level:

Logger.setCustomLogger(new MyCustomLogger()); // The default logger will no longer be active
Logger.set(Logger.Level.DEBUG);

You can now use the Logger interface in your app.

For example:

2.

3.

Configure the Ping SDKs for Auth Journeys Ping SDKs

158 Copyright © 2025 Ping Identity Corporation

String TAG = MainActivity.class.getSimpleName();
Logger.debug (TAG, "Happy logging!");

iOS

Configure the default iOS logging

The Ping SDK for iOS does all of its logging through a custom protocol called FRLogger . The default implementation of the
FRLogger protocol logs the messages through the native iOS FRConsoleLogger class. This displays messages from the SDK in
real-time in the console window in Xcode.

Each log message has an associated log level that describes the type and the severity of the message. Log levels are helpful tool
for tracking and analyzing events that take place in your app.

The log severity levels defined in the Ping SDK for iOS are as follows:

Customize iOS logging

The Ping SDK for iOS lets developers customize the default logger behavior:

Create a class that conforms to the FRLogger protocol:

Log level Description

none Prevent logging

verbose Logs that are not important or can be ignored

info Logs that maybe helpful or meaningful for debugging, or understanding the flow

network Logs for network traffic, including request and response

warning Logs that are a minor issue or an error that can be ignored

error Logs that are a severe issue or a major error that impacts the SDK’s functionality or flow

all Logs at all levels

info
The log levels are not cumulative. That is, you should explicitly specify all the log levels you want to record.
For example, if you select the debug level, the output only includes events logged at debug level.
To include other levels, you must specify an array of the required log levels.
By default, the log level of the Ping SDK for iOS is set to LogLevel.none .

Note

1.

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 159

https://github.com/ForgeRock/forgerock-ios-sdk/blob/develop/FRCore/FRCore/Log/FRConsoleLogger.swift
https://github.com/ForgeRock/forgerock-ios-sdk/blob/develop/FRCore/FRCore/Log/FRConsoleLogger.swift

class MyCustomLogger: FRLogger {
 func logVerbose(timePrefix: String, logPrefix: String, message: String) {
 /// Custom verbose message handling...
 }

 func logInfo(timePrefix: String, logPrefix: String, message: String) {
 /// Custom info message handling...
 }

 func logNetwork(timePrefix: String, logPrefix: String, message: String) {
 /// Custom network message handling...
 }

 func logWarning(timePrefix: String, logPrefix: String, message: String) {
 /// Custom warning message handling...
 }

 func logError(timePrefix: String, logPrefix: String, message: String) {
 /// Custom error message handling...
 }
}

In your application, set the custom logger and desired log level:

FRLog.setCustomLogger(MyCustomLogger()) // The default logger will no longer be active
FRLog.setLogLevel([.all])

You can now use the FRLog class in your app.

For example:

FRLog.v("Happy logging!")

JavaScript

Configure the default JavaScript logging

The Ping SDK for JavaScript performs logging through the native console class. This displays messages from the SDK in real-time
in the console window provided in many browsers.

The default logLevel is none , which prevents the Ping SDK for JavaScript from logging any messages to the console.

To enable the output of log messages from the Ping SDK for JavaScript, specify a logLevel value other than none .

For example, use the following code to specify the debug level:

2.

3.

Configure the Ping SDKs for Auth Journeys Ping SDKs

160 Copyright © 2025 Ping Identity Corporation

Setting the log level in the Ping SDK for JavaScript configuration

Config.set({
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am/',
 timeout: 5000,
 },
 logLevel: 'debug',
});

The log severity levels defined in the Ping SDK for JavaScript are as follows:

For more information on configuring the Ping SDK for JavaScript, refer to Ping SDK for JavaScript Properties

Customize JavaScript logging

The Ping SDK for JavaScript allows developers to customize the default logger behavior. For example, you might want to redirect
the logs to an external service.

Create a function that implements the LoggerFunctions interface.

For example, the following code adds a prefix to each log message from the SDK and logs it to the console:

Log level Description

debug Show debug log messages intended only for development, as well as the message levels lower
in this list; info , warn , and error .
In addition, all network activities of the SDK are included in the logs.

info Show expected log messages for regular usage, as well as the message levels lower in this list,
warn , and error .

warn Show possible issues that are not yet errors, as well as the messages of error log level.

error Show issues that caused errors.

none No log messages are shown. This is the default setting.

info
The log levels are cumulative. If you select a lower severity level, all messages logged at higher severity levels are also
included.
For example, if you select the debug level, the output includes all events logged by the SDK at debug , info , warn ,
and error levels.

Note

1.

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 161

const customLogger = {
 warn: (msg) => console.warn(`[FR SDK] ${msg}`),
 error: (msg) => console.error(`[FR SDK] ${msg}`),
 log: (msg) => console.log(`[FR SDK] ${msg}`),
 info: (msg) => console.info(`[FR SDK] ${msg}`),
};

The signature of the interface defaults to the following:

(…msgs: unknown[]) ⇒ void

You can pass your own type definition into the Generic if required. For example:

// typescript generic example
type YourAsyncLoggerType = LoggerFunctions<
 (...msgs: unknown[]) => Promise<void>,
 (...msgs: unknown[]) => Promise<void>,
 (...msgs: unknown[]) => Promise<void>,
 (...msgs: unknown[]) => Promise<void>
 >

const customLoggerWithApiCall: YourAsyncLoggerType = {
 warn: (msg) => yourAsyncLogFunction.warn(`[FR SDK] ${msg}`),
 error: (msg) => yourAsyncLogFunction.error(`[FR SDK] ${msg}`),
 log: (msg) => yourAsyncLogFunction.log(`[FR SDK] ${msg}`),
 info: (msg) => yourAsyncLogFunction.info(`[FR SDK] ${msg}`),
};

In the SDK configuration of your app, specify the custom logger and required log level:

Config.set({
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am/',
 timeout: '5000'
 },
 logLevel: 'error',
 logger: customLogger,
});

The SDK redirects its logging output to your custom handler.

2.

Configure the Ping SDKs for Auth Journeys Ping SDKs

162 Copyright © 2025 Ping Identity Corporation

Customize REST calls

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

The Ping SDKs support modification of REST calls before they are sent.

For example, you can add or customize:

Query parameters

Headers

Cookies

Request URLs

Request methods

Body and post data

Request interceptors

Each SDK provides an interface that you can use to customize requests:

public interface FRRequestInterceptor<Action> {
 @NonNull Request intercept(Request request, Action action);
}

public class Action {
 private String type;
 private JSONObject payload;
}

•

•

•

•

•

•

Android

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 163

public protocol RequestInterceptor {
 func intercept(request: Request, action: Action) -> Request
}

public struct Action {
 public let type: String
 public let payload: [String: Any]?
}

type RequestMiddleware = (req: RequestObj, action: Action, next: () => RequestObj) => void;

interface RequestObj {
 url: URL;
 init: RequestInit;
}

interface Action {
 type: string;
 payload?: any; // optional data
}

Request interceptors have two inputs:

The Request object

The Action object

The Request object

Represents the original request, and has information about the body, method type, parameters, and more.

iOS

JavaScript

•

•

Configure the Ping SDKs for Auth Journeys Ping SDKs

164 Copyright © 2025 Ping Identity Corporation

public class Request {
 public URL url();
 public Iterator<Pair<String, String>> headers();
 public String header(String name);
 public List<String> headers(String name);
 public String method();
 public Object tag();
 public Body body();
 public Builder newBuilder();
}

// Use Build to build upon on existing Request
public class Builder {
 public Builder url(URL url);
 public Builder url(String url);
 public Builder header(String name, String value);
 public Builder addHeader(String name, String value);
 public Builder removeHeader(String name);
 public Builder get();
 public Builder put(Body body);
 public Builder post(Body body);
 public Builder delete(Body body);
 public Builder delete();
 public Builder patch(Body body);
 public Request build();

}

Android

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 165

public struct Request {
 // Properties
 public let url: String
 public let method: HTTPMethod
 private(set) public var headers: [String: String]
 public let bodyParams: [String: Any]
 public let urlParams: [String: String]
 public let responseType: ContentType
 public let requestType: ContentType
 public let timeoutInterval: Double

 public enum ContentType: String {
 case plainText = "text/plain"
 case json = "application/json"
 case urlEncoded = "application/x-www-form-urlencoded"
 }

 public enum HTTPMethod: String {
 case GET = "GET"
 case PUT = "PUT"
 case POST = "POST"
 case DELETE = "DELETE"
 }

 public func build() -> URLRequest?
}

Refer to the native JavaScript Request  object in the MDN Web Docs.

The Action object

Represents the type of operation the request performs:

iOS

JavaScript

Action Description

START_AUTHENTICATE Initial call to an authentication tree

AUTHENTICATE Proceed through an authentication tree flow

AUTHORIZE Obtain authorization token from PingAM

EXCHANGE_TOKEN Exchange authorization code for an access token

REFRESH_TOKEN Refresh an access token

Configure the Ping SDKs for Auth Journeys Ping SDKs

166 Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request

The outcome of applying a request interceptor is the entire modified request object, ready to either be sent to PingAM, or to have
additional request interceptors applied.

Examples

This section covers how to develop request interceptors, referred to as "middleware" in the Ping SDK for JavaScript, and apply
them to outbound requests from your applications.

Ping SDK for Android

Query parameters and headers

The example sets the ForceAuth query parameter to true , and adds an Accept-Language header with a value of en-GB on all
outgoing requests of the START_AUTHENTICATE type:

Action Description

REVOKE_TOKEN Revoke a refresh or access token

LOGOUT Log out a session

USER_INFO Obtain information from the userinfo endpoint

PUSH_REGISTER Register a push device with PingAM; for example, a call to /json/push/sns/
message?_action=register

PUSH_AUTHENTICATE Authenticate using push; for example, a call to /json/push/sns/message?
_action=authenticate

info
The AUTHENTICATE and START_AUTHENTICATE actions have a payload that contains:

tree
The name of the authentication tree being called.

type
Whether the call is to a service , or is in response to composite_advice .

Note

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 167

public class QueryParamsAndHeaderRequestInterceptor implements FRRequestInterceptor<Action> {
 @NonNull
 @Override
 public Request intercept(@NonNull Request request, Action tag) {
 if (tag.getType().equals(START_AUTHENTICATE)) {
 return request.newBuilder()
 // Add query parameter:
 .url(Uri.parse(request.url().toString())
 .buildUpon()
 .appendQueryParameter("ForceAuth", "true").toString())

 // Add additional header:
 .addHeader("Accept-Language", "en-GB")

 // Construct the updated request:
 .build();
 }
 return request;
 }
}

To register the request interceptor, use the RequestInterceptorRegistry.getInstance().register() method:

RequestInterceptorRegistry.getInstance().register(new QueryParamsAndHeaderRequestInterceptor())

Any calls the app makes to initiate authentication now have the query parameter ForceAuth=true appended, and include an
accept-language: en-GB header added.

Cookies

The example adds a custom cookie to outgoing requests:

Configure the Ping SDKs for Auth Journeys Ping SDKs

168 Copyright © 2025 Ping Identity Corporation

public class CustomCookieInterceptor implements FRRequestInterceptor<Action>, CookieInterceptor {
 @NonNull
 @Override
 public Request intercept(@NonNull Request request) {
 return request;
 }

 @NonNull
 @Override
 public Request intercept(@NonNull Request request, Action tag) {
 return request;
 }

 @NonNull
 @Override
 public List<Cookie> intercept(@NonNull List<Cookie> cookies) {
 List<Cookie> newCookies = new ArrayList<>();
 newCookies.addAll(cookies);
 newCookies.add(
 new Cookie.Builder()
 .domain("example.com")
 .name("member").value("gold")
 .httpOnly().secure().build()
);

 return newCookies;
 }
}

Ping SDK for iOS

Query parameters and headers

The example sets the ForceAuth query parameter to true , and adds an Accept-Language header with a value of en-GB on all
outgoing requests of the AUTHENTICATE or START_AUTHENTICATE type:

lightbulb_2
You can register multiple request interceptors as follows:

RequestInterceptorRegistry.getInstance().register(
 new QueryParamsAndHeaderRequestInterceptor(),
 new CustomCookieInterceptor()
);

Tip

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 169

class QueryParamsAndHeaderRequestInterceptor: RequestInterceptor {
 func intercept(request: Request, action: Action) -> Request {
 if action.type == "START_AUTHENTICATE" || action.type == "AUTHENTICATE" {
 // Add query parameter:
 var urlParams = request.urlParams
 urlParams["ForceAuth"] = "true"

 // Add additional header:
 var headers = request.headers
 headers["Accept-Language"] = "en-GB"

 // Construct the updated request:
 let newRequest = Request(
 url: request.url,
 method: request.method,
 headers: headers,
 bodyParams: request.bodyParams,
 urlParams: urlParams,
 requestType: request.requestType,
 responseType: request.responseType,
 timeoutInterval: request.timeoutInterval
)
 return newRequest
 }
 else {
 return request
 }
 }
}

To register the request interceptor, use the registerInterceptors() method:

FRRequestInterceptorRegistry.shared.registerInterceptors(
 interceptors: [
 QueryParamsAndHeaderRequestInterceptor()
]
)

Any calls the app makes to initiate authentication now have the query parameter ForceAuth=true appended, and include an
accept-language: en-GB header added.

Cookies

The example adds a custom cookie to outgoing requests:

Configure the Ping SDKs for Auth Journeys Ping SDKs

170 Copyright © 2025 Ping Identity Corporation

class CookieInterceptor: RequestInterceptor {
 func intercept(request: Request, action: Action) -> Request {
 if action.type == "START_AUTHENTICATE" || action.type == "AUTHENTICATE" {

 var headers = request.headers
 headers["Cookie"] = "member=gold; level=2"

 let newRequest = Request(
 url: request.url,
 method: request.method,
 headers: headers,
 bodyParams: request.bodyParams,
 urlParams: request.urlParams,
 requestType: request.requestType,
 responseType: request.responseType,
 timeoutInterval: request.timeoutInterval)
 return newRequest
 }
 else {
 return request
 }
 }
}

Ping SDK for JavaScript

The example has two middleware configurations. One sets the ForceAuth query parameter to true , the other adds an Accept-
Language header with a value of en-GB on all outgoing requests of the START_AUTHENTICATE type:

lightbulb_2
You can register multiple request interceptors as follows:

FRRequestInterceptorRegistry.shared.registerInterceptor(
 interceptors: [
 QueryParamsAndHeaderRequestInterceptor(),
 CookieInterceptor()
]
)

Tip

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 171

const forceAuthMiddleware = (
 req: RequestObj,
 action: Action,
 next: () => RequestObj
): void => {
 switch (action.type) {
 case 'START_AUTHENTICATE':
 req.url.searchParams.set('ForceAuth', 'true');
 break;
 }
 next();
};

const addHeadersMiddleware = (
 req: RequestObj,
 action: Action,
 next: () => RequestObj
): void => {
 switch (action.type) {
 case 'START_AUTHENTICATE':
 const headers = req.init.headers as Headers;
 headers.append('Accept-Language', 'en-GB');
 break;
 }
 next();
};

Apply the middleware in the config :

Config.set({
 clientId: 'sdkPublicClient',
 middleware: [
 forceAuthMiddleware,
 addHeadersMiddleware
],
 redirectUri: 'https://localhost:8443/callback.html',
 realmPath: 'alpha',
 scope: 'openid profile email address',
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 30000
 },
 tree: 'UsernamePassword'
});

Any calls the app makes to start authentication now have the query parameter and header added.

info
You can only modify headers in certain types of request.
For example START_AUTHENTICATE and AUTHENTICATE types, but not AUTHORIZE types as they occur in an iframe.

Note

Configure the Ping SDKs for Auth Journeys Ping SDKs

172 Copyright © 2025 Ping Identity Corporation

More information

Authentication parameters

Authenticate endpoint parameters

SDK troubleshooting

Customize storage

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

Depending on the authentication use case, the SDKs may need to store and retrieve session cookies, ID tokens, access tokens,
and refresh tokens.

Each token is serving a different use case, and as such how the SDKs handle them can be different.

The SDKs employ identity best practices for storing data by default. To learn more about how the SDKs store different data, refer
to Token and key security and Data security.

There are use cases where you might need to customize how to store data. For example, you might be running on hardware that
provides specialized security features, or perhaps target older hardware that cannot handle the latest algorithms.

For these cases, you can provide your own storage classes.

Customize storage on Android

You can configure your Android apps to use customized storage for these types of data:

OAuth 2.0 / OpenID Connect 1.0 tokens

SSO data

Cookies

Implement storage override classes

Use the Storage interface to override the different types of storage as follows

•

•

•

1.

2.

3.

lightbulb_2
Depending on why you want to override storage mechanisms, you might prefer instead to prevent use of StrongBox.
Learn more in Preventing the Keystore System from using StrongBox.

Tip

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 173

https://docs.pingidentity.com/pingam/8/authentication-guide/authn-from-browser.html#authn-from-browser-parameters
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-from-browser.html#authn-from-browser-parameters
https://docs.pingidentity.com/pingam/8/authentication-guide/authenticate-endpoint-parameters.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authenticate-endpoint-parameters.html

OpenID Connect storage

Storage<AccessToken>

SSO token storage

Storage<SSOToken>

Cookie storage

Storage<Collection<String>>

You must implement the following functions in each storage class:

save()

Stores an item in the customized storage.

get()

Retrieves an item from the customized storage.

delete()

Removes an item from the customized storage.

Examples:

class MyCustomTokenStorage(context: Context) : Storage<AccessToken> {

 override fun save(item: AccessToken) {
 TODO("Implement save to storage functionality")
 }

 override fun get(): AccessToken? {
 TODO("Implement retrieve to storage functionality")
 }

 override fun delete() {
 TODO("Implement remove from storage functionality")
 }
}

OpenID Connect storage

Configure the Ping SDKs for Auth Journeys Ping SDKs

174 Copyright © 2025 Ping Identity Corporation

class MyCustomSSOTokenStorage(context: Context) : Storage<SSOToken> {

 override fun save(item: SSOToken) {
 TODO("Implement save to storage functionality")
 }

 override fun get(): SSOToken? {
 TODO("Implement retrieve to storage functionality")
 }

 override fun delete() {
 TODO("Implement remove from storage functionality")
 }

}

class MyCustomCookiesStorage() : Storage<Collection<String>> {

 override fun save(item: Collection<String>) {
 TODO("Implement save to storage functionality")
 }

 override fun get(): Collection<String>? {
 TODO("Implement retrieve to storage functionality")
 }

 override fun delete() {
 TODO("Implement remove from storage functionality")
 }
}

The SDK includes a basic example of a customized storage class that places data temporarily in memory. Refer to
MemoryStorage.kt in the forgerock-android-sdk GitHub repo.

SSO token storage

Cookie storage

emergency_home
Apps you release that use customized storage will not be able to access existing data that was stored using a different
method.
Previous users of your app will have to log in again after upgrading to an app that is using a different storage
mechanism.
To prevent having to log in again your custom storage could manually migrate any existing data to the new storage
during initialization.
For an example of migrating existing stored data, see SSOTokenStorage.kt 

Important

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 175

https://github.com/ForgeRock/sdk-sample-apps/blob/main/android/kotlin-ui-prototype/app/src/main/java/com/example/app/storage/MemoryStorage.kt
https://github.com/ForgeRock/sdk-sample-apps/blob/main/android/kotlin-ui-prototype/app/src/main/java/com/example/app/storage/MemoryStorage.kt
https://github.com/ForgeRock/forgerock-android-sdk/blob/3702d36f935c6dec4ad636ebf36a4fdb780b65c2/forgerock-auth/src/main/java/org/forgerock/android/auth/storage/SSOTokenStorage.kt#L42C5-L53C6
https://github.com/ForgeRock/forgerock-android-sdk/blob/3702d36f935c6dec4ad636ebf36a4fdb780b65c2/forgerock-auth/src/main/java/org/forgerock/android/auth/storage/SSOTokenStorage.kt#L42C5-L53C6
https://github.com/ForgeRock/forgerock-android-sdk/blob/3702d36f935c6dec4ad636ebf36a4fdb780b65c2/forgerock-auth/src/main/java/org/forgerock/android/auth/storage/SSOTokenStorage.kt#L42C5-L53C6

Configure storage overrides

Add a store key to the FROptionsBuilder.build parameters to specify which storage types to override, and the class you
created above that provides the implementation:

val options = FROptionsBuilder.build {
 server {
 url = "https://openam-forgerock-sdks.forgeblocks.com/am"
 realm = "alpha"
 cookieName = "iPlanetDirectoryPro"
 }
 oauth {
 oauthClientId = "sdkPublicClient"
 oauthRedirectUri = "https://localhost:8443/callback"
 oauthScope = "openid profile email address"
 }
 service {
 authServiceName = "Login"
 registrationServiceName = "Registration"
 }

store {
 // Default storage settings
 // Uses SecureSharedPreferences
 // oidcStorage = TokenStorage(ContextProvider.context)
 // ssoTokenStorage = SSOTokenStorage(ContextProvider.context)
 // cookiesStorage = CookiesStorage(ContextProvider.context)

 oidcStorage = MyCustomTokenStorage(ContextProvider.context)
 ssoTokenStorage = MyCustomSSOTokenStorage(ContextProvider.context)
 cookiesStorage = MyCustomCookiesStorage(ContextProvider.context)
 }
}

FRAuth.start(this, options);

Implement storage fallbacks

One use case for providing custom storage is when the device you are targeting might not support the default
SecureSharedPreferences storage methods provided by the SDK.

In this case you can create a fallback mechanism such that if the default storage method produces an error, a second storage
method attempts to save the data.

The following CustomStorageWithFallback.kt example file is available in the forgerock-android-sdk GitHub repo.

info
You can only specify the store options when dynamically configuring the Ping SDK for Android.
You cannot add the parameters to the strings.xml file.

Note

Configure the Ping SDKs for Auth Journeys Ping SDKs

176 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps/blob/main/android/kotlin-ui-prototype/app/src/main/java/com/example/app/storage/CustomStorageWithFallback.kt
https://github.com/ForgeRock/sdk-sample-apps/blob/main/android/kotlin-ui-prototype/app/src/main/java/com/example/app/storage/CustomStorageWithFallback.kt
https://github.com/ForgeRock/sdk-sample-apps/blob/main/android/kotlin-ui-prototype/app/src/main/java/com/example/app/storage/CustomStorageWithFallback.kt

package com.example.app.storage

import android.content.Context
import kotlinx.serialization.Serializable
import org.forgerock.android.auth.AccessToken
import org.forgerock.android.auth.SSOToken
import org.forgerock.android.auth.storage.CookiesStorage
import org.forgerock.android.auth.storage.SSOTokenStorage
import org.forgerock.android.auth.storage.Storage
import org.forgerock.android.auth.storage.TokenStorage

/
 * A custom storage implementation that switches to a fallback storage when an error occurs.
 */
class CustomStorageWithFallback<T : @Serializable Any>(
 private val context: Context,
 private val flag: String, (1)
 primary: Storage<T>, (2)
 private val fallback: Storage<T> (3)
) : Storage<T> {

 @Volatile
 private var current: Storage<T> = primary (4)

 /
 * Save an item to the current storage. If an error occurs, switch to the fallback storage.
 *
 * @param item The item to be saved.
 */
 override fun save(item: T) {
 try {
 // Save the item to the current storage.
 current.save(item) (5)
 } catch (e: Throwable) {
 // If an error occurs, switch to the fallback storage.
 context.getSharedPreferences("storage-control", Context.MODE_PRIVATE).edit()
 .putInt(flag, 1).apply() (6)
 fallback.save(item) (7)
 current = fallback
 }
 }

 /
 * Retrieve an item from the current storage.
 *
 * @return The retrieved item, or null if no item is found.
 */
 override fun get(): T? {
 return current.get()
 }

 /
 * Delete an item from the current storage.
 */
 override fun delete() {
 current.delete()
 }
}

/

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 177

 * Load the SSO token storage with a fallback mechanism.
 *
 * @param context The application context.
 * @return The storage instance for SSO tokens.
 */
fun loadSSOTokenStorage(context: Context): Storage<SSOToken> { (8)
 return loadStorage(
 context,
 "ssoStorage",
 { SSOTokenStorage(context) },
 { MemoryStorage() }
)
}

/
 * Load the token storage with a fallback mechanism.
 *
 * @param context The application context.
 * @return The storage instance for tokens.
 */
fun loadTokenStorage(context: Context): Storage<AccessToken> { (9)
 return loadStorage(
 context,
 "tokenStorage",
 { TokenStorage(context) },
 { MemoryStorage() }
)
}

/
 * Load the cookies storage with a fallback mechanism.
 *
 * @param context The application context.
 * @return The storage instance for cookies.
 */
fun loadCookiesStorage(context: Context): Storage<Collection<String>> { (10)
 return loadStorage(
 context,
 "cookiesStorage",
 { CookiesStorage(context) },
 { MemoryStorage() }
)
}

/
 * Load a storage instance with a fallback mechanism.
 *
 * @param T The type of object to be stored.
 * @param context The application context.
 * @param flag A flag used to control the storage type.
 * @param primary A function to initialize the primary storage.
 * @param fallback A function to initialize the fallback storage.
 * @return The storage instance.
 */
inline fun <reified T : Any> loadStorage((11)
 context: Context,
 flag: String,
 primary: () → Storage<T>,
 fallback: () → Storage<T>
): Storage<T> {
 val control = context.getSharedPreferences("storage-control", Context.MODE_PRIVATE)
 // Get the storage type from the control flag. 0: primary, 1: fallback.

Configure the Ping SDKs for Auth Journeys Ping SDKs

178 Copyright © 2025 Ping Identity Corporation

 val storageType = control.getInt(flag, 0)
 return when (storageType) {
 // Use the primary storage.
 0 → CustomStorageWithFallback(context,
 flag,
 primary(),
 fallback())

 // Use the fallback storage.
 else → fallback()
 }
}

Configure your SDK application as follows to use the customized storage with fallback functionality:

store {
 oidcStorage = loadTokenStorage(ContextProvider.context)
 ssoTokenStorage = loadSSOTokenStorage(ContextProvider.context)
 cookiesStorage = loadCookiesStorage(ContextProvider.context)
}

Preventing the Keystore System from using StrongBox

Devices running Android 9 or higher might be able to use a keystore system backed by StrongBox.

Storing keys, tokens, and secrets by using StrongBox offers the highest level of security for your app, and is the default option in
the Ping SDK for Android.

However, using StrongBox can be slower, and more resource-intensive. When using StrongBox on certain devices the
performance and responsiveness of your app may drop below acceptable levels. To learn more, refer to the device requirements
for StrongBox in the Android Source documentation.

The Ping SDK for Android provides a strongBoxPreferred flag you can use to avoid the use of StrongBox if required. The flag
only applies to the storage mechanisms built-in to the Ping SDK for Android. You do not have to provide your own custom storage
to use the strongBoxPreferred flag.

1 Flag whether the code should use the primary storage mechanism, or the fallback
2 The class to use as the primary storage mechanism
3 The class to use as the fallback storage mechanism
4 Initially, set the primary mechanism as current
5 Attempt to save with the current mechanism
6 If it fails, set flag to 1
7 Attempt to save with the fallback mechanism
8 Create an SSO token wrapper function to load the primary and fallback mechanisms
9 Create an OIDC token wrapper function to load the primary and fallback mechanisms
10 Create a Cookie wrapper function to load the primary and fallback mechanisms
11 Create a function to load the customized storage wrappers

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 179

https://developer.android.com/privacy-and-security/keystore#StrongBoxKeyMint
https://developer.android.com/privacy-and-security/keystore#StrongBoxKeyMint
https://source.android.com/docs/compatibility/15/android-15-cdd#9112_strongbox
https://source.android.com/docs/compatibility/15/android-15-cdd#9112_strongbox
https://source.android.com/docs/compatibility/15/android-15-cdd#9112_strongbox

Use the following code to use the built-in storage mechanisms prevent use of StrongBox:

Preventing use of StrongBox for storage

val myConfig = FROptionsBuilder.build {
 server {
 ...
 }
 oauth {
 ...
 }
 store {
 oidcStorage = TokenStorage(
 encryptor = EncryptorDelegate(
 SecretKeyEncryptor {
 context = <application context> (1)
 keyAlias = "<key alias>" (2)

strongBoxPreferred = false (3)
 }
)
)
 ssoTokenStorage = SSOTokenStorage(
 encryptor = EncryptorDelegate(
 SecretKeyEncryptor {
 context = <application context> (1)
 keyAlias = "<key alias>" (2)

strongBoxPreferred = false (3)
 }
)
)
 cookiesStorage = CookiesStorage(
 encryptor = EncryptorDelegate(
 SecretKeyEncryptor {
 context = <application context> (1)
 keyAlias = "<key alias>" (2)

strongBoxPreferred = false (3)
 }
)
)
 }
}

emergency_home
If your app is using customized storage and you switch to using the built-in storage mechanisms the app will not be
able to access the existing tokens and keys.
To avoid this, first call FRAuth.start with the original configuration and the customized storage, then call it a second
time with the new store configuration and strongBoxPreferred flag.

Important

1 For <application context> enter the application context, such as ContextProvider.context.

2

For <key alias> enter a string used as the alias for the key the Ping SDK creates.
You can use any value that does not clash with any other key names. A common pattern is <top-level-domain>.<company-
name>.<version>.KEYS .
For example, com.example.v1.KEYS .

3 To prevent use of StrongBox, set the strongBoxPreferred boolean to false.

Configure the Ping SDKs for Auth Journeys Ping SDKs

180 Copyright © 2025 Ping Identity Corporation

Some devices implement StrongBox, but are not optimal. You can use the Build  class to conditionally apply the
strongBoxPreferred flag based on the device manufacturer, model, or other properties:

Conditionally applying flags based on device properties

store {
if (Build.MANUFACTURER.contains("Example")) {

 oidcStorage = TokenStorage(
 encryptor = EncryptorDelegate(SecretKeyEncryptor {
 context = ContextProvider.context
 keyAlias = "com.example.v1.KEYS"
 strongBoxPreferred = false
 })
)
 }
 }

Customize storage on JavaScript

The Ping SDK for JavaScript provides two built-in storage schemes for OAuth 2.0 tokens:

Session storage

Store tokens using the sessionStorage API.

The browser clears session storage when a page session ends.

Local storage

Store tokens using the localStorage API.

The browser saves local storage data across browser sessions. This is the default setting, as it provides the highest
browser compatibility.

You can configure your JavaScript apps to use customized storage if required.

Implement storage functions

You must implement the following functions in your custom storage scheme:

set(clientId, tokens)

Store a tokens object in the customized storage for a particular client.

get(clientId)

Retrieves the tokens object from the customized storage for a particular client.

If not specified or set to true , the Ping SDK for Android will use StrongBox when configured to use the built-in storage
mechanisms.

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 181

https://developer.android.com/reference/android/os/Build
https://developer.android.com/reference/android/os/Build
https://developer.android.com/reference/android/os/Build

remove(clientId)

Remove all items from the customized storage for a particular client.

Example:

let inMemoryTokens;

myTokenStore = {
 get(clientId) {
 console.log('Custom token getter used.');
 // Return a promise that resolves to any tokens stored in memory
 return Promise.resolve(inMemoryTokens);
 },
 set(clientId, tokens) {
 console.log('Custom token setter used.');
 // Example of storing tokens in memory
 inMemoryTokens = tokens;
 return Promise.resolve(undefined);
 },
 remove(clientId) {
 console.log('Custom token remover used.');
 // Reset the in-memory store
 inMemoryTokens = undefined;
 return Promise.resolve(undefined);
 },
};

Enable the custom storage

Use the tokenStore configuration property to configure the Ping SDK for JavaScript to use your custom storage object:

forgerock.Config.set({
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 3000,
 },
 clientId: 'sdkPublicClient',
 scope: 'openid profile email address',
 redirectUri: ${window.location.origin}/callback.html,

tokenStore: myTokenStore
});

Enable SSL pinning

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

Configure the Ping SDKs for Auth Journeys Ping SDKs

182 Copyright © 2025 Ping Identity Corporation

The Ping SDKs support SSL pinning, sometimes referred to as certificate pinning. SSL pinning is the security practice of validating
the certificates presented by the server against known values.

When the SDK attempts to make an HTTPS connection to your authorization server, it first verifies that a hash of the server’s
public key (obtained from the server’s SSL certificate) matches a set of hashes defined within your app. This SSL pinning reduces
the chance of a man-in-the-middle (MITM) attack, improving the security of your app.

If the hash does not match, your app does not connect to the authorization server, and an error is returned instead. Note that if
your public key changes, you will need to rebuild and re-release your app with the new hash included.

Get a hash of the public key from your server

To enable SSL pinning you need a hash of your server’s public key. You can use the openssl tool to extract this from your
server’s SSL certificate and create the hash value.

In the following command, replace <tenant-env-fqdn> with the fully-qualified domain name of your server, for example, my-
company.forgeblocks.com :

echo | openssl s_client -servername <tenant-env-fqdn> -connect <tenant-env-fqdn>:443 | openssl x509 -pubkey -noout |
openssl rsa -pubin -outform der | openssl dgst -sha256 -binary | openssl enc -base64

The command outputs a hash of the public key extracted from the certificate:

S4kZuhQQ1DPcXBSWFQXD0gG+UW7usdbVx6roNWpRl65I=

Use this value in the next steps to configure SSL pinning.

Configure SSL pinning in Android

To enable SSL pinning in the Ping SDK for Android, add the hash of the public keys for any PingAM authorization servers your
application will contact to your app’s configuration.

Add the hashes to an array named forgerock_ssl_pinning_public_key_hashes in your strings.xml file:



Ping SDK for Android

Configure SSL pinning in your Android
application.



Ping SDK for iOS

Configure SSL pinning in your iOS application.

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 183

<string-array name="forgerock_ssl_pinning_public_key_hashes">
 <item>S4kZuhQQ1DPcXBSWFQXD0gG+UW7usdbVx6roNWpRl65I=</item>
</string-array>

If the public key you use to obtain SSL certificates for the PingAM servers change, you can update this property
programmatically.

Override default implementation of SSL pinning for Android

You can override how the Ping SDK for Android performs SSL pinning by registering your own implementation.

To override the default SSL pinning, you create your own implementation of checkServerTrusted() :

try {
 final TrustManager myCustomTrustManager = new X509TrustManager() {
 @Override
 public void checkClientTrusted(java.security.cert.X509Certificate[] chain, String authType) {}

 @Override
 public void checkServerTrusted(java.security.cert.X509Certificate[] chain, String authType) {
 // Provide custom SSL Pinning handling
 }

 @Override
 public java.security.cert.X509Certificate[] getAcceptedIssuers() {
 return new java.security.cert.X509Certificate[] {};
 }
 };
 SSLContext sslContext = SSLContext.getInstance("SSL");
 sslContext.init(null, new TrustManager[] { myCustomTrustManager }, new java.security.SecureRandom());
 Config.getInstance().reset();
 Config.getInstance().init(this, null);
 Config.getInstance().setBuildSteps(Collections.singletonList(builder1 -> {
 builder1.sslSocketFactory(sslContext.getSocketFactory(), (X509TrustManager) myCustomTrustManager);
 builder1.hostnameVerifier((s, sslSession) -> true);
 }));

} catch (NoSuchAlgorithmException | KeyManagementException e) {
 runOnUiThread(() -> content.setText(e.getMessage()));
}

Alternatively, you can override the SDK’s SSL pinning functionality:

Configure the Ping SDKs for Auth Journeys Ping SDKs

184 Copyright © 2025 Ping Identity Corporation

val myCustomTrustManager: TrustManager = object : X509TrustManager {
 override fun checkClientTrusted(chain: Array<X509Certificate>, authType: String) {}
 override fun checkServerTrusted(chain: Array<X509Certificate>, authType: String) {
 // Provide custom SSL Pinning handling
 }
 override fun getAcceptedIssuers(): Array<X509Certificate> {
 return arrayOf()
 }
}
val sslContext = SSLContext.getInstance("SSL")
sslContext.init(null, arrayOf(myCustomTrustManager), SecureRandom())

val option = FROptionsBuilder.build {
 server {
 forgerock_url = "https://custom.example.com"
 forgerock_realm = "prod"
 }
 sslPinning {
 buildSteps = listOf(object: BuildStep<OkHttpClient.Builder> {
 override fun build(builder1: OkHttpClient.Builder) {
 builder1.sslSocketFactory(
 sslContext.socketFactory,
 myCustomTrustManager as X509TrustManager
)
 builder1.hostnameVerifier { s, sslSession -> true }
 }
 })
 forgerock_ssl_pinning_public_key_hashes = emptyList()
 }
}

Configure SSL pinning in iOS

To enable SSL pinning in the Ping SDK for iOS, add the hash of the public keys for any PingAM authorization servers your
application will contact to your app’s configuration.

Add the hashes to an array named forgerock_ssl_pinning_public_key_hashes in your FRAuthConfig.plist file:

<key>forgerock_ssl_pinning_public_key_hashes</key>
<array>
 <string>S4kZuhQQ1DPcXBSWFQXD0gG+UW7usdbVx6roNWpRl65I=</string>
</array>

If the public key you use to obtain SSL certificates for the PingAM servers change, you can update this property
programmatically.

Override default implementation of SSL pinning for iOS

You can override how the Ping SDK for iOS performs SSL pinning by registering your own implementation.

To override the default SSL pinning, create a new CustomPinningHandler subclass of the default
FRURLSessionSSLPinningHandler class. Override the implementation of the urlSession functions:

Ping SDKs Configure the Ping SDKs for Auth Journeys

Copyright © 2025 Ping Identity Corporation 185

class CustomPinningHandler: FRURLSessionSSLPinningHandler {
 override func urlSession(_ session: URLSession, didReceive challenge: URLAuthenticationChallenge,
completionHandler: @escaping (URLSession.AuthChallengeDisposition, URLCredential?) -> Void) {
 // Provide Custom SSL Pinning handling
 }

 override func urlSession(_ session: URLSession, task: URLSessionTask, didReceive challenge:
URLAuthenticationChallenge, completionHandler: @escaping (URLSession.AuthChallengeDisposition, URLCredential?) ->
Void) {
 // Provide Custom SSL Pinning handling
 }
}

Add your new custom handler as part of the configuration:

let customPinningHandler = CustomPinningHandler(frSecurityConfiguration: nil)
RestClient.shared.setURLSessionConfiguration(config: nil, handler: customPinningHandler)

Configure the Ping SDKs for Auth Journeys Ping SDKs

186 Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials

Follow these tutorials integrate your apps with Authentication journeys, also known as Intelligent Authentication in the following
servers:

PingOne Advanced Identity Cloud

PingAM

Ping SDK tutorials

Follow these core Ping SDK tutorials to integrate your apps with Authentication journeys, also known as Intelligent
Authentication in the following servers:

Integrating Ping SDKs into other platforms

Follow these tutorials to leverage the Ping SDKs in other platforms or languages, to support Authentication journeys, also known
as Intelligent Authentication in your apps.

•

•



Ping SDK for Android



Ping SDK for iOS



Ping SDK for JavaScript

Ping SDK for Auth Journey tutorials Ping SDKs

188 Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials

Follow these core Ping SDK tutorials to integrate your apps with Authentication journeys, also known as Intelligent
Authentication in the following servers:

PingOne Advanced Identity Cloud

PingAM



Angular



Flutter (iOS)



ReactJS



React Native (iOS)

•

•



Ping SDK for Android



Ping SDK for iOS

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 189

Ping SDK for Android Auth Journey tutorials

Follow these tutorials integrate your Android apps with Authentication journeys, also known as Intelligent Authentication in the
following servers:

PingOne Advanced Identity Cloud

PingAM

Ping SDK for Android Tutorials

Authentication journey quick start for Android



Ping SDK for JavaScript

•

•

Quick start

In this quick start tutorial you update one
of our sample applications.

The app steps through a simple authentication
journey and displays a basic prototype UI to

gather user credentials.



Deep dive

This deep dive tutorial guides you through
creating a Ping SDK-enabled Android app

from beginning to end.

You’ll step through the user authentication
journey and display the appropriate user

interface, meaning you get to implement the
design to your specific requirements.



Prepare › Download › Configure › Run

Ping SDK for Auth Journey tutorials Ping SDKs

190 Copyright © 2025 Ping Identity Corporation

In this quick start tutorial you update one of our sample applications to connect to your PingOne Advanced Identity Cloud
tenant or PingAM server to authenticate a user.

The app steps through a simple authentication journey and returns a session token. The app is then able to obtain user info from
the server, and finally sign out to terminate the session.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need an OAuth 2.0 client application set up, as well as an authentication journey for the app to
navigate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure connection properties

In this step, you configure the "kotlin-ui-prototype" sample app to connect to the OAuth 2.0 application you created in
PingOne Advanced Identity Cloud or PingAM.

Start step 2 

lightbulb_2
To learn how to create an app from scratch to authenticate your users, try the Authentication journey deep-dive
tutorial for Android.

Tip

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 191

Step 3. Test the app

In this step, you will test your application.

You run it in the emulator or on your Android device, perform authentication with a demo user, obtain OAuth 2.0 tokens,
and then log out the user.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

The tutorial also requires a configured server.

Compatibility

Android

This sample requires at least Android 9 (Pie) - API level 28.

For more information, refer to Supported operating systems and browsers.

Java

This sample requires at least Java 8 (v1.8).

Prerequisites

Android Studio

Download and install Android Studio, which is available for many popular operating systems.

An Android emulator or physical device

To try the quick start application as you develop it, you need an Android device. To add a virtual, emulated Android device
to Android Studio, refer to Create and manage virtual devices, on the Android Developers website.

Prepare › Download › Configure › Run

Ping SDK for Auth Journey tutorials Ping SDKs

192 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

PingOne Advanced Identity Cloud
PingAM

1.

2.

3.

4.

◦

◦

◦

◦

◦

5.

1.

2.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 193

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 1. Example username and password authentication journey

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

3.

◦

◦

◦

◦

4.

5.

6.

1.

2.

3.

4.

5.

6.

Ping SDK for Auth Journey tutorials Ping SDKs

194 Copyright © 2025 Ping Identity Corporation

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

org.forgerock.demo://oauth2redirect

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

1.

2.

3.

4.

5.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 195

Click Save Changes.

PingAM

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

6.

1.

2.

3.

◦

◦

◦

4.

1.

2.

3.

◦

◦

◦

◦

4.

5.

Ping SDK for Auth Journey tutorials Ping SDKs

196 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Figure 2. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

org.forgerock.demo://oauth2redirect

In Scopes, enter the following values:

openid profile email address

Click Create.

PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.

On the Core tab:

In Client type, select Public .

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

7.

1.

2.

3.

4.

5.

emergency_home
Also add any other domains where you will be hosting SDK applications.

Important

6.

7.

8.

1.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 197

Disable Allow wildcard ports in redirect URIs.

Click Save Changes.

On the Advanced tab:

In Grant Types, enter the following values:

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

2.

3.

9.

1.

2.

3.

10.

1.

2.

3.

4.

5.

6.

Prepare › Download › Configure › Run

1.

2.

1.

2.

1.

Ping SDK for Auth Journey tutorials Ping SDKs

198 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties

In this step, you configure the "kotlin-ui-prototype" sample to connect to your server.

In Android Studio, open the sdk-sample-apps/android/kotlin-ui-prototype folder you cloned in the previous step.

In the Project pane, switch to the Android view.

Figure 1. Switching the project pane to Android view.

2.

Prepare › Download › Configure › Run

1.

2.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 199

In the Android view, navigate to app > kotlin+java > com.example.app > env, and open EnvViewModel.kt .

This file has the server environments the sample app uses. Each specifies the properties using the
FROptionsBuilder.build method.

// Example values for a PingAM instance
val PingAM = FROptionsBuilder.build {
 server {

url = "https://openam.example.com:8443/openam"
realm = "root"
cookieName = "iPlanetDirectoryPro"

 timeout = 50
 }
 oauth {

oauthClientId = "sdkPublicClient"
oauthRedirectUri = "org.forgerock.demo://oauth2redirect"
oauthScope = "openid profile email address"
oauthSignOutRedirectUri = "org.forgerock.demo://oauth2redirect"

 }
 service {

authServiceName = "sdkUsernamePasswordJourney"
 }
}

// Example values for a Ping Advanced Identity Cloud instance
val PingAdvancedIdentityCloud = FROptionsBuilder.build {
 server {

url = "https://openam-forgerock-sdks.forgeblocks.com/am"
realm = "alpha"
cookieName = "29cd7a346b42b42"

 timeout = 50
 }
 oauth {

oauthClientId = "sdkPublicClient"
oauthRedirectUri = "org.forgerock.demo://oauth2redirect"
oauthScope = "openid profile email address"
oauthSignOutRedirectUri = "org.forgerock.demo://oauth2redirect"

 }
 service {

authServiceName = "sdkUsernamePasswordJourney"
 }
}

Update the PingAM or PingAdvancedIdentityCloud example configuration values to match your server environment:

url

The URL of the server to connect to, including the deployment path of the Access Management component.

Identity Cloud example:

https://openam-forgerock-sdks.forgeblocks.com/am

Self-hosted example:

https://openam.example.com:8443/openam

3.

4.

Ping SDK for Auth Journey tutorials Ping SDKs

200 Copyright © 2025 Ping Identity Corporation

realm

The realm in which the OAuth 2.0 client profile and authentication journeys are configured.

Usually, root for AM and alpha or bravo for Advanced Identity Cloud.

cookieName

The name of the cookie that contains the session token.

For example, with a self-hosted PingAM server this value might be iPlanetDirectoryPro .

oauthClientId

The client ID of your OAuth 2.0 application in PingOne Advanced Identity Cloud or PingAM.

For example, sdkPublicClient

oauthRedirectUri

The redirect URI or sign-in URL as configured in the OAuth 2.0 client profile.

For example, org.forgerock.demo://oauth2redirect .

oauthScope

The scopes you added to your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, openid profile email address

oauthRedirectUri

The sign-out URL as configured in the OAuth 2.0 client profile.

For example, org.forgerock.demo://oauth2redirect .

authServiceName

The authentication tree or journey you created earlier.

For example, sdkUsernamePasswordJourney

lightbulb_2
PingOne Advanced Identity Cloud tenants use a random alpha-numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud tenant, navigate to Tenant settings >
Global Settings, and copy the value of the Cookie property.

Tip

info
This value must exactly match a value configured in your OAuth 2.0 client.

Note

info
This value must exactly match a value configured in your OAuth 2.0 client.

Note

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 201

The result will resemble the following:

// Example values for a Ping Advanced Identity Cloud instance
val PingAdvancedIdentityCloud = FROptionsBuilder.build {
 server {
 url = "https://openam-forgerock-sdks.forgeblocks.com/am"
 realm = "alpha"
 cookieName = "ch15fefc5407912"
 timeout = 50
 }
 oauth {
 oauthClientId = "sdkPublicClient"
 oauthRedirectUri = "org.forgerock.demo://oauth2redirect"
 oauthScope = "openid profile email address"
 oauthSignOutRedirectUri = "org.forgerock.demo://oauth2redirect"
 }
 service {
 authServiceName = "sdkUsernamePasswordJourney"
 }
}

Save your changes.

With the sample configured, you can proceed to Step 3. Test the app.

Step 3. Test the app

In this step, you run and test the sample app.

You run it in the emulator or on your Android device and perform authentication with a demo user.

In Android Studio, select Run > Run 'app'.

In the sample app, on the Environment page, select the environment you configured in the last step.

Tap the menu icon (), tap rocket_launch Launch Journey, and then tap Submit.

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

After successful authentication the app displays the session token:

5.

Prepare › Download › Configure › Run

1.

2.

3.

4.

◦

◦

5.

Ping SDK for Auth Journey tutorials Ping SDKs

202 Copyright © 2025 Ping Identity Corporation

Figure 1. Viewing a user’s session token in the Android sample app.

Tap Show Userinfo.

The app displays the user info for the account.

6.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 203

Figure 2. Viewing userinfo for an account in the Android sample app.

Tap the menu icon (), and then tap generating_tokens Show Token.

The app displays the access, refresh, and ID tokens for the account. You can also view the scopes granted to the user.

7.

Ping SDK for Auth Journey tutorials Ping SDKs

204 Copyright © 2025 Ping Identity Corporation

Figure 3. Viewing OAuth 2.0 tokens for an account in the Android sample app.

Tap the menu icon (), and then tap logout Logout.

The app terminates the user session and returns to the Launch Journey page.

Authentication journey deep-dive tutorial for Android

This tutorial guides you through creating a Ping SDK-enabled Android app from beginning to end. The app connects to a
PingOne Advanced Identity Cloud tenant or PingAM server to authenticate a user using an authentication journey.

You’ll step through the user authentication journey and display the appropriate user interface, meaning you get to implement the
design to your requirements.

8.

lightbulb_2
To get up and running in the shortest time, try the Authentication journey quick start for Android.

Tip

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 205

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need an OAuth 2.0 client application set up, as well as an authentication journey for the app to
navigate.

Complete prerequisites 

Step 1. Configure the development environment

In this step, you set up your environment to create Android applications using the freely-available Android Studio IDE.

You then create a new application project and configure it to use the Ping SDK for Android.

Start step 1 

Step 2. Configure connection properties

In this step, you provide your application with the settings it needs to connect to your PingOne Advanced Identity Cloud or
PingAM instance.

For example, which authentication tree to use, and the realm it is a part of.

Start step 2 

Step 3. Initialize the SDK

In this step, you enable debug logging during development.

You then and add a call to the FRAuth.start() method, which initializes the SDK and loads the configuration you have
defined in the previous step.

Start step 3 

Ping SDK for Auth Journey tutorials Ping SDKs

206 Copyright © 2025 Ping Identity Corporation

Step 4. Create a status view

In this step, you create a layout and add buttons to log in and log out your user, as well as a text view field to show their
current authentication status.

You also add the code to update the value displayed in the text view.

Start step 4 

Step 5. Add login and logout calls

In this step, you update the app with the NodeListener interface, which manages the client side of the authentication
journey.

Start step 5 

Step 6. Create UI to handle the callbacks

In this step, you add a UI fragment to obtain credentials from the user, and code to open that fragment when the callback
is received.

You also add code to populate the callback with the credentials and return it to the server, completing the authentication
journey.

Start step 6 

Step 7. Test the app

In this step, you will test your application.

You run it in the emulator or on your Android device, perform authentication with a demo user, check the log for success
messages, and then log out the user.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

The tutorial also requires a configured server.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 207

Compatibility

Android

This sample requires at least Android API 23 (Android 6.0)

Java

This sample requires at least Java 8 (v1.8).

Prerequisites

Android Studio

Download and install Android Studio, which is available for many popular operating systems.

An Android emulator or physical device

To try the quick start application as you develop it, you need an Android device. To add a virtual, emulated Android device
to Android Studio, refer to Create and manage virtual devices, on the Android Developers website.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

PingOne Advanced Identity Cloud
PingAM

1.

2.

3.

Ping SDK for Auth Journey tutorials Ping SDKs

208 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

4.

◦

◦

◦

◦

◦

5.

1.

2.

3.

◦

◦

◦

◦

4.

5.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 209

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Figure 1. Example username and password authentication journey

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

org.forgerock.demo://oauth2redirect

6.

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

Ping SDK for Auth Journey tutorials Ping SDKs

210 Copyright © 2025 Ping Identity Corporation

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

PingAM

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

1.

2.

3.

4.

5.

6.

1.

2.

3.

◦

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 211

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 2. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

◦

◦

4.

1.

2.

3.

◦

◦

◦

◦

4.

5.

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

Ping SDK for Auth Journey tutorials Ping SDKs

212 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

org.forgerock.demo://oauth2redirect

In Scopes, enter the following values:

openid profile email address

Click Create.

PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.

On the Core tab:

In Client type, select Public .

Disable Allow wildcard ports in redirect URIs.

Click Save Changes.

On the Advanced tab:

In Grant Types, enter the following values:

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

7.

1.

2.

3.

4.

5.

emergency_home
Also add any other domains where you will be hosting SDK applications.

Important

6.

7.

8.

1.

2.

3.

9.

1.

2.

3.

10.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 213

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

Step 1. Configure the development environment

In this step, you set up your environment to create Android applications using the freely-available Android Studio IDE.

You then create a new application project and configure it to use the Ping SDK for Android.

Prerequisites

Android Studio

Download and install Android Studio, which is available for many popular operating systems.

An Android emulator or physical device

To try the quick start application as you develop it, you need an Android device. To add a virtual, emulated Android device
to Android Studio, refer to Create and manage virtual devices, on the Android Developers website.

Create a new project

In Android Studio, select File > New > New Project.

On the New Project screen, select Empty Views Activity, and then click [Next].

On the next screen:

In the Name field, enter Ping SDK for Android Quick Start .

In the Package name field, enter com.example.quickstart .

In the Save location field, enter the location in which to create the project.

In the Language drop-down, select Java .

In the Minimum SDK drop-down, select API 23: Android 6.0 (Marshmallow) .

1.

2.

3.

4.

5.

6.

1.

2.

3.

◦

◦

◦

◦

◦

Ping SDK for Auth Journey tutorials Ping SDKs

214 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

Click [Finish].

Android Studio creates a simple application that you can now configure to use the Ping SDK for Android.

Configure compile options

The Ping SDK for Android requires at least Java 8 (v1.8).

Configure compile options in your project to use this version of Java, or later:

In the Android view of your project, right-click app, and then click Open module settings.

In the Project Structure dialog, navigate to Modules > app > Properties.

In the Source Compatibility and Target compatibility drop-downs, select the version of Java to use for the project:

Figure 1. Selecting the Java version for a project in Android Studio

Click OK.

Add build dependencies

To use the Ping SDK for Android, add the relevant dependencies to your project:

In the Project tree view of your Android Studio project, open the Gradle Scripts/build.gradle file for the module.

◦

1.

2.

3.

4.

1.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 215

In the dependencies section, add the following:

implementation 'org.forgerock:forgerock-auth:4.8.1'

Example of the dependencies section after editing:

dependencies {
implementation 'org.forgerock:forgerock-auth:4.8.1'

 ...
 implementation 'androidx.appcompat:appcompat:1.6.1'
 implementation 'com.google.android.material:material:1.8.0'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.4'
}

(Optional) Enable optional clear traffic and location support

If you are not using the PingOne Advanced Identity Cloud but rather a local PingAM server that does not use the HTTPS protocol,
you can edit your project manifest file to allow cleartext connections.

Open the project manifest file.

For example, app > manifests > AndroidManifest.xml.

Add an android:usesCleartextTraffic="true" attribute to the <application> element.

(Optional) Enable location permissions

If you intend for your application to use any of the Android location services; for example, the SDK’s location matching or
geofencing features, add one of the relevant properties to the project manifest file

Open the project’s manifest file.

For example, app > manifests > AndroidManifest.xml.

Add the relevant properties as a child of the <manifest> element:

Coarse location access

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

2.

emergency_home
You should only configure this property during development against a local PingAM server.
Do not configure this property in your production applications.

Important

1.

2.

1.

2.

1.

Ping SDK for Auth Journey tutorials Ping SDKs

216 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingoneaic/latest/solution-configure-device-profiling.html
https://docs.pingidentity.com/pingoneaic/latest/solution-configure-device-profiling.html
https://docs.pingidentity.com/pingoneaic/latest/solution-configure-device-profiling.html

Fine location access (requires both permissions)

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

For information about which permission to use, see Location permissions in the Google Developer Documentation.

Example completed manifest file

The following shows an example AndroidManifest.xml file with support for cleartext traffic and fine location access enabled:

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

 <application
 android:allowBackup="true"
 android:dataExtractionRules="@xml/data_extraction_rules"
 android:fullBackupContent="@xml/backup_rules"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.ForgeRockSDKForAndroidQuickStart"
 tools:targetApi="31"
 android:usesCleartextTraffic="true">
 <activity
 android:name=".MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

 <meta-data
 android:name="android.app.lib_name"
 android:value="" />
 </activity>
 </application>

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

</manifest>

2.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 217

https://developers.google.com/maps/documentation/android-sdk/location#location_permissions
https://developers.google.com/maps/documentation/android-sdk/location#location_permissions

Check point

In Android Studio, select Run > Run 'app'.

Android Studio builds the application and runs it in the default emulator.

As you have not yet added any UI, the app displays only "Hello World!".

You have now configured your Android app development environment, created a new project, and configured it with the required
dependencies and build options.

In the next step, you configure your application with the settings it needs to connect to your PingOne Advanced Identity Cloud or
PingAM instance.

Step 2. Configure connection properties

In this step, you provide your application with the settings it needs to connect to your PingOne Advanced Identity Cloud or
PingAM instance.

For example, which authentication tree to use and the realm it is a part of.

Ping SDK for Auth Journey tutorials Ping SDKs

218 Copyright © 2025 Ping Identity Corporation

For this quick start guide, you must provide at least the following properties:

Property Description

forgerock_oauth_client

_id

The client_id of the OAuth 2.0 client profile to use.

forgerock_oauth_redire

ct_uri

The redirect_uri as configured in the OAuth 2.0 client profile.
This value must match a value configured in your OAuth 2.0 client, but is not actually used by the
Android application.

forgerock_oauth_scope A list of scopes to request when performing an OAuth 2.0 authorization flow.

forgerock_url The URL of the PingOne Advanced Identity Cloud or PingAM instance.
For example, https://openam-forgerock-sdks.forgeblocks.com/am
If you are not using PingOne Advanced Identity Cloud, specify the port and deployment path.
For example, https://openam.example.com:8443/openam .

forgerock_realm The realm in which the OAuth 2.0 client profile is configured.
For example, alpha
If you are not using PingOne Advanced Identity Cloud, specify the default PingAM the top-level
realm; root .

forgerock_auth_service The name of the journey to use for authentication.
For example, sdkUsernamePasswordJourney

forgerock_cookie_name The name of the cookie that contains the session token. To obtain the name of the cookie in the
PingOne Advanced Identity Cloud:

Click your user in the top-right corner and select Tenant settings.
On the Global Settings tab, copy the value of the Cookie property.

The value is a random string of characters, such as 29cd7a346b42b42 .
If you are not using PingOne Advanced Identity Cloud, the cookie name is usually
iPlanetDirectoryPro .

1.
2.

Property Description

forgerock_oauth_thresh

old

A threshold, in seconds, to refresh an OAuth 2.0 token before the access_token expires
(defaults to 30 seconds).

forgerock_timeout A timeout, in seconds, for each request that communicates with PingAM.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 219

Add required connection settings to your app

In the Project tree view of your Android Studio project, navigate to app › res › values, and then open the strings.xml
file.

Inside the <resources> element, add the following elements, adjusting the values for your deployment:

<!-- OAuth 2.0 client details -->
<string name="forgerock_oauth_client_id" translatable="false">sdkPublicClient</string>
<string name="forgerock_oauth_redirect_uri" translatable="false">https://sdkapp.example.com:8443/callback</
string>
<string name="forgerock_oauth_scope" translatable="false">openid profile email address</string>

<!-- PingOne Advanced Identity Cloud details -->
<string name="forgerock_url" translatable="false">https://openam-forgerock-sdks.forgeblocks.com/am</string>
<string name="forgerock_cookie_name" translatable="false">iPlanetDirectoryPro</string>
<string name="forgerock_realm" translatable="false">alpha</string>

<!-- Journey details -->
<string name="forgerock_auth_service" translatable="false">sdkUsernamePasswordJourney</string>

Check point

You have now configured your application with the settings it needs to connect to your PingOne Advanced Identity Cloud or
PingAM instance.

In the next step, you add debug logging and initialize the SDK.

Step 3. Initialize the SDK

In this step, you enable debug logging during development.

You then add a call to the FRAuth.start() method, which initializes the SDK and loads the configuration you have defined in the
previous step.

Enable debug logging and initialize the SDK

Open the project’s MainActivity class file.

For example, app > java > com.example.quickstart > MainActivity.

Enable debug logging and initialize the SDK in the onCreate() method after the generated code:

1.

2.

1.

2.

Ping SDK for Auth Journey tutorials Ping SDKs

220 Copyright © 2025 Ping Identity Corporation

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 // Add these lines:
 Logger.set(Logger.Level.DEBUG);
 FRAuth.start(this);
}

Add the required import statements for org.forgerock.android.auth.FRAuth and
org.forgerock.android.auth.Logger .

import org.forgerock.android.auth.FRAuth;
import org.forgerock.android.auth.Logger;

Check point

You have now added debug logging to your app and initialized the SDK.

To test the setup so far, in Android Studio, select Run > Run 'app'.

If everything is configured correctly, the app builds, and the default emulator will run the application.

Open the Logcat pane. The SDK will generate output similar to the following if everything is configured correctly:

-- PROCESS STARTED (14305) for package com.example
[4.8.1] [DefaultTokenManager]: Using SharedPreference: StorageDelegate

If you get errors when running the app, check the app > res > values > strings.xml has the correct values. Refer to Step 2.
Configure connection properties.

In the next step, you create the initial user interface to display the current authentication status, and add buttons to log in and log
out.

Step 4. Create a status view

In this step, you create a layout and add buttons to log in and log out your user, as well as a text view field to show their current
authentication status.

You also add the code to update the value displayed in the text view.

3.

1.

2.

lightbulb_2
In the Logcat filter bar, enter tag:ForgeRock to only view output from the SDK.

Tip

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 221

Create a layout for the status view

Navigate to app > res > layout and open activity_main.xml .

Select and delete the existing TextView element that contains the text Hello World! .

From the Palette pane, drag a new TextView element to the canvas:

id: textViewUserStatus

text: User status

From the Palette pane, drag a new Button element to the canvas:

id: buttonLogin

text: Log in

From the Palette pane, drag a second new Button element to the canvas:

id: buttonLogout

text: Log out

Layout the elements on the canvas to your liking.

The following screenshot shows one possibility:

1.

2.

3.

◦

◦

4.

◦

◦

5.

◦

◦

6.

Ping SDK for Auth Journey tutorials Ping SDKs

222 Copyright © 2025 Ping Identity Corporation

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:id="@+id/textViewUserStatus"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="16dp"
 android:layout_marginTop="16dp"
 android:layout_marginEnd="16dp"
 android:text="User status"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <Button
 android:id="@+id/buttonLogin"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="16dp"
 android:layout_marginTop="16dp"
 android:layout_marginEnd="8dp"
 android:text="Log in"
 app:layout_constraintEnd_toStartOf="@+id/buttonLogout"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/textViewUserStatus" />

 <Button
 android:id="@+id/buttonLogout"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="16dp"
 android:layout_marginEnd="16dp"
 android:text="Log out"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@+id/buttonLogin"
 app:layout_constraintTop_toBottomOf="@+id/textViewUserStatus" />
</androidx.constraintlayout.widget.ConstraintLayout>

Add a function to update the status view

Open the project’s MainActivity class file.

For example, app > java > com.example.quickstart > MainActivity.

Add the following statements before the definition of the onCreate() function:

1.

2.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 223

private TextView status;
private Button loginButton;
private Button logoutButton;

Add import statements for the FRUser module, and for android.widget.Button and android.widget.TextView .

import org.forgerock.android.auth.FRUser;
import android.widget.Button;
import android.widget.TextView;

In the onCreate() function, after the call to FRAuth.start() , add references to the elements on the status view layout:

// Add references to status view elements
status = findViewById(R.id.textViewUserStatus);
loginButton = findViewById(R.id.buttonLogin);
logoutButton = findViewById(R.id.buttonLogout);
updateStatus();

Add the following function after the existing onCreate() function:

private void updateStatus() {
 runOnUiThread(() -> {
 if (FRUser.getCurrentUser() == null) {
 status.setText("User is not authenticated.");
 loginButton.setEnabled(true);
 logoutButton.setEnabled(false);
 } else {
 status.setText("User is authenticated.");
 loginButton.setEnabled(false);
 logoutButton.setEnabled(true);
 }
 });
}

Check point

In Android Studio, select Run > Run 'app'.

If everything is configured correctly, the app builds, and the default emulator runs the application.

The app shows the [Log in] and [Log out] buttons, as well as a text view element that displays User is not authenticated :

3.

4.

5.

Ping SDK for Auth Journey tutorials Ping SDKs

224 Copyright © 2025 Ping Identity Corporation

In the next step, you create and attach functions to the buttons to start the authentication journey, or begin the logout process.

Step 5. Add login and logout calls

In this step, you update the app with the NodeListener interface, which manages the client side of the authentication journey.

The interface provides methods to handle the results of the authentication journey:

onSuccess()

The authentication journey is complete and an FRUser object is now available for further use.

For example, you could display the user’s name in your app.

onCallbackReceived()

Recursively handle each step within the authentication journey, by completing and returning any callbacks received.

For example, in this quick start guide we receive NameCallback and PasswordCallback callbacks. In the next step, we
create the UI to request these credentials from the user.

onException()

Handle any errors.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 225

Implement NodeListener and methods

Edit the MainActivity class so that it implements NodeListener<FRUser> :

public class MainActivity extends AppCompatActivity implements NodeListener<FRUser> {

Add import statements for org.forgerock.android.auth.NodeListener and org.forgerock.android.auth.Node :

import org.forgerock.android.auth.NodeListener;
import org.forgerock.android.auth.Node;

At the bottom of the MainActivity class, add the handler methods from the NodeListener interface:

public class MainActivity extends AppCompatActivity implements NodeListener<FRUser> {

 // …
 // …
 // …

@Override
 public void onSuccess(FRUser result) {
 updateStatus();
 }

 @Override
 public void onCallbackReceived(Node node) {
 // Display appropriate UI to handle callbacks
 }

 @Override
 public void onException(Exception e) {
 Logger.error(TAG, e.getMessage(), e);
 }
}

Attach FRUser.login() and FRUser.logout() calls to the appropriate buttons, after the updateStatus() call:

1.

2.

3.

4.

Ping SDK for Auth Journey tutorials Ping SDKs

226 Copyright © 2025 Ping Identity Corporation

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Logger.set(Logger.Level.DEBUG);
 FRAuth.start(this);
 // Add references to status view elements
 status = findViewById(R.id.textViewUserStatus);
 loginButton = findViewById(R.id.buttonLogin);
 logoutButton = findViewById(R.id.buttonLogout);
 updateStatus();

 // Attach 'FRUser.login()' to 'loginButton'
loginButton.setOnClickListener(view → FRUser.login(getApplicationContext(), this));

 // Attach 'FRUser.getCurrentUser().logout()' to 'logoutButton'
logoutButton.setOnClickListener(view → {

 FRUser.getCurrentUser().logout();
 updateStatus();
 });
}

Check point

In Android Studio, select Run > Run 'app'.

If everything is configured correctly, the app builds, and the emulator runs the application.

In the Emulator, click the [Log in] button.

In the Run pane, you should see the following to indicate that the journey was found and the callbacks were returned. In
our case, a NameCallback and PasswordCallback callback, as configured in the page node:

[4.8.1] [AuthServiceResponseHandler]: Journey callback(s) received.

In the next step, you add a UI fragment to obtain credentials from the user, and code to open that fragment when the callback is
received.

You also add code to populate the callback with the credentials and return it to the server, completing the authentication journey.

Step 6. Create UI to handle the callbacks

In this step, you add a UI fragment to obtain credentials from the user, and code to open that fragment when a callback is
received.

The authentication journey in this quick start guide sends the NameCallback and PasswordCallback callbacks.

For demonstration purposes, this application uses a DialogFragment to collect the username and password.

1.

2.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 227

You also add code to populate the callback with the credentials and return it to the server, completing the authentication journey.

Create a UI fragment

Navigate to app > res.

Right-click layout and select New > Fragment > Fragment (Blank).

In the New Android Component dialog, enter the following values, and then click [Finish]:

Fragment Name: usernamePasswordFragment

Fragment Layout Name: fragment_username_password

Source Language: Java

Navigate to app > res > layout and open fragment_username_password.xml .

Select and delete the existing TextView element that contains the text Hello blank fragment .

In the Component Tree pane, right-click the FrameLayout component, select Convert FrameLayout to ConstraintLayout,
and then click [OK].

In the Palette pane, from the Text category drag a Plain Text input element to the canvas:

id: inputUsername

text: Username

Drag a Password element to the canvas:

id: inputPassword

hint: Password

In the Palette pane, from the Button category, drag a Button element to the canvas:

id: buttonCancel

text: Cancel

Drag a second Button element to the canvas:

id: buttonContinue

text: Continue

Layout the elements on the canvas to your liking.

The following screenshot shows one possibility:

1.

2.

3.

◦

◦

◦

4.

5.

6.

7.

◦

◦

8.

◦

◦

9.

◦

◦

10.

◦

◦

11.

Ping SDK for Auth Journey tutorials Ping SDKs

228 Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 229

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/frameLayout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".usernamePasswordFragment">

 <EditText
 android:id="@+id/inputUsername"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="16dp"
 android:layout_marginTop="16dp"
 android:layout_marginEnd="16dp"
 android:ems="10"
 android:inputType="text"
 android:text="Username"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <EditText
 android:id="@+id/inputPassword"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="16dp"
 android:layout_marginTop="16dp"
 android:layout_marginEnd="16dp"
 android:ems="10"
 android:hint="Password"
 android:inputType="textPassword"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/inputUsername" />

 <Button
 android:id="@+id/buttonCancel"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="16dp"
 android:layout_marginTop="16dp"
 android:layout_marginEnd="8dp"
 android:text="Cancel"
 app:layout_constraintEnd_toStartOf="@+id/buttonContinue"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/inputPassword"
 tools:text="Cancel" />

 <Button
 android:id="@+id/buttonContinue"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="16dp"
 android:layout_marginEnd="16dp"

Ping SDK for Auth Journey tutorials Ping SDKs

230 Copyright © 2025 Ping Identity Corporation

 android:text="Continue"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@+id/buttonCancel"
 app:layout_constraintTop_toBottomOf="@+id/inputPassword" />
</androidx.constraintlayout.widget.ConstraintLayout>

Configure the fragment code

Open usernamePasswordFragment.java

For example, app › java › com.example.quickstart › usernamePasswordFragment.

Update the class to extend DialogFragment rather than Fragment , which makes opening and closing the fragment
easier:

public class usernamePasswordFragment extends DialogFragment {

Add import statements for androidx.fragment.app.DialogFragment :

import androidx.fragment.app.DialogFragment;

Within the usernamePasswordFragment class, initialize required variables:

private MainActivity listener;
private Node node;

Update the newInstance method to accept a node object as its only parameter:

public static usernamePasswordFragment newInstance(Node node) {
 usernamePasswordFragment fragment = new usernamePasswordFragment();
 Bundle args = new Bundle();
 args.putSerializable("NODE", node);
 fragment.setArguments(args);
 return fragment;
}

Insert an onResume() method below the newInstance() method. This correctly sizes the fragment dialog when
displayed:

1.

2.

3.

4.

5.

6.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 231

@Override
public void onResume() {
 super.onResume();
 ViewGroup.LayoutParams params = getDialog().getWindow().getAttributes();
 params.width = ViewGroup.LayoutParams.MATCH_PARENT;
 params.height = ViewGroup.LayoutParams.WRAP_CONTENT;
 getDialog().getWindow().setAttributes((android.view.WindowManager.LayoutParams) params);
}

Delete the onCreate() function.

Update the onCreateView method to capture the values from the fields in the fragment and populate the callbacks the
node returned:

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 View view = inflater.inflate(R.layout.fragment_username_password, container, false);
 node = (Node) getArguments().getSerializable("NODE");
 AppCompatEditText username = view.findViewById(R.id.inputUsername);
 AppCompatEditText password = view.findViewById(R.id.inputPassword);
 Button next = view.findViewById(R.id.buttonContinue);
 next.setOnClickListener(v -> {
 dismiss();
 node.getCallback(NameCallback.class)
 .setName(username.getText().toString());
 node.getCallback(PasswordCallback.class)
 .setPassword(password.getText().toString().toCharArray());
 node.next(getContext(), listener);
 });
 Button cancel = view.findViewById(R.id.buttonCancel);
 cancel.setOnClickListener(v -> {
 dismiss();
 });
 return view;
}

Add an onAttach() method after the onCreateView() method. This ensures the fragment is correctly connected to the
main activity:

@Override
public void onAttach(@NonNull Context context) {
 super.onAttach(context);
 if (context instanceof MainActivity) {
 listener = (MainActivity) context;
 }
}

Add any missing required import statements:

7.

8.

9.

10.

Ping SDK for Auth Journey tutorials Ping SDKs

232 Copyright © 2025 Ping Identity Corporation

import android.content.Context;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Button;

import androidx.annotation.NonNull;
import androidx.appcompat.widget.AppCompatEditText;
import androidx.fragment.app.DialogFragment;

import org.forgerock.android.auth.Node;
import org.forgerock.android.auth.callback.NameCallback;
import org.forgerock.android.auth.callback.PasswordCallback;

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 233

package com.example.quickstart;

import android.os.Bundle;
import androidx.fragment.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import androidx.fragment.app.DialogFragment;
import android.content.Context;
import android.widget.Button;
import androidx.annotation.NonNull;
import androidx.appcompat.widget.AppCompatEditText;
import org.forgerock.android.auth.Node;
import org.forgerock.android.auth.callback.NameCallback;
import org.forgerock.android.auth.callback.PasswordCallback;

/**
 * A simple {@link Fragment} subclass.
 * Use the {@link usernamePasswordFragment#newInstance} factory method to
 * create an instance of this fragment.
 */
public class usernamePasswordFragment extends DialogFragment {

 private MainActivity listener;
 private Node node;

 public usernamePasswordFragment() {
 // Required empty public constructor
 }

 public static usernamePasswordFragment newInstance(Node node) {
 usernamePasswordFragment fragment = new usernamePasswordFragment();
 Bundle args = new Bundle();
 args.putSerializable("NODE", node);
 fragment.setArguments(args);
 return fragment;
 }

 @Override
 public void onResume() {
 super.onResume();
 ViewGroup.LayoutParams params = getDialog().getWindow().getAttributes();
 params.width = ViewGroup.LayoutParams.MATCH_PARENT;
 params.height = ViewGroup.LayoutParams.WRAP_CONTENT;
 getDialog().getWindow().setAttributes((android.view.WindowManager.LayoutParams) params);
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 View view = inflater.inflate(R.layout.fragment_username_password, container, false);
 node = (Node) getArguments().getSerializable("NODE");
 AppCompatEditText username = view.findViewById(R.id.inputUsername);
 AppCompatEditText password = view.findViewById(R.id.inputPassword);
 Button next = view.findViewById(R.id.buttonContinue);
 next.setOnClickListener(v -> {
 dismiss();
 node.getCallback(NameCallback.class)
 .setName(username.getText().toString());

Ping SDK for Auth Journey tutorials Ping SDKs

234 Copyright © 2025 Ping Identity Corporation

 node.getCallback(PasswordCallback.class)
 .setPassword(password.getText().toString().toCharArray());
 node.next(getContext(), listener);
 });
 Button cancel = view.findViewById(R.id.buttonCancel);
 cancel.setOnClickListener(v -> {
 dismiss();
 });
 return view;
 }

 @Override
 public void onAttach(@NonNull Context context) {
 super.onAttach(context);
 if (context instanceof MainActivity) {
 listener = (MainActivity) context;
 }
 }
}

Open the fragment when receiving callbacks

Open the project’s MainActivity class file.

For example, app > java > com.example.quickstart > MainActivity.

Update the onCallbackReceived() method to open the fragment to gather the credentials:

@Override
public void onCallbackReceived(Node node) {
 usernamePasswordFragment fragment = usernamePasswordFragment.newInstance(node);
 fragment.show(getSupportFragmentManager(), usernamePasswordFragment.class.getName());
}

Check point

You have now completed the quick start application.

You added a UI fragment to obtain credentials from the user, and code to open that fragment when the callback is received.

You also added code to populate the callback with the credentials and return it to the server, completing the authentication
journey.

In the next step, you test the application by authenticating a user, checking the logs, and then logging out.

1.

2.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 235

Step 7. Test the app

In this step, you run and test your application.

You run it in the emulator or on your Android device, perform authentication with a demo user, check the log for success
messages, and then log out the user.

Log in as a demo user

In Android Studio, select Run > Run 'app'.

Click [Log in].

The fragment dialog appears, with fields for both name and password, as well as continue and cancel buttons:

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

1.

2.

3.

◦

◦

Ping SDK for Auth Journey tutorials Ping SDKs

236 Copyright © 2025 Ping Identity Corporation

Click [Continue].

If authentication is successful, the application returns to the main screen, and displays User is authenticated .

Open the Logcat pane.

If authentication was successful, the log contains entries similar to the following:

[4.8.1] [AuthServiceResponseHandler]: Journey finished with Success outcome.
[4.8.1] [AuthServiceResponseHandler]: SSO Token received.

If authentication fails:

Check the credentials you are using are correct.

For example, attempt to log directly into your ID Cloud or PingAM instance using them.

Check your strings.xml has the correct values for your environment

Click the [Log out] button.

If logout is successful, the application displays User is not authenticated .

The Logcat pane contains entries similar to the following:

[4.6.0] [OAuth2ResponseHandler]: Revoke success
[4.6.0] [DefaultTokenManager]: Revoking AccessToken & Refresh Token Success

You have successfully completed the tutorial.

Next Steps

Update your app to handle additional supported callbacks.

Improve the security of your application by adding SSL pinning.

Add the ability to update your configuration without reinstalling the app.

Offer "magic links" to your users by adding support for suspending and resuming authentication.

Authentication journey tutorial for iOS

In this tutorial you update a sample app to step through an authentication journey, meaning you get to design and
implement the user interface to your requirements.

4.

5.

◦

◦

6.

•

•

•

•

Prepare › Download › Configure › Run

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 237

The sample navigates through a simple authentication journey, and obtains OAuth 2.0 tokens for the user.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need an OAuth 2.0 client application set up, as well as an authentication journey for the app to
navigate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure connection properties

In this step, you configure the "uikit-quickstart" sample app to connect to the OAuth 2.0 application you created in PingOne
Advanced Identity Cloud or PingAM.

Start step 2 

Step 3. Test the app

In this step, you will test your application.

You run it in the emulator or on your iOS device, perform authentication with a demo user, check the log for success
messages, and then log out the user.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

Prepare › Download › Configure › Run

Ping SDK for Auth Journey tutorials Ping SDKs

238 Copyright © 2025 Ping Identity Corporation

The tutorial also requires a configured server.

Compatibility

iOS

This sample app is compatible with iOS 12 and later.

Prerequisites

Xcode

You can download the latest version for free from https://developer.apple.com/xcode/.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

PingOne Advanced Identity Cloud
PingAM

1.

2.

3.

4.

◦

◦

◦

◦

◦

5.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 239

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 1. Example username and password authentication journey

Click Save.

1.

2.

3.

◦

◦

◦

◦

4.

5.

6.

Ping SDK for Auth Journey tutorials Ping SDKs

240 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

org.forgerock.demo://oauth2redirect

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 241

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

PingAM

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

1.

2.

3.

4.

5.

6.

1.

2.

3.

◦

◦

◦

4.

1.

2.

Ping SDK for Auth Journey tutorials Ping SDKs

242 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 2. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

org.forgerock.demo://oauth2redirect

3.

◦

◦

◦

◦

4.

5.

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

7.

1.

2.

3.

4.

5.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 243

In Scopes, enter the following values:

openid profile email address

Click Create.

PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.

On the Core tab:

In Client type, select Public .

Disable Allow wildcard ports in redirect URIs.

Click Save Changes.

On the Advanced tab:

In Grant Types, enter the following values:

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

Step 1. Download the samples

emergency_home
Also add any other domains where you will be hosting SDK applications.

Important

6.

7.

8.

1.

2.

3.

9.

1.

2.

3.

10.

1.

2.

3.

4.

5.

6.

Prepare › Download › Configure › Run

Ping SDK for Auth Journey tutorials Ping SDKs

244 Copyright © 2025 Ping Identity Corporation

To complete this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties

In this step, you configure the "uikit-quickstart" sample app to connect to the OAuth 2.0 application you created in PingOne
Advanced Identity Cloud or PingAM.

In Xcode, on the File menu, click Open.

Navigate to the sdk-sample-apps folder you cloned in the previous step, navigate to iOS > uikit-quickstart >
Quickstart.xcodeproj , and then click Open.

Choose how you want to configure the sample app. You can either configure the sample by using dynamic configuration,
or by updating an Apple PLIST file.

1.

2.

1.

2.

1.

2.

Prepare › Download › Configure › Run

1.

2.

3.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 245

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

In the Project Navigator pane, navigate to Quickstart > Quickstart, and open the LoginViewController
file.

Replace the call to try FRAuth.start() with the following code:

let options = FROptions(
 url: "{as_url}",
 cookieName: "{cookie_name}",
 realm: "{realm_path}",
 oauthClientId: "{oauth2_client_id}",
 oauthRedirectUri: "{oauth2_redirect}",
 oauthScope: "{oauth2_scopes}",
 authServiceName: "Login",
 registrationServiceName: "Register")

try FRAuth.start(options: options)

Replace the following strings with the values you obtained when you registered the OAuth 2.0 application:

{as_url}

The base URL of the server to connect to.

Identity Cloud example:

https://openam-forgerock-sdks.forgeblocks.com/am

Self-hosted example:

https://openam.example.com:8443/openam

{cookie_name}

The name of the cookie that contains the session token.

For example, with a self-hosted PingAM server this value might be iPlanetDirectoryPro .

{realm_path}

The realm in which the OAuth 2.0 client profile and authentication journeys are configured.

Usually, root for AM and alpha or bravo for Advanced Identity Cloud.

{oauth2_client_id}

The client ID of your OAuth 2.0 application in PingOne Advanced Identity Cloud or PingAM.

Dynamic configuration

1.

2.

3.

lightbulb_2
PingOne Advanced Identity Cloud tenants use a random alpha-numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud tenant, navigate to
Tenant settings > Global Settings, and copy the value of the Cookie property.
For example, ch15fefc5407912

Tip

Ping SDK for Auth Journey tutorials Ping SDKs

246 Copyright © 2025 Ping Identity Corporation

For example, sdkNativeClient

{oauth2_redirect}

The redirect_uri as configured in the OAuth 2.0 client profile.

For example, org.forgerock.demo://oauth2redirect .

{oauth2_scopes}

The scopes you added to your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, address email openid phone profile

The result resembles the following:

let options = FROptions(
 url: "https://openam-forgerock-sdks.forgeblocks.com/am",
 cookieName: "ch15fefc5407912",
 realm: "alpha",
 oauthClientId: "sdkPublicClient",
 oauthRedirectUri: "org.forgerock.demo://oauth2redirect",
 oauthScope: "openid profile email address",
 authServiceName: "Login",
 registrationServiceName: "Register")

try FRAuth.start(options: options)

info
This value must exactly match a value configured in your OAuth 2.0 client.

Note

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 247

In the navigator pane in Xcode, right-click FRAuthConfig and select Open As > Source Code.

Replace the existing file content with the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>forgerock_url</key>
 <string>{as_url}</string>
 <key>forgerock_cookie_name</key>
 <string>{cookie_name}</string>
 <key>forgerock_realm</key>
 <string>{realm_path}</string>
 <key>forgerock_oauth_client_id</key>
 <string>{oauth2_client_id}</string>
 <key>forgerock_oauth_redirect_uri</key>
 <string>{oauth2_redirect}</string>
 <key>forgerock_oauth_scope</key>
 <string>openid profile email address</string>
 <key>forgerock_oauth_threshold</key>
 <string>60</string>
 <key>forgerock_timeout</key>
 <string>60</string>
 <key>forgerock_auth_service_name</key>
 <string>sdkUsernamePasswordJourney</string>
 <key>forgerock_registration_service_name</key>
 <string>Registration</string>
 </dict>
</plist>

Replace the following strings with the values you obtained when you registered the OAuth 2.0 application:

{as_url}

The base URL of the server to connect to.

Identity Cloud example:

https://openam-forgerock-sdks.forgeblocks.com/am

Self-hosted example:

https://openam.example.com:8443/openam

{cookie_name}

The name of the cookie that contains the session token.

For example, with a self-hosted PingAM server this value might be iPlanetDirectoryPro .

PLIST file

1.

2.

3.

Ping SDK for Auth Journey tutorials Ping SDKs

248 Copyright © 2025 Ping Identity Corporation

{realm_path}

The realm in which the OAuth 2.0 client profile and authentication journeys are configured.

Usually, root for AM and alpha or bravo for Advanced Identity Cloud.

{oauth2_client_id}

The client ID of your OAuth 2.0 application in PingOne Advanced Identity Cloud or PingAM.

For example, sdkNativeClient

{oauth2_redirect}

The redirect_uri as configured in the OAuth 2.0 client profile.

For example, org.forgerock.demo://oauth2redirect .

lightbulb_2
PingOne Advanced Identity Cloud tenants use a random alpha-numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud tenant, navigate to
Tenant settings > Global Settings, and copy the value of the Cookie property.

Tip

info
This value must exactly match a value configured in your OAuth 2.0 client.

Note

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 249

The result resembles the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>forgerock_url</key>
 <string>https://openam.example.com:8443/openam</string>
 <key>forgerock_cookie_name</key>
 <string>iPlanetDirectoryPro</string>
 <key>forgerock_realm</key>
 <string>alpha</string>
 <key>forgerock_oauth_client_id</key>
 <string>sdkNativeClient</string>
 <key>forgerock_oauth_redirect_uri</key>
 <string>org.forgerock.demo://oauth2redirect</string>
 <key>forgerock_oauth_scope</key>
 <string>openid profile email address</string>
 <key>forgerock_oauth_threshold</key>
 <string>60</string>
 <key>forgerock_timeout</key>
 <string>60</string>
 <key>forgerock_auth_service_name</key>
 <string>sdkUsernamePasswordJourney</string>
 <key>forgerock_registration_service_name</key>
 <string>Registration</string>
 </dict>
</plist>

Save your changes.

With the sample configured, you can proceed to Step 3. Test the app.

Step 3. Test the app

In the following procedure, you run the sample app that you configured in the previous step. The app steps through the login
journey, rendering a UI to collect the required data for each node, for example a username and password node, together inside a
page node.

In Xcode, select Product > Run.

Xcode launches the sample app in the iPhone simulator.

4.

Prepare › Download › Configure › Run

1.

Ping SDK for Auth Journey tutorials Ping SDKs

250 Copyright © 2025 Ping Identity Corporation

Figure 1. Starting the quickstart app in an iOS simulator

In the sample app on the iPhone simulator, tap the Login button.

The app displays fields to input the user’s credentials:

2.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 251

Figure 2. Login as your demo user

Sign on using the credentials of your demo user, and then click Next. For example:

User Name: demo

Password: Ch4ng3it!

If authentication is successful the app displays a message that the user is authenticated and enables the Logout button:

3.

◦

◦

Ping SDK for Auth Journey tutorials Ping SDKs

252 Copyright © 2025 Ping Identity Corporation

Figure 3. Login as your demo user

The console in Xcode outputs the access token, as well as a message that the user is authenticated:

[FRCore][4.8.0] [🌐 - Network] Response | [✅ 200] :
https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/alpha/access_token in 77 ms

Response Header: [
 AnyHashable("x-forgerock-transactionid"): 670c-c3e9,
 AnyHashable("Content-Type"): application/json;charset=UTF-8,
 AnyHashable("Date"): Tue, 12 Nov 2024 15:36:27 GMT,

 Response Data: {
"access_token":"eyJ0…Pc8k",

 "refresh_token":"eyJ0…dnA4",
 "scope":"address openid profile email",
 "id_token":"eyJ0…czKQ",
 "token_type":"Bearer",
 "expires_in":3598
 }
]
User is authenticated

Tap Logout to revoke the tokens, end the session, and return to the initial screen.

The console in Xcode outputs the calls to the /sessions and /revoke endpoints:

4.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 253

Logout button is pressed

[FRCore][4.8.0] [🌐 - Network] Request | [POST]
https://openam-forgerock-sdks.forgeblocks.com/am/json/realms/alpha/sessions
 Additional Headers: [
 "accept-api-version": "resource=3.1",
 "8a92ca506c38f08": "qc7z…MQ.."]

URL Parameters: ["_action": "logout"]
Body Parameters: ["tokenId": "qc7z…MQ.."]

[FRCore][4.8.0] [🌐 - Network] Request | [POST]
https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/alpha/token/revoke
 Body Parameters: [
 "token": "eyJ0…dnA4",
 "client_id": "sdkPublicClient"]

[FRCore][4.8.0] [🌐 - Network] Response | [✅ 200] :
https://openam-forgerock-sdks.forgeblocks.com/am/json/realms/alpha/sessions?_action=logout in 117 ms
 Response Data: {
 "result":"Successfully logged out"}

[FRCore][4.8.0] [🌐 - Network] Response | [✅ 200] :
https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/alpha/token/revoke in 113 ms

Response Data: {}

Authentication journey tutorial for JavaScript

In this tutorial you update a sample app to step through an authentication journey, meaning you get to design and
implement the user interface to your requirements.

The sample navigates through a simple authentication journey, and obtains OAuth 2.0 tokens for the user.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need to configure CORS, have an OAuth 2.0 client application set up, as well as an authentication
journey for the app to navigate.

Complete prerequisites 

Prepare › Download › Install › Configure › Run

Ping SDK for Auth Journey tutorials Ping SDKs

254 Copyright © 2025 Ping Identity Corporation

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Install the dependencies

The sample projects need a number of dependencies that you can install by using the npm command.

For example, the Ping SDK for JavaScript itself is one of the dependencies.

Start step 2 

Step 3. Configure connection properties

In this step, you configure the "embedded-login" sample app to connect to the OAuth 2.0 application you created in
PingOne Advanced Identity Cloud or PingAM.

Start step 3 

Step 4. Test the app

The final step is to run the sample app. The sample connects to your server and walks through your authentication journey
or tree.

After successful authentication, the sample obtains an OAuth 2.0 access token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured server.

Prepare › Download › Install › Configure › Run

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 255

Prerequisites

Node and NPM

The SDK requires a minimum Node.js version of 18 , and is tested on versions 18 and 20 . To get a supported version of
Node.js, refer to the Node.js download page.

You will also need npm to build the code and run the samples.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne Advanced Identity Cloud

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingOne Advanced Identity Cloud,
you can configure CORS to allow browsers from trusted domains to access PingOne Advanced Identity Cloud protected resources.
For example, you might want a custom web application running on your own domain to get an end-user’s profile information
using the PingOne Advanced Identity Cloud REST API.

The Ping SDK for JavaScript samples and tutorials use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different domain for hosting SDK applications, ensure you add them to the CORS configuration as accepted
origin domains.

To update the CORS configuration in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

At the top right of the screen, click your name, and then select Tenant settings.

On the Global Settings tab, click Cross-Origin Resource Sharing (CORS).

Perform one of the following actions:

If available, click ForgeRockSDK.

If you haven’t added any CORS configurations to the tenant, click + Add a CORS Configuration, select Ping SDK,
and then click Next.

Add https://localhost:8443 and any DNS aliases you use to host your Ping SDK for JavaScript applications to the
Accepted Origins property.

Complete the remaining fields to suit your environment.

PingOne Advanced Identity Cloud
PingAM

1.

2.

3.

4.

◦

◦

5.

6.

Ping SDK for Auth Journey tutorials Ping SDKs

256 Copyright © 2025 Ping Identity Corporation

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

This documentation assumes the following configuration, required for the tutorials and sample applications:

Click Save CORS Configuration.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Property Values

Accepted Origins https://localhost:8443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

Enable Caching True

Max Age 600

Allow Credentials True

lightbulb_2
Click Show advanced settings to be able to edit all available fields.

Tip

7.

1.

2.

3.

4.

◦

◦

◦

◦

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 257

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 1. Example username and password authentication journey

Click Save.

◦

5.

1.

2.

3.

◦

◦

◦

◦

4.

5.

6.

Ping SDK for Auth Journey tutorials Ping SDKs

258 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

https://localhost:8443/callback.html

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 259

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

PingAM

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingAM, you can configure CORS
to allow browsers from trusted domains to access PingAM protected resources. For example, you might want a custom web
application running on your own domain to get an end-user’s profile information using the PingAM REST API.

The Ping SDK for JavaScript samples and tutorials all use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different URL for hosting SDK applications, ensure you add them to the CORS configuration as accepted origin
domains.

To enable CORS in PingAM, and create a CORS filter to allow requests from your configured domain names, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to Configure > Global Services > CORS Service > Configuration, and set the Enable the CORS filter property to
true .

On the Secondary Configurations tab, click Click Add a Secondary Configuration.

In the Name field, enter ForgeRockSDK .

in the Accepted Origins field, enter any DNS aliases you use for your SDK apps.

This documentation assumes the following configuration:

1.

2.

3.

4.

5.

6.

1.

2.

emergency_home
If this property is not enabled, CORS headers are not added to responses from PingAM, and CORS is disabled
entirely.

Important

3.

4.

5.

Ping SDK for Auth Journey tutorials Ping SDKs

260 Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Click Create.

PingAM displays the configuration of your new CORS filter.

On the CORS filter configuration page:

Ensure Enable the CORS filter is enabled.

Set the Max Age property to 600

Ensure Allow Credentials is enabled.

Click Save Changes.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Property Values

Accepted Origins https://localhost:8443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

6.

7.

1.

2.

3.

8.

1.

2.

3.

◦

◦

◦

4.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 261

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 2. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

1.

2.

3.

◦

◦

◦

◦

4.

5.

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

7.

1.

Ping SDK for Auth Journey tutorials Ping SDKs

262 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

https://localhost:8443/callback.html

In Scopes, enter the following values:

openid profile email address

Click Create.

PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.

On the Core tab:

In Client type, select Public .

Disable Allow wildcard ports in redirect URIs.

Click Save Changes.

On the Advanced tab:

In Grant Types, enter the following values:

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

2.

3.

4.

5.

lightbulb_2
The Ping SDK for JavaScript attempts to load the redirect page to capture the OAuth 2.0 code and state
query parameters that the server appended to the redirect URL.
If the page you redirect to does not exist, takes a long time to load, or runs any JavaScript you might get a
timeout, delayed authentication, or unexpected errors.
To ensure the best user experience, we highly recommend that you redirect to a static HTML page with minimal
HTML and no JavaScript when obtaining OAuth 2.0 tokens.

Tip

emergency_home
Also add any other domains where you will be hosting SDK applications.

Important

6.

7.

8.

1.

2.

3.

9.

1.

2.

3.

10.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 263

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

1. Cookie name value in PingAM servers.
2. In PingOne Advanced Identity Cloud tenants, go to Tenant Settings > Global Settings > Cookie to find this dynamic cookie
name value.

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

1.

2.

3.

4.

5.

6.

Prepare › Download › Install › Configure › Run

lightbulb_2
Check that you have completed the prerequisites before starting the tutorial.

Tip

1.

2.

1.

2.

1.

2.

Ping SDK for Auth Journey tutorials Ping SDKs

264 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Step 2. Install the dependencies

In the following procedure, you install the required modules and dependencies, including the Ping SDK for JavaScript.

In a terminal window, navigate to the sdk-sample-apps/javascript folder.

To install the required packages, enter the following:

npm install

The npm tool downloads the required packages, and places them inside a node_modules folder.

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the authentication tree/journey you created when setting up your server
configuration.

Choose how you want to configure the sample app. You can either configure the sample by using dynamic configuration,
or by create a .env file.

Prepare › Download › Install › Configure › Run

1.

2.

Prepare › Download › Install › Configure › Run

1.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 265

Open the /sdk-sample-apps/javascript/embedded-login/src/main.js file.

Replace the call to forgerock.Config.set() with the following code:

await forgerock.Config.setAsync({
 serverConfig: {
 wellknown: '{WELL_KNOWN}'
 },
 clientId: '{WEB_OAUTH_CLIENT}',
 tree: '{TREE}',
 scope: '{SCOPE}',
 redirectUri: `${window.location.origin}/callback.html`
});

Replace the placeholder strings with the values you obtained when preparing your environment.

{WELL_KNOWN}

The .well-known endpoint of your server.

PingOne Advanced Identity Cloud example:

https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/

alpha/.well-known/openid-configuration

You can view the .well-known endpoint for an OAuth 2.0 client in the PingOne Advanced Identity
Cloud admin console:

Log in to your PingOne Advanced Identity Cloud administration console.

Click Applications, and then select the OAuth 2.0 client you created earlier. For example,
sdkPublicClient.

On the Sign On tab, in the Client Credentials section, copy the Discovery URI value.

PingAM example:

https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-

configuration

{WEB_OAUTH_CLIENT}

The client ID from your OAuth 2.0 application.

For example, sdkPublicClient

{TREE}

The simple login journey or tree you created earlier.

For example sdkUsernamePasswordJourney .

Dynamic configuration

1.

2.

3.

1.

2.

3.

Ping SDK for Auth Journey tutorials Ping SDKs

266 Copyright © 2025 Ping Identity Corporation

{SCOPE}

The scopes you added to your OAuth 2.0 application.

For example, address email openid phone profile

The result resembles the following:

main.js

await Config.setAsync({
 serverConfig: {
 wellknown: 'https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/
alpha/.well-known/openid-configuration'
 },
 clientId: 'sdkPublicClient',
 tree: 'sdkUsernamePasswordJourney',
 scope: 'openid profile email address',
 redirectUri: `${window.location.origin}/callback.html`
});

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 267

Copy the .env.example file in the /sdk-sample-apps/javascript/embedded-login folder and save it with
the name .env within this same directory.

Your .env file has the following initial contents:

Initial .env file

SERVER_URL=$SERVER_URL
REALM_PATH=$REALM_PATH
SCOPE=$SCOPE
TIMEOUT=$TIMEOUT
TREE=$TREE
WEB_OAUTH_CLIENT=$WEB_OAUTH_CLIENT

Replace the placeholder strings with the values you obtained when preparing your environment.

$SERVER_URL

The base URL of the server to connect to.

Identity Cloud example:

https://openam-forgerock-sdks.forgeblocks.com/am

Self-hosted example:

https://openam.example.com:8443/openam

$REALM_PATH

The realm in your server.

Usually, root for AM and alpha or bravo for Advanced Identity Cloud.

$SCOPE

The scopes you added to your OAuth 2.0 application.

For example, address email openid phone profile

$TIMEOUT

The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .

$TREE

The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .

$WEB_OAUTH_CLIENT

The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .

Create a .env file

1.

2.

Ping SDK for Auth Journey tutorials Ping SDKs

268 Copyright © 2025 Ping Identity Corporation

Here’s an example; your values may vary:

AM_URL=https://openam-forgerock-sdks.forgeblocks.com/am
REALM_PATH=alpha
SCOPE=openid profile email address
TIMEOUT=5000
TREE=sdkUsernamePasswordJourney
WEB_OAUTH_CLIENT=sdkPublicClient

Here are descriptions for some of the values:

TREE

The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .

REALM_PATH

The realm of your server.

Usually, root for AM and alpha or bravo for Advanced Identity Cloud.

Step 4. Test the app

In the following procedure, you run the sample app that you configured in the previous step. The sample connects to your server
and walks through the authentication journey you created in an earlier step.

After successful authentication, the sample obtains an OAuth 2.0 access token and displays the related user information.

In a terminal window, navigate to the /javascript folder in your sdk-sample-apps project.

To run the embedded login sample, enter the following:

npm run start:embedded-login

In a web browser:

Ensure you are NOT currently logged into the server instance.

Prepare › Download › Install › Configure › Run

1.

2.

3.

1.

info
If you are logged into the PingAM instance in the browser, the sample will not work. Logout of the
PingAM instance before you run the sample.

Note

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 269

Navigate to the following URL:

https://localhost:8443

A form appears with "Username" and "Password" fields, as defined by the page node in the
sdkUsernamePasswordJourney you created in a previous step:

Authenticate as a non-administrative user, and click Sign In.

Default login credentials:

"Username" - demo

"Password" - Ch4ng3it!

If the app displays the user information, authentication was successful:

To revoke the OAuth 2.0 token, click the Sign Out button.

The application calls the endSession endpoint to revoke the OAuth 2.0 token, and returns to the sign-in form.

2.

3.

▪

▪

lightbulb_2
To see the application calling the authorize and authenticate endpoints, open the Network
tab of your browser’s developer tools.

Tip

4.

Ping SDK for Auth Journey tutorials Ping SDKs

270 Copyright © 2025 Ping Identity Corporation

Recap

Congratulations!

You have now used the Ping SDK for JavaScript to authenticate to your server instance.

You have seen how to obtain OAuth 2.0 tokens, view the related user information, and log a user out of the server.

More information

API reference: FRAuth 

API reference: TokenManager 

API reference: UserManager 

Ping SDKs platform integrations for auth journeys

Follow these tutorials to leverage the Ping SDKs in other platforms or languages, to support Authentication journeys, also known
as Intelligent Authentication in your apps.

These tutorials support the following servers:

PingOne Advanced Identity Cloud

PingAM

•

•

•

•

•



Angular



Flutter (iOS)



ReactJS



React Native (iOS)

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 271

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/fr-auth.FRAuth.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/fr-auth.FRAuth.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/fr-auth.FRAuth.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html

Authentication journey tutorial for Angular

In this tutorial you build out a sample Angular SPA and make use of a Node.js REST API server sample app.

This guide uses the Ping SDK for JavaScript to implement the following application features:

Dynamic authentication form for login.

OAuth/OIDC token acquisition through the Authorization Code Flow with PKCE.

Protected client-side routing.

Resource requests to a protected REST API.

Log out - revoke tokens and end session.

Figure 1. The Todo page of the sample app.

•

•

•

•

•

Ping SDK for Auth Journey tutorials Ping SDKs

272 Copyright © 2025 Ping Identity Corporation

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need to configure CORS, have an OAuth 2.0 client application set up, as well as an authentication
journey for the app to navigate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure connection properties

Configure both the Todo client app, and the API backend server app to connect to the OAuth 2.0 application you created in
PingOne Advanced Identity Cloud or PingAM.

Start step 2 

Step 3. Build and run the projects

In this step you build and run the API backend server app, and then the Todo client app.

There are also troubleshooting tips if the apps do not start as expected.

Start step 3 

Step 4. Implement the Ping SDK

In this final step you implement the Ping SDK into the Todo client app, so that it handles the responses from your PingOne
Advanced Identity Cloud tenant or PingAM server, can get tokens and user information, and supports logging out.

Start step 4 

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 273

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured server.

Prerequisites

Node and NPM

The SDK requires a minimum Node.js version of 18 , and is tested on versions 18 and 20 . To get a supported version of
Node.js, refer to the Node.js download page.

You will also need npm version 7 or newer to build the code and run the samples.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne Advanced Identity Cloud

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingOne Advanced Identity Cloud,
you can configure CORS to allow browsers from trusted domains to access PingOne Advanced Identity Cloud protected resources.
For example, you might want a custom web application running on your own domain to get an end-user’s profile information
using the PingOne Advanced Identity Cloud REST API.

The Ping SDK for JavaScript samples and tutorials use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different domain for hosting SDK applications, ensure you add them to the CORS configuration as accepted
origin domains.

For example, for this tutorial you should also add the host domain used by the todo API backend server, which defaults to
http://localhost:9443 .

To update the CORS configuration in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

At the top right of the screen, click your name, and then select Tenant settings.

On the Global Settings tab, click Cross-Origin Resource Sharing (CORS).

PingOne Advanced Identity Cloud
PingAM

1.

2.

3.

Ping SDK for Auth Journey tutorials Ping SDKs

274 Copyright © 2025 Ping Identity Corporation

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Perform one of the following actions:

If available, click ForgeRockSDK.

If you haven’t added any CORS configurations to the tenant, click + Add a CORS Configuration, select Ping SDK,
and then click Next.

Add https://localhost:8443 and any DNS aliases you use to host your Ping SDK for JavaScript applications to the
Accepted Origins property.

Add the URL used by the todo API backend server, which defaults to http://localhost:9443 .

Complete the remaining fields to suit your environment.

This documentation assumes the following configuration, required for the tutorials and sample applications:

Click Save CORS Configuration.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

4.

◦

◦

5.

6.

7.

Property Values

Accepted Origins https://localhost:8443

http://localhost:9443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

Enable Caching True

Max Age 600

Allow Credentials True

lightbulb_2
Click Show advanced settings to be able to edit all available fields.

Tip

8.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 275

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

1.

2.

3.

4.

◦

◦

◦

◦

◦

5.

1.

2.

3.

◦

◦

◦

◦

4.

5.

Ping SDK for Auth Journey tutorials Ping SDKs

276 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Figure 1. Example username and password authentication journey

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

https://localhost:8443/callback

6.

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 277

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

Confidential clients are able to securely store credentials and are commonly used for server-to-server communication. For
example, the "Todo" API backend provided with the SDK samples uses a confidential client to obtain tokens.

The following tutorials and integrations require a confidential client:

Authentication journey tutorial for Angular

Authentication journey tutorial for ReactJS

Build advanced token security in a JavaScript SPA

To register a confidential OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these
steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Web as the application type, and then click Next.

In Name, enter a name for the application, such as Confidential SDK Client .

In Owners, select a user responsible for maintaining the application, and then click Next.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

•

•

•

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

Ping SDK for Auth Journey tutorials Ping SDKs

278 Copyright © 2025 Ping Identity Corporation

On the Web Settings page:

In Client ID, enter sdkConfidentialClient

In Client Secret, enter a strong password and make a note of it for later use.

Click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab, click Show advanced settings, and on the Access tab:

In Default Scopes, enter am-introspect-all-tokens .

Click Save.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

PingAM

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingAM, you can configure CORS
to allow browsers from trusted domains to access PingAM protected resources. For example, you might want a custom web
application running on your own domain to get an end-user’s profile information using the PingAM REST API.

The Ping SDK for JavaScript samples and tutorials all use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different URL for hosting SDK applications, ensure you add them to the CORS configuration as accepted origin
domains.

For example, for this tutorial you should also add the host domain used by the todo API backend server, which defaults to
http://localhost:9443 .

8.

1.

2.

emergency_home
The client secret is not available to view after this step.
If you forget it, you must reset the secret and reconfigure any connected clients.

Important

3.

9.

1.

10.

1.

2.

3.

4.

5.

6.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 279

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

To enable CORS in PingAM, and create a CORS filter to allow requests from your configured domain names, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to Configure > Global Services > CORS Service > Configuration, and set the Enable the CORS filter property to
true .

On the Secondary Configurations tab, click Click Add a Secondary Configuration.

In the Name field, enter ForgeRockSDK .

in the Accepted Origins field, enter any DNS aliases you use for your SDK apps.

This documentation assumes the following configuration:

Click Create.

PingAM displays the configuration of your new CORS filter.

On the CORS filter configuration page:

Ensure Enable the CORS filter is enabled.

Set the Max Age property to 600

Ensure Allow Credentials is enabled.

Click Save Changes.

1.

2.

emergency_home
If this property is not enabled, CORS headers are not added to responses from PingAM, and CORS is disabled
entirely.

Important

3.

4.

5.

Property Values

Accepted Origins https://localhost:8443

http://localhost:9443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

6.

7.

1.

2.

3.

8.

Ping SDK for Auth Journey tutorials Ping SDKs

280 Copyright © 2025 Ping Identity Corporation

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

1.

2.

3.

◦

◦

◦

4.

1.

2.

3.

◦

◦

◦

◦

4.

5.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 281

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Figure 2. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

https://localhost:8443/callback

In Scopes, enter the following values:

openid profile email address

Click Create.

PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.

On the Core tab:

In Client type, select Public .

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

7.

1.

2.

3.

4.

5.

emergency_home
Also add any other domains where you will be hosting SDK applications.

Important

6.

7.

8.

1.

Ping SDK for Auth Journey tutorials Ping SDKs

282 Copyright © 2025 Ping Identity Corporation

Disable Allow wildcard ports in redirect URIs.

Click Save Changes.

On the Advanced tab:

In Grant Types, enter the following values:

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

1. Cookie name value in PingAM servers.
2. In PingOne Advanced Identity Cloud tenants, go to Tenant Settings > Global Settings > Cookie to find this dynamic cookie
name value.

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Within the repo are two branches related to this tutorial:

build-protected-app/start

Contains all the source files you need to follow this tutorial, but without the actual implementation of the Ping SDK
functionality.

Use this branch if you want to complete the tutorial step-by-step, adding the code the tutorial provides.

build-protected-app/complete

The same source files but with the Ping SDK code already implemented.

2.

3.

9.

1.

2.

3.

10.

1.

2.

3.

4.

5.

6.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 283

Use this branch if you want to skip ahead of the tutorial, or if you want to compare your work with the completed version
for troubleshooting.

To get a copy of the tutorial source code:

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Select which branch to download:

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

1.

2.

1.

2.

3.

1.

2.

Ping SDK for Auth Journey tutorials Ping SDKs

284 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Checkout which branch you want to work on.

For example, from the command-line you could run:

git checkout build-protected-app/start

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties

There are two projects in this tutorial that require configuration:

Client Angular app

The front-end client app, written in Angular, that handles the UI and authentication journeys.

Backend API server

A backend REST API server that uses a confidential OAuth 2.0 client to contact the authorization server. The API server
handles storage and retrieval of your personal "Todo" items.

Configure the Angular client app

Copy the .env.example file in the sdk-sample-apps/angular-todo folder and save it with the name .env within this same
directory.

Add your relevant values to this new file because it provides all the important configuration settings to your applications.

Example client .env file

AM_URL=https://openam-forgerock-sdks.forgeblocks.com/am
APP_URL=https://localhost:8443
API_URL=http://localhost:9443
DEBUGGER_OFF=true
JOURNEY_LOGIN=sdkUsernamePasswordJourney
JOURNEY_REGISTER=Registration
REALM_PATH=alpha
WEB_OAUTH_CLIENT=sdkPublicClient
PORT=9443
REST_OAUTH_CLIENT=sdkConfidentialClient
REST_OAUTH_SECRET=ch4ng3it!

Here are descriptions for some of the values:

DEBUGGER_OFF : set to true , to disable debug statements in the app.

These statements are for learning the integration points at runtime in your browser.

When you open the browser’s developer tools, the app pauses at each integration point. Code comments are placed
above each one explaining their use.

3.

•

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 285

JOURNEY_LOGIN : The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .

JOURNEY_REGISTER : The registration journey or tree.

You can use the default built-in Registration journey.

REALM_PATH : The realm of your server.

Usually, root for AM and alpha or bravo for Advanced Identity Cloud.

Configure the API server app

Copy the .env.example file in the sdk-sample-apps/todo-api folder and save it with the name .env within this same
directory.

Add your relevant values to this new file as it will provide all the important configuration settings to your applications.

Example API server .env file

AM_URL=https://openam-forgerock-sdks.forgeblocks.com/am
DEVELOPMENT=true
PORT=9443
REALM_PATH=alpha
REST_OAUTH_CLIENT=sdkConfidentialClient
REST_OAUTH_SECRET=ch4ng3it!

Step 3. Build and run the projects

In this step you build and run the API backend, and the "Todo" client app project.

Open a terminal window at the root directory of the SDK samples repo, and then run the following command to start both
the API backend server and the "Todo" client:

npm run start:angular-todo

In a different browser than the one you are using to administer the server, visit the following URL: https://localhost:
8443 .

The app renders a home page explaining the purpose of the project:

•

•

•

1.

2.

Ping SDK for Auth Journey tutorials Ping SDKs

286 Copyright © 2025 Ping Identity Corporation

Figure 1. The home page of the sample app.

Troubleshooting

If the home page doesn’t render due to errors, here are a few tips:

Visit http://localhost:9443/healthcheck in the same browser you use for the Angular app; ensure it responds with
"OK".

Ensure your hosts file has the correct aliases.

Look for error output in the terminal that is running the start command.

Ensure you are not logged into the server within the same browser as the sample app; logout if you are and use a different
browser.

info
Only the home page renders successfully. The login page functionality is not yet functional. You will develop
this functionality later in this tutorial.

Note

•

•

•

•

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 287

http://localhost:9443/healthcheck
http://localhost:9443/healthcheck

Step 4. Implement the Ping SDK

Now that you have the environment and servers setup you can build the Ping SDK into the app to handle callbacks, display UI,
and other tasks.

Set configuration from the ENV file

Within your IDE of choice, navigate to the sdk-sample-apps/angular-todo directory. This directory is where you will spend the
rest of your time.

First, open up the src/app/app.component.ts file, import the Config object from the Ping SDK for JavaScript and call the set
function on this object.

To import the Config object, modify the list of imports as follows:

 import { Component, OnInit } from '@angular/core';
 import { environment } from '../environments/environment';
 import { UserService } from './services/user.service';
+ import { Config, UserManager } from '@forgerock/javascript-sdk';

@@ collapsed @@

Now configure the SDK using the set function by adding the following code to the ngOnInit function:

@@ collapsed @@
 async ngOnInit(): Promise<void> {
+ Config.set({
+ clientId: environment.WEB_OAUTH_CLIENT,
+ redirectUri: environment.APP_URL,
+ scope: 'openid profile email address',
+ serverConfig: {
+ baseUrl: environment.AM_URL,
+ timeout: 30000, // 90000 or less
+ },
+ realmPath: environment.REALM_PATH,
+ tree: environment.JOURNEY_LOGIN,
+ });
@@ collapsed @@

The use of set() should always be the first SDK method called and is frequently done at the application’s top-level file.

To configure the SDK to communicate with the journeys, OAuth clients, and realms of the appropriate server, pass a configuration
object with the appropriate values.

The configuration object you are using in this instance pulls most of its values out of the .env variables you previously setup.

The variables map to constants within the environment.ts file generated when the project is built.

Go back to your browser and refresh the home page. There should be no change to what’s rendered, and no errors in the
console. Now that the app is configured to your server, let’s wire up the simple login page!

Ping SDK for Auth Journey tutorials Ping SDKs

288 Copyright © 2025 Ping Identity Corporation

Build the login page

Consider how the application renders the home page:

HomeComponent consists of src/app/views/home/home.component.html (HTML template with Angular directives), and src/app/
views/home/home.component.ts (Angular component).

For the login page, the same pattern applies:

LoginComponent consists of src/app/views/login/login.component.html and src/app/views/login/login.component.ts .
This is a simple view component, which includes FormComponent which actually invokes the SDK - more on that shortly.

Navigate to the app’s login page within your browser. You should see a "loading" spinner and message that’s persistent since it
doesn’t have the data needed to render the form. To ensure the correct form is rendered, the initial data needs to be retrieved
from the server. That is the first task.

Figure 1. Login page with spinner

Since most of the action is taking place in src/app/features/journey/form/form.component.html and src/app/features/
journey/form/form.component.ts , open both and add the SDK import to form.component.ts :

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 289

 import { Component, Input, OnInit } from '@angular/core';
 import { Router } from '@angular/router';
 import { environment } from '../../../../environments/environment';
 import { UserService } from 'src/app/services/user.service';
- import { FRLoginFailure, FRLoginSuccess, FRStep } from '@forgerock/javascript-sdk';
+ import { FRAuth, FRLoginFailure, FRLoginSuccess, FRStep } from '@forgerock/javascript-sdk';
@@ collapsed @@

FRAuth is the first object used as it provides the necessary methods for authenticating a user against the Login Journey/Tree.
Use the start() method of FRAuth as it returns data we need for rendering the form.

Add the following code to the nextStep function to call the start function, initiating the authentication attempt using the SDK:

@@ collapsed @@
 async nextStep(step?: FRStep): Promise<void> {
 this.submittingForm = true;
+ try {
+ let nextStep = await FRAuth.next(step, { tree: this.tree });
+ } catch (err) {
+ console.log(err);
+ } finally {
+ this.submittingForm = false;
+ }
 }
@@ collapsed @@

The result of this initial request is stored in a variable named nextStep . We now need to work out whether this is a login failure,
success, or step with instructions for what needs to be rendered to the user for input collection.

To handle these outcomes, add the following code after the code you added above:

Ping SDK for Auth Journey tutorials Ping SDKs

290 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@
 async nextStep(step?: FRStep): Promise<void> {
 this.submittingForm = true;

 try {
 let nextStep = await FRAuth.next(step, { tree: this.tree });

+ switch (nextStep.type) {
+ case 'LoginFailure':
+ this.handleFailure(nextStep);
+ break;
+ case 'LoginSuccess':
+ this.handleSuccess(nextStep);
+ break;
+ case 'Step':
+ this.handleStep(nextStep);
+ break;
+ default:
+ this.handleFailure();
+ }
 } catch (err) {
 console.log(err);
 } finally {
 this.submittingForm = false;
 }
 }
@@ collapsed @@

Since the nextStep type is likely a Step with instructions for rendering and collecting user input, we call the handleStep()
function. We also set the step variable on the component ready for the template to process.

To process the step , we build a form that uses the *ngFor and ngSwitch directives to iterate over the callbacks and switch
based on the callback type. This lets us use the appropriate component to render something to the user. Once the user provides
their input and submits the form, we catch the submission and invoke the nextStep function again.

So starting with the form submission, we add the following code inside the <div id="callbacks"> tag in the FormComponent
template (src/app/features/journey/form/form.component.html)

@@ collapsed @@
 <div id="callbacks">
+ <form #callbackForm (ngSubmit)="nextStep(step)" ngNativeValidate class="cstm_form">
+ <app-button [buttonText]="buttonText" [submittingForm]="submittingForm">
+ </app-button>
+ </form>
 </div>
@@ collapsed @@

The form should now catch submissions. To iterate through the callbacks, add the following code inside the <form> tag you just
added, just before the <app-button> tag:

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 291

@@ collapsed @@
 <div id="callbacks">
 <form #callbackForm (ngSubmit)="nextStep(step)" ngNativeValidate class="cstm_form">
+ <div *ngFor="let callback of step?.callbacks" v-bind:key="callback.payload._id">
+ </div>
 <app-button [buttonText]="buttonText" [submittingForm]="submittingForm">
 </app-button>
 </form>
 </div>
@@ collapsed @@

To switch based on the type of the callback, add the following code within the <div> tag you just added:

@@ collapsed @@
 <div *ngFor="let callback of step?.callbacks" v-bind:key="callback.payload._id">
+ <container-element [ngSwitch]="callback.getType()">
+ </container-element>
 </div>
@@ collapsed @@

Finally, to render something appropriate to the user based on the callback type (and handle unknown callbacks), add the below
code within the <container-element> tag you just added.

@@ collapsed @@
 <container-element [ngSwitch]="callback.getType()">
+ <app-text *ngSwitchCase="'NameCallback'" [callback]="$any(callback)" [name]="callback?.payload?.input?.
[0]?.name" (updatedCallback)="$any(callback).setName($event)">
+ </app-text>

+ <app-password *ngSwitchCase="'PasswordCallback'" [callback]="$any(callback)" [name]="callback?.payload?.input?.
[0]?.name" (updatedCallback)="$any(callback).setPassword($event)">
+ </app-password>

+ <app-unknown *ngSwitchDefault [callback]="callback"></app-unknown>
 </container-element>
@@ collapsed @@

Refresh the page, and you should now have a dynamic form that reacts to the callbacks returned from our initial call to PingAM or
PingOne Advanced Identity Cloud.

Ping SDK for Auth Journey tutorials Ping SDKs

292 Copyright © 2025 Ping Identity Corporation

Figure 2. Login page form

Refresh the login page and use the test user to login. You should get a mostly blank login page if the user’s credentials are valid
and the journey completes. You can verify this by going to the Network panel within the developer tools and inspecting the last /
authenticate request. It should have a tokenId and successUrl property.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 293

Figure 3. Successful request without handling render

You may ask, “How are the user’s input values added to the step object?” Let’s take a look at the component for rendering the
username input. Open up the Text component: src/app/features/journey/text/text.component.ts and
src/app/features/journey/text/text.component.html :

 <input
 @@ collapsed @@
 (input)="updateValue($event)"
 @@ collapsed @@
 />

When the user changes the value of the input, the (input) event fires and calls updateValue() . This in turn uses the
EventEmitter defined in the @Output directive to emit the updated value to the parent component - in this case, the
FormComponent . From here, the FormComponent calls the appropriate convenience method in the SDK to set the value for the
callback. This final piece is shown below (this is already in your project so no need to copy it):

<app-text *ngSwitchCase="'NameCallback'" [callback]="$any(callback)" [name]="callback?.payload?.input?.
[0]?.name" (updatedCallback)="$any(callback).setName($event)"
</app-text>

Ping SDK for Auth Journey tutorials Ping SDKs

294 Copyright © 2025 Ping Identity Corporation

Each callback type has its own collection of methods for getting and setting data in addition to a base set of generic callback
methods. The SDK automatically adds these methods to the callback prototype. For more information about these callback
methods, see our API documentation^, or the source code in GitHub, for more details.

Now that the form is rendering and submitting, add conditions to the FormComponent template (src/app/features/journey/
form/form.component.html), to handle the success and error response from PingAM or PingOne Advanced Identity Cloud. This
code should be inserted towards the top of the file, inside the <ng-container> tag:

 <ng-container
 [ngTemplateOutlet]="success ? successMessage : failure ? failureMessage : step ? callbacks : loading"
>
 <ng-template #successMessage>
+ <app-loading [message]="'Success! Redirecting ...'"></app-loading>
 </ng-template>

 <ng-template #failureMessage>
+ <app-alert [message]="failure?.getMessage()" [type]="'error'"></app-alert>
 </ng-template>
@@ collapsed @@

Once you handle the success and error condition, return back to the browser and remove all cookies created from any previous
logins. Refresh the page and login with your test user created in the Setup section above. You should see a “Success!” alert
message. Congratulations, you are now able to authenticate users!

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 295

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks
https://developer.chrome.com/docs/devtools/storage/cookies/
https://developer.chrome.com/docs/devtools/storage/cookies/
https://developer.chrome.com/docs/devtools/storage/cookies/

Figure 4. Login page with successful authentication
Continue to the OAuth 2.0 flow

At this point, the user is authenticated. The session has been created and a session cookie has been written to the browser. This
is "session-based authentication", and is viable when your system (apps and services) can rely on cookies as the access artifact.
However, there are increasing limitations with the use of cookies. In response to this, and other reasons, it’s common to add
an additional step to your authentication process: the “OAuth” or “OIDC flow”.

The goal of this flow is to attain a separate set of tokens, replacing the need for cookies as the shared access artifact. The two
common tokens are the access token and the ID Token. We focus on the access token in this guide. The specific flow that the SDK
uses to acquire these tokens is called the Authorization Code Flow with PKCE.

To start, import the TokenManager and UserManager objects from the Ping SDK into the same src/app/features/journey/
form.component.ts file - replace the import you added earlier with the following code:

 import { Component, Input, OnInit } from '@angular/core';
 import { Router } from '@angular/router';
 import { environment } from '../../../../environments/environment';
 import { UserService } from 'src/app/services/user.service';
- import { FRAuth, FRLoginFailure, FRLoginSuccess, FRStep } from '@forgerock/javascript-sdk';
+ import { FRAuth, FRLoginFailure, FRLoginSuccess, FRStep, TokenManager, UserManager, } from '@forgerock/javascript-
sdk';
@@ collapsed @@

Ping SDK for Auth Journey tutorials Ping SDKs

296 Copyright © 2025 Ping Identity Corporation

https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/

In addition to the components that we were already importing, we have now imported the TokenManager and UserManager
from the SDK.

Only an authenticated user that has a valid session can successfully request OAuth/OIDC tokens. We must therefore make sure
we make this asynchronous token request after we get a 'LoginSuccess' back from the authentication journey. In the code we
wrote in the previous section, our processing of the response means that a 'LoginSuccess' results in a call to the currently-
empty function handleSuccess .

Let’s invoke the OAuth 2.0 flow from here. Note that since the getTokens request is asynchronous, handleSuccess has been
marked async .

Add the following code to the try block within handleSuccess to start the flow:

@@ collapsed @@
 async handleSuccess(success?: FRLoginSuccess) {
 this.success = success;

+ try {
+ await TokenManager.getTokens({ forceRenew: true });
+ } catch (err) {
+ console.error(err);
+ }
 }
@@ collapsed @@

Once the changes are made, return back to your browser and remove all cookies created from any previous logins. Refresh the
page and verify the login form is rendered. If the success message continues to display, make sure “third-party cookies” are also
removed.

Login with your test user. You should get a success message like you did before, but now check your browser’s console log. You
should see an additional entry of an object that contains your idToken and accessToken . Since the SDK handles storing these
tokens for you, which are in localStorage , you have completed a full login and OAuth/OIDC flow.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 297

Figure 5. Login page with OAuth success
Request user information

Now that the user is authenticated and an access token is attained, you can now make your first authenticated request.

The SDK provides a convenience method for calling the /userinfo endpoint, a standard OAuth endpoint for requesting details
about the current user. The data returned from this endpoint correlates with the "scopes" set within the SDK configuration.

The scopes profile and email allow the inclusion of user’s first and last name as well as their email address.

To retrieve user information, add another single line of code to invoke the getCurrentUser() function of the SDK, underneath
the getTokens() call:

Ping SDK for Auth Journey tutorials Ping SDKs

298 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@
 async handleSuccess(success?: FRLoginSuccess) {
 this.success = success;

 try {
 await TokenManager.getTokens({ forceRenew: true });

+ let info = await UserManager.getCurrentUser();
 } catch (err) {
 console.error(err);
 }
 }
@@ collapsed @@

We want to store the fact that the user is authenticated, together with the user information we retrieved, in a state that can be
shared with other Angular components in our app. To do this, we have injected the service UserService into FormComponent .
This service is also injected into other components that should need access to authentication status and user information.

To update the UserService and redirect the user to the home page, add the following code below the getCurrentUser() call:

@@ collapsed @@
 async handleSuccess(success?: FRLoginSuccess) {
 this.success = success;

 try {
 await TokenManager.getTokens({ forceRenew: true });

 let info = await UserManager.getCurrentUser();
+ this.userService.info = info;
+ this.userService.isAuthenticated = true;

+ this.router.navigateByUrl('/');
 } catch (err) {
 console.error(err);
 }
 }
@@ collapsed @@

Revisit the browser, clear out all cookies, storage and cache, and log in with your test user. Once you have landed on the home
page you should notice that the page looks slightly different with an added success alert and message with the user’s full name.
This is due to the app “reacting” to the state in the UserService that we set just before the redirection.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 299

Figure 6. Home page with userinfo
React to the presence of the access token

To ensure your app provides a good user-experience, it’s important to have a recognizable, authenticated experience, even if the
user refreshes the page or closes and reopens the browser tab. This makes it clear to the user that they are logged in.

Currently, if you refresh the page, the authenticated experience is lost. Let’s fix that!

If the user is logged in, there are tokens in the browser. To ensure the tokens are valid and the user information is available to the
rest of the page, we use the getCurrentUser() function of the SDK. The function determines if the tokens are still valid. The
function also retrieves the user information for use in the rest of the app.

To do this, add the following code to the ngOnInit() function in the main component - src/app/app.component.ts . This should
provide what we need to re-initialise the user’s authentication status:

Ping SDK for Auth Journey tutorials Ping SDKs

300 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@
 async ngOnInit(): Promise<void> {

 Config.set({
 clientId: environment.WEB_OAUTH_CLIENT,
 redirectUri: environment.APP_URL,
 scope: 'openid profile email address',
 serverConfig: {
 baseUrl: environment.AM_URL,
 timeout: 30000, // 90000 or less
 },
 realmPath: environment.REALM_PATH,
 tree: environment.JOURNEY_LOGIN,
 });

+ try {
+ const tokens: Tokens = await TokenStorage.get();
+ if (tokens !== undefined) {
+ // Assume user is likely authenticated if there are tokens
+ const info = await UserManager.getCurrentUser();
+ this.userService.isAuthenticated = true;
+ this.userService.info = info;
+ }
+ } catch (err) {
+ // User likely not authenticated
+ console.log(err);
+ }
 }
@@ collapsed @@

With a global state API available to the app using UserService , different components can pull this state in and use it to
conditionally render a set of UI elements. Navigation elements and the displaying of profile data are good examples of such
conditional rendering. Examples of this can be found by reviewing src/app/layout/header/header.component.ts and
src/app/views/home/home.component.ts .

Validate the access token

The presence of the access token can be a good hint for authentication, but it doesn’t mean the token is actually valid. Tokens can
expire or be revoked on the server-side.

We are now focusing on protecting a particular page in our app (todos), so we may want to be sure that the user has valid
tokens. We are currently just checking that there are tokens in the browser and redirecting to the login page. This is a reasonable
approach and is quick since there are no network requests involved. However we have no assurance that the tokens are still valid.
We could ensure that the tokens are still valid with the use of getCurrentUser() method as we do in the main component.
However as this now requires a network request to complete before the page loads, it could impact on the speed at which the
page loads. This is a decision that you must make for your implementation, depending on your requirements.

In this example, instead of just checking for presence of tokens, we prioritize security over speed by making sure that the token is
valid before the page is rendered.

To protect a route by ensuring the user has a valid access token, open the src/app/auth/auth.guard.ts file which uses the
CanActivate interface, and import the UserManager from the SDK:

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 301

@@ collapsed @@
 import { UserService } from '../services/user.service';
- import { Tokens, TokenStorage } from '@forgerock/javascript-sdk';
+ import { Tokens, TokenStorage, UserManager } from '@forgerock/javascript-sdk';
@@ collapsed @@

Then, replace the code within canActivate as follows:

@@ collapsed @@
 // Assume user is likely authenticated if there are tokens
 const tokens: Tokens = await TokenStorage.get();
+ const info = await UserManager.getCurrentUser();
- if (tokens === undefined) {
+ if (tokens === undefined || info === undefined) {
 return loginUrl;
@@ collapsed @@

Revisit the browser and refresh the page. Navigate to the Todos page. You should notice a quick spinner and text communicating
that the app is "verifying access". Once the server responds, the Todos page renders. The consequence of this is the protected
route now has to wait for the server to respond, but the user’s access has been verified by the server.

Request protected resources with an access token

Once the Todos page renders, notice how the the Todo collection appears empty. This is due to the request function in the
TodoService being incomplete.

To make resource requests to a protected endpoint, we have an HttpClient module that provides a simple wrapper around the
native fetch() method of the browser. When you call the request() method, it should retrieve the user’s access token, and
attach it as a Bearer Token to the request as an authorization header. This is what the resource server uses to make its own
request to the server to validate the user’s access token.

All requests to the Todos backend live in the TodoService , which is injected into the TodosComponent which renders the /todos
page. Each of the functions dedicated to a particular backend request, call the convenience function request() , which needs to
use the Ping SDK HttpClient .

To use the HttpClient , add the following import statement to the top of src/app/services/todo.service.ts :

 import { Injectable } from '@angular/core';
 import { Todo } from '../features/todo/todo';
 import { environment } from '../../environments/environment';
+ import { HttpClient } from '@forgerock/javascript-sdk';
@@ collapsed @@

Now, complete the request() function to use the HttpClient to make requests to the Todos backend - replace the existing
return statement with the following:

Ping SDK for Auth Journey tutorials Ping SDKs

302 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@
 request(resource: string, method: string, data?: Todo): Promise<Response> {
- return new Promise((resolve, reject) => reject('Method not implemented'));
+ return HttpClient.request({
+ url: resource,
+ init: {
+ headers: {
+ 'Content-Type': 'application/json',
+ },
+ body: JSON.stringify(data),
+ method: method,
+ },
+ timeout: 5000,
+ });
 }
@@ collapsed @@

At this point, the user can login, request access tokens, and access the page of the protected resources (todos). Now, revisit the
browser and clear out all cookies, storage, and cache. Keeping the developer tools open and on the network tab, log in with you
test user. Once you have been redirected to the home page, do the following:

Click on the “Todos” item in the navigation bar - you should see that a lot of network activity should be listed.

Find the network call to the /todos endpoint (http://localhost:9443/todos).

Click on that network request and view the request headers.

Notice the authorization header with the bearer token; that’s the HttpClient in action.

1.

2.

3.

4.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 303

Figure 7. Todos page with successful request
Handle logout request

Of course, you can’t have a protected app without providing the ability to log out. Luckily, this is a fairly easy task using the SDK.

Open up the LogoutComponent file src/app/features/logout/logout.component.ts and import FRUser from the Ping SDK:

@@ collapsed @@
 import { Component, OnInit } from '@angular/core';
 import { Router } from '@angular/router';
 import { UserService } from '../../services/user.service';
+ import { FRUser } from '@forgerock/javascript-sdk';
@@ collapsed @@

Logging the user out and revoking their tokens is easy using the logout() function of FRUser . Once this async call returns, we
then remove any user information from UserService (and therefore other parts of the application since this is injected in other
components). To do this, add the following code to logout() :

Ping SDK for Auth Journey tutorials Ping SDKs

304 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@
 async logout() {
+ try {
+ await FRUser.logout();
+ this.userService.info = undefined;
+ this.userService.isAuthenticated = false;
+ setTimeout(() => this.redirectToHome(), 1000);
+ } catch (err) {
+ console.error(`Error: logout did not successfully complete; ${err}`);
+ }
 }
@@ collapsed @@

Test the app

To test the app return to your browser, empty the local storage and cache, and reload the page.

You should now be able to log in with the demo user, navigate to the Todos page, add and edit some "Todos", and logout by
selecting the profile icon in the top-right and clicking Sign Out.

Figure 8. Logout page

Congratulations, you just built a protected app with Angular!

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 305

Authentication journey tutorial for an iOS Flutter app

This tutorial covers the basics of developing a protected mobile app with Flutter. It focuses on developing the iOS bridge code
along with a minimal Flutter UI to authenticate a user.

Bridge code development is a concept common to mobile apps built using hybrid technologies. Hybrid is a term used when a
portion of the mobile app uses a language that is not native to the platform (Android and Java or iOS and Swift).

Flutter is an open source framework by Google for building beautiful, natively compiled, multi-platform applications from a single
codebase. Flutter requires this bridging code to provide the hybrid layer (Dart) access to native APIs (Swift in this case) or
dependencies.

This guide uses the Ping SDK to implement the following application features:

Authentication through a simple journey/tree.

Requesting OAuth/OIDC tokens.

Requesting user information.

Logging a user out.

Figure 1. The to-do sample app

1.

2.

3.

4.

Ping SDK for Auth Journey tutorials Ping SDKs

306 Copyright © 2025 Ping Identity Corporation

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need to configure CORS, have an OAuth 2.0 client application set up, as well as an authentication
journey for the app to navigate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure the projects

In this step you install the dependencies the projects require, and configure the connection properties.

Start step 2 

Step 3. Configure connection properties

In this step, you configure the samples to connect to the authentication tree/journey and OAuth 2.0 client you created
when setting up your server configuration.

Start step 3 

Step 4. Build and run the project

Build and run the apps, and learn about Hot Module Reloading.

Start step 4 

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 307

Step 5. Implement the iOS bridge code

In this step you implement the bridge code and add methods for starting the Ping SDK, logging a user in, stepping through
a journey, and finally logging a user out.

Start step 5 

Step 6. Implement the UI in Flutter

In this final step you implement the user interface for logging in, and code for submitting the forms. You will also handle
returning to the list view, requesting user info, and handling logout triggers.

This is also the moment you can try out the fully functioning app.

Start step 6 

Before you begin

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

The tutorial also requires a configured server.

Compatibility

iOS

This sample app is compatible with iOS 12 and later.

Prerequisites

Xcode

You can download the latest version for free from https://developer.apple.com/xcode/.

Swift Packager Manager

This project requires use of the Swift Package Manager (SPM).

Dart

Configure Dart in Xcode.

Flutter

Install the latest version of Flutter.

Ping SDK for Auth Journey tutorials Ping SDKs

308 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://docs.flutter.dev/get-started/install
https://docs.flutter.dev/get-started/install

You will also need an IDE so that you can work with the Flutter UI. To learn more about the IDEs that Flutter supports, refer
to Set up an editor in the Flutter documentation.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

PingOne Advanced Identity Cloud
PingAM

1.

2.

3.

4.

◦

◦

◦

◦

◦

5.

1.

2.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 309

https://docs.flutter.dev/get-started/editor
https://docs.flutter.dev/get-started/editor
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 1. Example username and password authentication journey

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

3.

◦

◦

◦

◦

4.

5.

6.

1.

2.

3.

4.

5.

Ping SDK for Auth Journey tutorials Ping SDKs

310 Copyright © 2025 Ping Identity Corporation

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

https://com.example.flutter.todo/callback

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

1.

2.

3.

4.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 311

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

PingAM

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

5.

6.

1.

2.

3.

◦

◦

◦

4.

1.

2.

3.

◦

◦

◦

◦

4.

5.

Ping SDK for Auth Journey tutorials Ping SDKs

312 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Figure 2. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

https://com.example.flutter.todo/callback

In Scopes, enter the following values:

openid profile email address

Click Create.

PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.

On the Core tab:

In Client type, select Public .

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

7.

1.

2.

3.

4.

5.

emergency_home
Also add any other domains where you will be hosting SDK applications.

Important

6.

7.

8.

1.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 313

Disable Allow wildcard ports in redirect URIs.

Click Save Changes.

On the Advanced tab:

In Grant Types, enter the following values:

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

Step 1. Download the samples

To start this tutorial, you need to download the Flutter sample app repo, which contains the projects you will use.

In a web browser, navigate to the Flutter Sample App repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

2.

3.

9.

1.

2.

3.

10.

1.

2.

3.

4.

5.

6.

1.

2.

1.

2.

1.

2.

Ping SDK for Auth Journey tutorials Ping SDKs

314 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/forgerock-flutter-sample
https://github.com/ForgeRock/forgerock-flutter-sample

git clone https://github.com/ForgeRock/forgerock-flutter-sample.git

The result of these steps is a local folder named forgerock-flutter-sample .

Step 2. Configure the projects

In this step you install the dependencies the projects require.

Install the Ping SDK for iOS

This Flutter app requires the native Ping SDK for iOS. Install this by using Swift Package Manager (SPM) on the generated iOS
project:

Navigate to the iOS project, forgerock-flutter-sample/Flutter_To_Do_app/flutter_todo_app/ios .

In Xcode, open Runner.xcworkspace .

Select the Runner project and navigate to Package Dependencies.

Click the + sign, and add the Ping SDK for iOS repository, https://github.com/ForgeRock/forgerock-ios-sdk.git .

Add the FRCore and FRAuth libraries to the project.

Install Flutter

Next, we need to open Android Studio and build the project.

If you haven’t configured Android Studio for Flutter, please follow the guide in the Flutter documentation.

Don’t forget to set the Dart SDK path in Android Studio. You can find that in the folder where you downloaded the Flutter SDK.
(For example, ~/flutter/bin/cache/dart-sdk .)

In Android Studio, click File > Open, and navigate to forgerock-flutter-sample/Flutter_To_Do_app/ .

When Android Studio loads the project and is ready, install any gradle dependencies, and select the iOS simulator to build and
run the project.

Install API server dependencies

Install the TODO Node.JS API server app dependencies by using npm :

In a Terminal window, navigate to the root folder, forgerock-flutter-sample .

Enter npm install .

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the authentication tree/journey you created when setting up your server
configuration.

1.

2.

3.

4.

5.

1.

2.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 315

https://docs.flutter.dev/get-started/editor
https://docs.flutter.dev/get-started/editor

Using the server settings from above, edit the .env.js file within the project. This can be found the root folder of the project.

Add your relevant values to configure all the important server settings in the project. Not all variables will need values at this time.

You can list the file in the Terminal by doing ls -a , and edit it using a text editor like nano or vi .

Example .env.js file

/**
 * Avoid trailing slashes in the URL string values below.
 */
const AM_URL = 'https://openam-forgerock-sdks.forgeblocks.com/am'; // Required; enter _your_ PingAM URL
const DEBUGGER_OFF = true;
const DEVELOPMENT = true;
const API_URL = 'https://api.example.com:9443'; // (your resource API server's URL)
const JOURNEY_LOGIN = 'sdkUsernamePasswordJourney'; // (name of journey/tree for Login)
const JOURNEY_REGISTER = 'Registration'; // (name of journey/tree for Register)
const SEC_KEY_FILE = './updatedCerts/api.example.com.key';
const SEC_CERT_FILE = './updatedCerts/api.example.com.crt';
const REALM_PATH = ''; //Required (ex: alpha)
const REST_OAUTH_CLIENT = ''; // (name of private OAuth 2.0 client/application)
const REST_OAUTH_SECRET = ''; // (the secret for the private OAuth 2.0 client/application)
const WEB_OAUTH_CLIENT = 'sdkPublicClient'; // (the name of the public OAuth 2.0 client/application)
const PORT = '9443';

Descriptions of relevant values:

AM_URL

The URL that references PingAM itself (for PingOne Advanced Identity Cloud, the URL is likely https://<tenant-
name>.forgeblocks.com/am).

API_PORT and API_BASE_URL

These just need to be "truthy" (not 0 or an empty string) right now to avoid errors, and we will use them in a future part of
this series.

DEBUGGER_OFF

When true , this disables the debugger statements in the JavaScript layer. These debugger statements are for learning
the integration points at runtime in your browser. When the browser’s developer tools are open, the app pauses at each
integration point. Code comments above each integration point explain its use.

REALM_PATH

The realm of your server (likely root , alpha , or bravo).

REST_OAUTH_CLIENT and REST_OAUTH_SECRET

We will use these values in a future part of this series, so any string value will do.

Ping SDK for Auth Journey tutorials Ping SDKs

316 Copyright © 2025 Ping Identity Corporation

Step 4. Build and run the project

Now that everything is set up, build and run the to-do app project.

Go back to the iOS project (forgerock-flutter-sample/Flutter_To_Do_app/flutter_todo_app/ios).

If the project is not already open in Xcode double-click Runner.xcworkspace .

Once Xcode is ready, select iPhone 11 or higher as the target for the device simulator on which to run the app.

Now, click the build/play button to build and run this application in the target simulator.

With everything up and running, you will need to rebuild the project with Xcode when you modify the bridge code (Swift files). But,
when modifying the Flutter code, it will use "hot module reloading" to automatically reflect the changes in the app without having
to manually rebuild the project.

Troubleshooting

Under the General tab, make sure that the FRAuth and FRCore frameworks are added to your target’s Frameworks,
Libraries, and Embedded Content.

Bridge code has been altered, so be aware of API name changes.

Using Xcode and iOS Simulator

We recommend the use of iPhone 11 or higher as the target for the iOS simulator. When you first run the build command in
Xcode (clicking the Play button), it takes a while for the app to build, the OS to load, and app to launch within the simulator. Once
the app is launched, rebuilding it is much faster if the changes are not automatically "hot reloaded" when made in the Flutter
layer.

1.

2.

3.

4.

1.

2.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 317

Figure 1. To-do app home screen

Once the app is built and running, you will have access to all the logs in the Xcode output console.

info
Only the home screen will render successfully at this moment. If you click the Sign In button, it won’t be fully
functional. This is intended as you will develop this functionality throughout this tutorial.

Note

Ping SDK for Auth Journey tutorials Ping SDKs

318 Copyright © 2025 Ping Identity Corporation

Figure 2. Xcode log output

Step 5. Implement the iOS bridge code

Review the files that allow for the "bridging" between the Flutter project and the native Ping SDK.

In Xcode, navigate to the Runner/Runner directory, and you will see a few important files:

FRAuthSampleBridge.swift

The main Swift bridging code that provides the callable methods for the Flutter layer.

FRAuthSampleStructs.swift

Provides the structs for the Swift bridging code.

FRAuthSampleHelpers.swift

Provides the extensions to often used objects within the bridge code.

FRAuthConfig

A .plist file that configures the Ping SDK for iOS to the appropriate authorization server.

info
The remainder of the files within the workspace are automatically generated when you create a Flutter project with
the CLI command, so you can ignore them.

Note

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 319

Configure your .plist file

In the Xcode directory/file list section, also known as the Project Navigator, complete the following:

Find FRAuthConfig.plist file within the ios/Runner directory.

Add the name of your PingOne Advanced Identity Cloud or PingAM cookie.

Add the OAuth client you created from above.

Add your authorization server URLs.

Add the login tree you created above.

A hypothetical example (your values may vary):

 <dict>
 <key>forgerock_cookie_name</key>
- <string></string>
+ <string>e1babb394ea5130</string>
 <key>forgerock_enable_cookie</key>
 <true/>
 <key>forgerock_oauth_client_id</key>
 <string>flutterOAuthClient</string>
 <key>forgerock_oauth_redirect_uri</key>
 <string>https://com.example.flutter.todo/callback</string>
 <key>forgerock_oauth_scope</key>
 <string>openid profile email address</string>
 <key>forgerock_oauth_url</key>
- <string></string>
+ <string>https://auth.forgerock.com/am</string>
 <key>forgerock_oauth_threshold</key>
 <string>60</string>
 <key>forgerock_url</key>
- <string></string>
+ <string>https://auth.forgerock.com/am</string>
 <key>forgerock_realm</key>
- <string></string>
+ <string>alpha</string>
 <key>forgerock_timeout</key>
 <string>60</string>
 <key>forgerock_keychain_access_group</key>
 <string>com.forgerock.flutterTodoApp</string>
 <key>forgerock_auth_service_name</key>
- <string></string>
+ <string>UsernamePassword</string>
 <key>forgerock_registration_service_name</key>
- <string></string>
+ <string>Registration</string>
</dict>

Descriptions of relevant values:

1.

2.

3.

4.

5.

Ping SDK for Auth Journey tutorials Ping SDKs

320 Copyright © 2025 Ping Identity Corporation

forgerock_cookie_name

If you have an PingOne Advanced Identity Cloud tenant, you can find this random string value under the Tenant Settings
in the top-right dropdown in the admin UI. If you have your own installation of PingAM, this is often
iPlanetDirectoryPro .

forgerock_url and forgerock_oauth_url

The URL of PingAM within your server installation.

forgerock_realm

The realm of your server (likely root , alpha , or bravo).

forgerock_auth_service_name

This is the journey/tree that you use for login.

forgerock_registration_service_name

This is the journey/tree that you use for registration, but it will not be used until a future part of this tutorial series.

Write the start() method

Staying within the Runner directory, find the FRAuthSampleBridge file and open it. We have parts of the file already stubbed out
and the dependencies are already installed. All you need to do is write the functionality.

For the SDK to initialize with the FRAuth.plist configuration from Step 2, write the start function as follows:

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 321

 import Foundation
 import FRAuth
 import FRCore
 import Flutter

 public class FRAuthSampleBridge {
 var currentNode: Node?
 private let session = URLSession(configuration: .default)

 @objc func frAuthStart(result: @escaping FlutterResult) {

+ /**
+ * Set log level to all
+ */
+ FRLog.setLogLevel([.all])
+
+ do {
+ try FRAuth.start()
+ let initMessage = "SDK is initialized"
+ FRLog.i(initMessage)
+ result(initMessage)
+ } catch {
+ FRLog.e(error.localizedDescription)
+ result(FlutterError(code: "SDK Init Failed",
+ message: error.localizedDescription,
+ details: nil))
+ }
 }

The start() function above calls the Ping SDK for iOS’s start() method on the FRAuth class. There’s a bit more that may be
required within this function for a production app. We’ll get more into this in a separate part of this series, but for now, let’s keep
this simple.

Write the login() method

Once the start() method is called, and it has initialized, the SDK is ready to handle user requests. Let’s start with login() .

Just underneath the start() method we wrote above, add the login() method.

Ping SDK for Auth Journey tutorials Ping SDKs

322 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@

@objc func frAuthStart(result: @escaping FlutterResult) {
 // Set log level according to your needs
 FRLog.setLogLevel([.all])

 do {
 try FRAuth.start()
 result("SDK Initialised")
 FRUser.currentUser?.logout()
 }
 catch {
 FRLog.e(error.localizedDescription)
 result(FlutterError(code: "SDK Init Failed",
 message: error.localizedDescription,
 details: nil))
 }
 }

 @objc func login(result: @escaping FlutterResult) {
+ FRUser.login { (user, node, error) in
+ self.handleNode(user, node, error, completion: result)
+ }
 }

@@ collapsed @@

This login() function initializes the journey/tree specified for authentication. You call this method without arguments as it does
not log the user in. This initial call to the server will return the first set of callbacks that represents the first node in your journey/
tree to collect user data.

Also, notice that we have a special "handler" function within the callback of FRUser.login() . This handleNode() method
serializes the node object that the Ping SDK for iOS returns in a JSON string. Data passed between the "native" layer and the
Flutter layer is limited to serialized objects. This method can be written in many ways and should be written in whatever way is
best for your application.

Write the next() method

To finalize the functionality needed to complete user authentication, we need a way to iteratively call next() until the tree
completes successfully or fails. In the bridge file, add a private method called handleNode() .

First, we will write the decoding of the JSON string and prepare the node for submission.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 323

@@ collapsed @@

@objc func login(result: @escaping FlutterResult) {
 FRUser.login { (user, node, error) in
 self.handleNode(user, node, error, completion: result)
 }
 }

 @objc func next(_ response: String, completion: @escaping FlutterResult) {
+ let decoder = JSONDecoder()
+ let jsonData = Data(response.utf8)
+ if let node = self.currentNode {
+ var responseObject: Response?
+ do {
+ responseObject = try decoder.decode(Response.self, from: jsonData)
+ } catch {
+ FRLog.e(String(describing: error))
+ completion(FlutterError(code: "Error",
+ message: error.localizedDescription,
+ details: nil))
+ }
+
+ let callbacksArray = responseObject!.callbacks ?? []
+
+ for (outerIndex, nodeCallback) in node.callbacks.enumerated() {
+ if let thisCallback = nodeCallback as? SingleValueCallback {
+ for (innerIndex, rawCallback) in callbacksArray.enumerated() {
+ if let inputsArray = rawCallback.input, outerIndex == innerIndex,
+ let value = inputsArray.first?.value {
+
+ thisCallback.setValue(value.value as! String)
+ }
+ }
+ }
+ }
+
+ //node.next logic goes here
+
+
+ } else {
+ completion(FlutterError(code: "Error",
+ message: "UnkownError",
+ details: nil))
+ }
 }

@@ collapsed @@

Now that you’ve prepared the data for submission, introduce the node.next() call from the Ping SDK for iOS. Then, handle the
subsequent node returned from the next() call, or process the success or failure representing the completion of the journey/
tree.

Ping SDK for Auth Journey tutorials Ping SDKs

324 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@

 for (outerIndex, nodeCallback) in node.callbacks.enumerated() {
 if let thisCallback = nodeCallback as? SingleValueCallback {
 for (innerIndex, rawCallback) in callbacksArray.enumerated() {
 if let inputsArray = rawCallback.input, outerIndex == innerIndex,
 let value = inputsArray.first?.value {

 thisCallback.setValue(value)
 }
 }
 }
 }

 //node.next logic goes here
+ node.next(completion: { (user: FRUser?, node, error) in
+ if let node = node {
+ self.handleNode(user, node, error, completion: completion)
+ } else {
+ if let error = error {
+ completion(FlutterError(code: "LoginFailure",
+ message: error.localizedDescription,
+ details: nil))
+ return
+ }
+
+ let encoder = JSONEncoder()
+ encoder.outputFormatting = .prettyPrinted
+ do {
+ if let user = user, let token = user.token, let data = try? encoder.encode(token), let jsonAccessToken
= String(data: data, encoding: .utf8) {
+ completion(try ["type": "LoginSuccess", "sessionToken": jsonAccessToken].toJson())
+ } else {
+ completion(try ["type": "LoginSuccess", "sessionToken": ""].toJson())
+ }
+ }
+ catch {
+ completion(FlutterError(code: "Serializing Response failed",
+ message: error.localizedDescription,
+ details: nil))
+ }
+ }
+ })
 } else {
 completion(FlutterError(code: "Error",
 message: "UnkownError",
 details: nil))
 }
 }

@@ collapsed @@

The above code handles a limited number of callback types. Handling full authentication and registration journeys/trees requires
additional callback handling. To keep this tutorial simple, we’ll focus just on SingleValueCallback type.

Write the logout() bridge method

Finally, add the following lines of code to enable logout for the user:

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 325

@@ collapsed @@

 } else {
 completion(FlutterError(code: "Error",
 message: "UnkownError",
 details: nil))
 }

 @objc func frLogout(result: @escaping FlutterResult) {
+ FRUser.currentUser?.logout()
+ result("User logged out")
 }

@@ collapsed @@

Step 6. Implement the UI in Flutter

Review how the application renders the home view.

In Android Studio, navigate to the Flutter project, flutter_todo_app > java/main.dart.

Open up the second file in the above sequence, the java/main.dart file, and notice the following:

The use of import 'package:flutter/material.dart'; from the Flutter library.

The TodoApp class extending StatefulWidget .

The _TodoAppState class extending State<TodoApp> .

Building the UI for the navigation bar.

1.

2.

3.

4.

Ping SDK for Auth Journey tutorials Ping SDKs

326 Copyright © 2025 Ping Identity Corporation

import 'package:flutter/material.dart';
import 'package:flutter_todo_app/home.dart';
import 'package:flutter_todo_app/login.dart';
import 'package:flutter_todo_app/todolist.dart';

void main() => runApp(
 new TodoApp(),
);

class TodoApp extends StatefulWidget {
 @override
 _TodoAppState createState() => new _TodoAppState();
}

class _TodoAppState extends State<TodoApp> {
 int _selectedIndex = 0;

 final _pageOptions = [
 HomePage(),
 LoginPage(),
 TodoList(),
];

 void _onItemTapped(int index) {
 setState(() {
 _selectedIndex = index;
 });
 }

 @override
 Widget build(BuildContext context) {
 return new MaterialApp(
 home: Scaffold(
 body: _pageOptions[_selectedIndex],
 bottomNavigationBar: BottomNavigationBar(
 items: const <BottomNavigationBarItem>[
 BottomNavigationBarItem(
 icon: Icon(Icons.home),
 label: 'Home',
),
 BottomNavigationBarItem(
 icon: Icon(Icons.vpn_key),
 label: 'Sign In',
),
],
 currentIndex: _selectedIndex,
 selectedItemColor: Colors.blueAccent[800],
 onTap: _onItemTapped,
 backgroundColor: Colors.grey[200],
)
),
);
 }
}

Flutter uses something called MethodChannel to communicate between Flutter and the Native layer. In this application we will
define a MethodChannel with the following identifier: 'forgerock.com/SampleBridge' .

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 327

The same identifier will be used in the iOS FRSampleBridge so that the two layers communicate and pass information. To initialize
the Ping SDK when the log in view first loads, we call the frStart() method on the bridge code.

Building the login view

Navigate to the app’s login view within the Simulator. You should see an empty screen with a button, since the app doesn’t have
the data needed to render the form. To render the correct form, retrieve the initial data from the server. This is our first task.

Since most of the action is taking place in flutter_todo_app/Java/login.dart , open it and add the following:

Import FRNode.dart from the Dart helper classes provided for improved ergonomics for handling callbacks:

import 'package:flutter_todo_app/FRNode.dart';

If not already there, import async , convert , scheduler , services from the flutter package. Add the following:

import 'dart:async';
import 'dart:convert';
import 'package:flutter/scheduler.dart';
import 'package:flutter/services.dart';

Create a static reference for the method channel

MethodChannel('forgerock.com/SampleBridge')

Override the initState Flutter lifecycle method and initialize the SDK.

info
It’s important to initialize the SDK as early as possible. Call this initialization step, so it resolves before any other native
SDK methods can be used.

Note

1.

2.

3.

4.

Ping SDK for Auth Journey tutorials Ping SDKs

328 Copyright © 2025 Ping Identity Corporation

class _LoginPageState extends State<LoginPage> {
+ static const platform = MethodChannel('forgerock.com/SampleBridge'); //Method channel as defined in the
native Bridge code

@@ collapsed @@

 //Lifecycle Methods
+ @override
+ void initState() {
+ super.initState();
+ SchedulerBinding.instance?.addPostFrameCallback((_) => {
+ //After creating the first controller that uses the SDK, call the 'frAuthStart' method to initialize
the native SDKs.
+ _startSDK()
+ });
+ }

 // SDK Calls - Note the promise type responses. Handle errors on the UI layer as required
 Future<void> _startSDK() async {
+ String response;
+ try {
+
+ //Start the SDK. Call the frAuthStart channel method to initialise the native SDKs
+ final String result = await platform.invokeMethod('frAuthStart');
+ response = 'SDK Started';
+ _login();
+ } on PlatformException catch (e) {
+ response = "SDK Start Failed: '${e.message}'.";
+ }
 }

@@ collapsed @@

To develop the login functionality, we first need to use the login() method from the bridge code to get the first set of callbacks,
and then render the form appropriately. This login() method is an asynchronous method. Let’s get started!

Compose the data gathering process using the following:

After the SDK initialization is complete, call the _login() method.

Use the platform reference to call the Bridge login method platform.invokeMethod('login') .

Parse the response and call _handleNode() method.

Handle any errors that might be returned from the Bridge .

1.

2.

3.

4.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 329

@@ collapsed @@

 Future<void> _login() async {
+ try {
+ //Call the default login tree.
+ final String result = await platform.invokeMethod('login');
+ Map<String, dynamic> frNodeMap = jsonDecode(result);
+ var frNode = FRNode.fromJson(frNodeMap);
+ currentNode = frNode;
+
+ //Upon completion, a node with callbacks will be returned, handle that node and present the callbacks
to UI as needed.
+ _handleNode(frNode);
+ } on PlatformException catch (e) {
+ debugPrint('SDK Error: $e');
+ Navigator.pop(context);
+ }
 }

The above code is expected to return either a Node with a set of Callback objects, or a success/error message. We need to
handle any exceptions thrown from the bridge on the catch block. Typically, when we begin the authentication journey/tree, this
returns a Node . Using the FRNode helper object, we parse the result in a native Flutter FRNode object.

In the next step we are going to "handle" this node, and produce our UI.

@@ collapsed @@
 // Handling methods
 void _handleNode(FRNode frNode) {
+ // Go through the node callbacks and present the UI fields as needed. To determine the required UI element,
check the callback type.
+ frNode.callbacks.forEach((frCallback) {
+ final controller = TextEditingController();
+ final field = TextField(
+ controller: controller,
+ obscureText: frCallback.type == "PasswordCallback", // If the callback type is 'PasswordCallback', make this
a 'secure' textField.
+ enableSuggestions: false,
+ autocorrect: false,
+ decoration: InputDecoration(
+ border: OutlineInputBorder(),
+ labelText: frCallback.output[0].value,
+),
+);
+ setState(() {
+ _controllers.add(controller);
+ _fields.add(field);
+ });
+ });
 }

The _handleNode() method focuses on the callbacks property. This property contains instructions about what to render to
collect user input.

Ping SDK for Auth Journey tutorials Ping SDKs

330 Copyright © 2025 Ping Identity Corporation

The previous code processes the Node callbacks and generates two TextField objects:

A TextField for the username.

A TextField for the password.

Use the frCallback.type to differentiate between the two TextField objects and obscure the text of each TextField . Next,
add the TextField objects to the List and create the accompanying TextEditingControllers.

Run the app again, and you should see a dynamic form that reacts to the callbacks returned from our initial call to ForgeRock.

Figure 1. Login screen form
Submitting the login form

Since a form that can’t submit anything isn’t very useful, we’ll now handle the submission of the user input values to ForgeRock.
Continuing in login.dart , edit the current _okButton element, adding an onPressed handler calling the _next() function.
This function should do the following:

Go through the _controllers array to capture the values of the form elements.

Update the Node callbacks with those values.

Submit the results to ForgeRock.

•

•

1.

2.

3.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 331

Check the response for a LoginSuccess message, or if a new node is returned, handle this in a similar way and resubmit
the user inputs as needed.

Handle errors with a generic failure message.

4.

5.

Ping SDK for Auth Journey tutorials Ping SDKs

332 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@

Widget _okButton() {
 return Container(
 color: Colors.transparent,
 width: MediaQuery.of(context).size.width,
 margin: EdgeInsets.all(15.0),
 height: 60,
 child: TextButton(
 style: ButtonStyle(backgroundColor: MaterialStateProperty.all(Colors.blue)),
 onPressed: () async {
 showAlertDialog(context);
+ _next();
 },
 child:
 Text(
 "Sign in",
 style: TextStyle(color: Colors.white),
),
),
);
}

@@ collapsed @@

 Future<void> _next() async {
 // Capture the User Inputs from the UI, populate the currentNode callbacks and submit back to {am_name}
+ currentNode.callbacks.asMap().forEach((index, frCallback) {
+ _controllers.asMap().forEach((controllerIndex, controller) {
+ if (controllerIndex == index) {
+ frCallback.input[0].value = controller.text;
+ }
+ });
+ });
+ String jsonResponse = jsonEncode(currentNode);
+ try {
+ // Call the SDK next method, to submit the User Inputs to {am_name}. This will return the next Node or a
Success/Failure
+ String result = await platform.invokeMethod('next', jsonResponse);
+ Navigator.pop(context);
+ Map<String, dynamic> response = jsonDecode(result);
+ if (response["type"] == "LoginSuccess") {
+ _navigateToNextScreen(context);
+ } else {
+ //If a new node is returned, handle this in a similar way and resubmit the user inputs as needed.
+ Map<String, dynamic> frNodeMap = jsonDecode(result);
+ var frNode = FRNode.fromJson(frNodeMap);
+ currentNode = frNode;
+ _handleNode(frNode);
+ }
+ } catch (e) {
+ Navigator.pop(context);
+ debugPrint('SDK Error: $e');
+ }
 }

@@ collapsed @@

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 333

After the app refreshes, use the test user to login. If successful, you should see a success message. Congratulations, you are now
able to authenticate users!

Figure 2. Login screen with successful authentication

What’s more, you can verify the authentication details by going to the Xcode or Android Studio log, and observing the result of the
last call to the server. It should have a type of LoginSuccess with token information.

Figure 3. Successful login response from Xcode

Ping SDK for Auth Journey tutorials Ping SDKs

334 Copyright © 2025 Ping Identity Corporation

Handling the user provided values

You may ask, "How did the user’s input values get added to the Node object?" Let’s take a look at the component for handling the
user input submission. Notice how we loop through the Node Callbacks and the _controllers array. Each input is set on the
frCallback.input[0].value , and then we call FRSampleBridge.next() method.

@@ collapsed @@

// Capture the User Inputs from the UI, populate the currentNode callbacks and submit back to {am_name}
 currentNode.callbacks.asMap().forEach((index, frCallback) {
 _controllers.asMap().forEach((controllerIndex, controller) {
 if (controllerIndex == index) {
 frCallback.input[0].value = controller.text;
 }
 });
 });

 String jsonResponse = jsonEncode(currentNode);

@@ collapsed @@

 try {
 // Call the SDK next method, to submit the User Inputs to {am_name}. This will return the next Node or a Success/
Failure
 String result = await platform.invokeMethod('next', jsonResponse);

@@ collapsed @@

 } catch (e) {
 Navigator.pop(context);
 debugPrint('SDK Error: $e');
 }

There are two important items to focus on regarding the FRCallback object.

callback.type

Retrieves the call back type so that can identify how to present the callback in the UI.

callback.input

The input array that contains the inputs that you need to set the values for.

Since the NameCallback and PasswordCallback only have one input, you can set the value of them by calling
frCallback.input[0].value = controller.text; . Some other callbacks might contain multiple inputs, so some extra code will
be required to set the values of those.

Each callback type has its own collection of inputs and outputs. Those are exposed as arrays that the developer can loop through
and act upon. Many callbacks have common base objects in iOS and Android, like the SingleValueCallback , but appear as
different types NameCallback or PasswordCallback to allow for easier differentiation in the UI layer. You can find a full list of the
supported callbacks of the SDKs here.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 335

Redirecting to the TodoList screen and requesting user info

Now that the user can log in, let’s go one step further and redirect to the TodoList screen. After we get the LoginSccess message
we can call the _navigateToNextScreen() method. This will navigate to the TodoList class. When the TodoList initializes, we
want to request information about the authenticated user to display their name and other information. We will now utilize the
existing FRAuthSampleBridge.getUserInfo() method already included in the bridge code.

Let’s do a little setup before we make the request to the server:

Override the initState() method in the _TodoListState class in todolist.dart .

Create a SchedulerBinding.instance?.addPostFrameCallback to execute some code when the state is loaded.

Call _getUserInfo() .

@@ collapsed @@
//Lifecycle methods

+ @override
+ void initState() {
+ super.initState();
+ SchedulerBinding.instance?.addPostFrameCallback((_) => {
+ //Calling the userinfo endpoint is going to give use some user profile information to enrich our UI.
Additionally, verifies that we have a valid access token.
+ _getUserInfo()
+ });
+ }

@@ collapsed @@

With the setup complete, implement the request to your server for the user’s information. Within this empty _getUserInfo() ,
add an async function to make that call FRAuthSampleBridge.getUserInfo() and parse the response.

1.

2.

3.

Ping SDK for Auth Journey tutorials Ping SDKs

336 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@

Future<void> _getUserInfo() async {
 showAlertDialog(context);
 String response;
+ try {
+ final String result = await platform.invokeMethod('getUserInfo');
+ Map<String, dynamic> userInfoMap = jsonDecode(result);
+ response = result;
+ header = userInfoMap["name"];
+ subtitle = userInfoMap["email"];
+ Navigator.pop(context);
+ setState(() {
+ _getTodos();
+ });
+ } on PlatformException catch (e) {
+ response = "SDK Start Failed: '${e.message}'.";
+ Navigator.pop(context);
+ }
+ debugPrint('SDK: $response');
}

@@ collapsed @@

In the code above, we collected the user information and set the name and email of the user in some variables. In addition to
updating the user info, we will call the _getTodos() method in order to retrieve ToDos from the server. Notice that we use the
setState() function. This ensures that our UI is updated based on the newly received information.

When you test this in the Simulator, completing a successful authentication results in the home screen being rendered with a
success message. The user’s name and email are included for visual validation. You can also view the console in Xcode and see
more complete logs.

Figure 4. Home screen after successful authentication
Adding logout functionality

Clicking the Sign Out button results in creating and rendering an alert view asking you if you are sure you want to log out with two
options (yes/no). Clicking yes does nothing at the moment. We will now implement that missing logic.

To add the logic into the view to call this new Swift method:

Open the todolist.dart file, and add the following:1.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 337

@@ collapsed @@

 TextButton(
 child: const Text('Yes'),
+ onPressed: () {
+ Navigator.of(context).pop();
+ _logout();
+ },
),

@@ collapsed @@

 Future<void> _logout() async {
+ final String result = await platform.invokeMethod('logout');
+ _navigateToNextScreen(context);
 }

Revisit the app within the Simulator, and tap the Sign Out button.

This time around when clicking Yes will dispose of the alert and log you out, returning you back to the log in screen.

If you tap No, you will return to the main list screen.

Testing the app

You should now be able to successfully authenticate a user, display the user’s information, and log a user out.

Congratulations, you just built a protected iOS app with Flutter!

Authentication journey tutorial for ReactJS

In this tutorial you build out a sample ReactJS SPA and make use of a Node.js REST API server sample app.

This guide uses the Ping SDK for JavaScript to implement the following application features:

Dynamic authentication form for login.

OAuth/OIDC token acquisition through the Authorization Code Flow with PKCE.

Protected client-side routing.

Resource requests to a protected REST API.

Log out - revoke tokens and end session.

2.

•

•

•

•

•

Ping SDK for Auth Journey tutorials Ping SDKs

338 Copyright © 2025 Ping Identity Corporation

Figure 1. Screenshot of the to-do page of the sample app

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need to configure CORS, have an OAuth 2.0 client application set up, as well as an authentication
journey for the app to navigate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 339

Step 2. Configure connection properties

Configure both the Todo client app, and the API backend server app to connect to the OAuth 2.0 application you created in
PingOne Advanced Identity Cloud or PingAM.

Start step 2 

Step 3. Build and run the projects

In this step you build and run the API backend server app, and then the Todo client app.

There are also troubleshooting tips if the apps do not start as expected.

Start step 3 

Step 4. Implement authentication using the Ping SDK

In this step you implement the Ping SDK into the Todo client app, so that it authenticates a user and handles the responses
from your PingOne Advanced Identity Cloud tenant or PingAM server.

Start step 4 

Step 5. Start an OAuth 2.0 flow

In this step you use the session token you received in the previous step to start an Oauth 2.0 flow.

Start step 5 

Step 6. Manage access tokens

In this step you implement code to handle the presence of an access token, and getting user info from the OAuth 2.0
endpoint.

Start step 6 

Ping SDK for Auth Journey tutorials Ping SDKs

340 Copyright © 2025 Ping Identity Corporation

Step 7. Handle logout requests

In this step you implement code to terminate the session and revoke tokens.

Start step 7 

Step 8. Test the app

In this final step you run the completed sample application.

Test it out 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured server.

Prerequisites

Node and NPM

The SDK requires a minimum Node.js version of 18 , and is tested on versions 18 and 20 . To get a supported version of
Node.js, refer to the Node.js download page.

You will also need npm version 7 or newer to build the code and run the samples.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne Advanced Identity Cloud
PingAM

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 341

https://nodejs.org/en/download/
https://nodejs.org/en/download/

PingOne Advanced Identity Cloud

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingOne Advanced Identity Cloud,
you can configure CORS to allow browsers from trusted domains to access PingOne Advanced Identity Cloud protected resources.
For example, you might want a custom web application running on your own domain to get an end-user’s profile information
using the PingOne Advanced Identity Cloud REST API.

The Ping SDK for JavaScript samples and tutorials use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different domain for hosting SDK applications, ensure you add them to the CORS configuration as accepted
origin domains.

For example, for this tutorial you should also add the host domain used by the todo API backend server, which defaults to
http://localhost:9443 .

To update the CORS configuration in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

At the top right of the screen, click your name, and then select Tenant settings.

On the Global Settings tab, click Cross-Origin Resource Sharing (CORS).

Perform one of the following actions:

If available, click ForgeRockSDK.

If you haven’t added any CORS configurations to the tenant, click + Add a CORS Configuration, select Ping SDK,
and then click Next.

Add https://localhost:8443 and any DNS aliases you use to host your Ping SDK for JavaScript applications to the
Accepted Origins property.

Add the URL used by the todo API backend server, which defaults to http://localhost:9443 .

Complete the remaining fields to suit your environment.

This documentation assumes the following configuration, required for the tutorials and sample applications:

1.

2.

3.

4.

◦

◦

5.

6.

7.

Property Values

Accepted Origins https://localhost:8443

http://localhost:9443

Accepted Methods GET

POST

Ping SDK for Auth Journey tutorials Ping SDKs

342 Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Click Save CORS Configuration.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Property Values

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

Enable Caching True

Max Age 600

Allow Credentials True

lightbulb_2
Click Show advanced settings to be able to edit all available fields.

Tip

8.

1.

2.

3.

4.

◦

◦

◦

◦

◦

5.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 343

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 1. Example username and password authentication journey

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

1.

2.

3.

◦

◦

◦

◦

4.

5.

6.

Ping SDK for Auth Journey tutorials Ping SDKs

344 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

https://localhost:8443/callback

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 345

Confidential clients are able to securely store credentials and are commonly used for server-to-server communication. For
example, the "Todo" API backend provided with the SDK samples uses a confidential client to obtain tokens.

The following tutorials and integrations require a confidential client:

Authentication journey tutorial for Angular

Authentication journey tutorial for ReactJS

Build advanced token security in a JavaScript SPA

To register a confidential OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these
steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Web as the application type, and then click Next.

In Name, enter a name for the application, such as Confidential SDK Client .

In Owners, select a user responsible for maintaining the application, and then click Next.

On the Web Settings page:

In Client ID, enter sdkConfidentialClient

In Client Secret, enter a strong password and make a note of it for later use.

Click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab, click Show advanced settings, and on the Access tab:

In Default Scopes, enter am-introspect-all-tokens .

Click Save.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

•

•

•

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

1.

2.

emergency_home
The client secret is not available to view after this step.
If you forget it, you must reset the secret and reconfigure any connected clients.

Important

3.

9.

1.

10.

Ping SDK for Auth Journey tutorials Ping SDKs

346 Copyright © 2025 Ping Identity Corporation

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

PingAM

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingAM, you can configure CORS
to allow browsers from trusted domains to access PingAM protected resources. For example, you might want a custom web
application running on your own domain to get an end-user’s profile information using the PingAM REST API.

The Ping SDK for JavaScript samples and tutorials all use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different URL for hosting SDK applications, ensure you add them to the CORS configuration as accepted origin
domains.

For example, for this tutorial you should also add the host domain used by the todo API backend server, which defaults to
http://localhost:9443 .

To enable CORS in PingAM, and create a CORS filter to allow requests from your configured domain names, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to Configure > Global Services > CORS Service > Configuration, and set the Enable the CORS filter property to
true .

On the Secondary Configurations tab, click Click Add a Secondary Configuration.

In the Name field, enter ForgeRockSDK .

in the Accepted Origins field, enter any DNS aliases you use for your SDK apps.

This documentation assumes the following configuration:

1.

2.

3.

4.

5.

6.

1.

2.

emergency_home
If this property is not enabled, CORS headers are not added to responses from PingAM, and CORS is disabled
entirely.

Important

3.

4.

5.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 347

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Click Create.

PingAM displays the configuration of your new CORS filter.

On the CORS filter configuration page:

Ensure Enable the CORS filter is enabled.

Set the Max Age property to 600

Ensure Allow Credentials is enabled.

Click Save Changes.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Property Values

Accepted Origins https://localhost:8443

http://localhost:9443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

6.

7.

1.

2.

3.

8.

1.

2.

3.

◦

◦

◦

4.

Ping SDK for Auth Journey tutorials Ping SDKs

348 Copyright © 2025 Ping Identity Corporation

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 2. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

1.

2.

3.

◦

◦

◦

◦

4.

5.

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

7.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 349

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

https://localhost:8443/callback

In Scopes, enter the following values:

openid profile email address

Click Create.

PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.

On the Core tab:

In Client type, select Public .

Disable Allow wildcard ports in redirect URIs.

Click Save Changes.

On the Advanced tab:

In Grant Types, enter the following values:

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

Confidential clients are able to store credentials securely and are commonly used for server-to-server communication.

The following tutorials and integrations require a confidential client:

Authentication journey tutorial for Angular

Authentication journey tutorial for ReactJS

Build advanced token security in a JavaScript SPA

1.

2.

3.

4.

5.

emergency_home
Also add any other domains where you will be hosting SDK applications.

Important

6.

7.

8.

1.

2.

3.

9.

1.

2.

3.

10.

•

•

•

Ping SDK for Auth Journey tutorials Ping SDKs

350 Copyright © 2025 Ping Identity Corporation

To register a confidential OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkConfidentialClient .

In Client Secret, enter a strong password and make a note of it for later use.

In Default Scopes, enter am-introspect-all-tokens .

PingAM creates the new OAuth 2.0 client and displays the properties for further configuration.

On the Advanced tab:

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

1. Cookie name value in PingAM servers.
2. In PingOne Advanced Identity Cloud tenants, go to Tenant Settings > Global Settings > Cookie to find this dynamic cookie
name value.

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Within the repo are two branches related to this tutorial:

build-protected-app/start

Contains all the source files you need to follow this tutorial, but without the actual implementation of the Ping SDK
functionality.

1.

2.

3.

4.

emergency_home
The client secret is not available to view after this step.
If you forget it, you must reset the secret and reconfigure any connected clients.

Important

5.

6.

1.

7.

1.

2.

3.

4.

5.

6.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 351

Use this branch if you want to complete the tutorial step-by-step, adding the code the tutorial provides.

build-protected-app/complete

The same source files but with the Ping SDK code already implemented.

Use this branch if you want to skip ahead of the tutorial, or if you want to compare your work with the completed version
for troubleshooting.

To get a copy of the tutorial source code:

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Select which branch to download:

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

1.

2.

1.

2.

3.

1.

2.

Ping SDK for Auth Journey tutorials Ping SDKs

352 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

Checkout which branch you want to work on.

For example, from the command-line you could run:

git checkout build-protected-app/start

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties

There are two projects in this tutorial that require configuration:

Client ReactJS app

The front-end client app, written in React, that handles the UI and authentication journeys.

Backend API server

A backend REST API server that uses a confidential OAuth 2.0 client to contact the authorization server. The API server
handles storage and retrieval of your personal "Todo" items.

Configure the React client app

Copy the .env.example file in the sdk-sample-apps/reactjs-todo folder and save it with the name .env within this same
directory.

Add your relevant values to this new file because it provides all the important configuration settings to your applications.

Example client sdk-sample-apps/reactjs-todo/.env file

API_URL=http://localhost:9443
DEBUGGER_OFF=true
DEVELOPMENT=true
JOURNEY_LOGIN=sdkUsernamePasswordJourney
JOURNEY_REGISTER=Registration
PORT=8443
WEB_OAUTH_CLIENT=sdkPublicClient
WELLKNOWN_URL=https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/alpha/.well-known/openid-
configuration

Here are descriptions for some of the values:

3.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 353

DEBUGGER_OFF

Set to true , to disable debug statements in the app.

These statements are for learning the integration points at runtime in your browser.

When you open the browser’s developer tools, the app pauses at each integration point. Code comments are placed
above each one explaining their use.

DEVELOPMENT

When true , this provides better debugging during development.

JOURNEY_LOGIN

The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .

JOURNEY_REGISTER

The registration journey or tree.

You can use the default builtin Registration journey.

WELLKNOWN_URL

The URL to your server’s .well-known/openid-configuration endpoint.

Example:

https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/alpha/.well-known/openid-

configuration

Self-hosted example:

https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration

Configure the API server app

Copy the .env.example file in the sdk-sample-apps/todo-api folder and save it with the name .env within this same
directory.

Add your relevant values to this new file as it will provide all the important configuration settings to your applications.

Example API server sdk-sample-apps/todo-api/.env file

AM_URL=https://openam-forgerock-sdks.forgeblocks.com/am
DEVELOPMENT=true
SERVER_PORT=9443
REALM_PATH=alpha
REST_OAUTH_CLIENT=sdkConfidentialClient
REST_OAUTH_SECRET=ch4ng3it!

Ping SDK for Auth Journey tutorials Ping SDKs

354 Copyright © 2025 Ping Identity Corporation

Step 3. Build and run the projects

In this step you build and run the API backend, and the "Todo" client app project.

Open a terminal window at the root of the sdk-sample-apps directory and install the dependencies using the npm
install command:

npm install

In the same directory run the following command to start both the API backend server and the "Todo" client:

npm run start:reactjs-todo

In a different browser than the one you are using to administer the server, visit the following URL: https://localhost:
8443 .

The app renders a home page explaining the purpose of the project:

Figure 1. Screenshot of the home page of the sample app

1.

2.

3.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 355

Troubleshooting

If the home page doesn’t render due to errors, here are a few tips:

Visit http://localhost:9443/healthcheck in the same browser you use for the ReactJS app to test the API backend is
running. The API backend should respond with Ok .

Look for error output in the terminal that is running the npm run start:reactjs-todo command.

Ensure you are not logged into your PingOne Advanced Identity Cloud tenant or PingAM server in the same browser as the
sample app; log out if you are, or use a different browser or an incognito window.

Step 4. Implement authentication using the Ping SDK

Now that we have our environment and servers setup, let’s jump into the application! Within your IDE of choice, navigate to the
reactjs-todo/client directory. This directory is where you will spend the rest of your time.

First, open up the index.js file, import the Config module from the Ping SDK for JavaScript and call the setAsync() method
on this object:

/reactjs-todo/client/index.js

+ import { Config } from '@forgerock/javascript-sdk';
 import React from 'react';
 import { createRoot } from 'react-dom/client';

 import Router from './router';
 import { WELLKNOWN_URL, APP_URL, JOURNEY_LOGIN, WEB_OAUTH_CLIENT } from './constants';
 import { AppContext, useGlobalStateMgmt } from './global-state';

 import './styles/index.scss';

+ const urlParams = new URLSearchParams(window.location.search);
+ const journeyParam = urlParams.get('journey');
+
+ await Config.setAsync();

 /**
 * Initialize the React application
 * This is an IIFE (Immediately Invoked Function Expression),
 * so it calls itself.
 */
 (async function initAndHydrate() {

@@ collapsed @@

info
Only the home page renders successfully. The login page functionality is not yet functional. You will develop
this functionality later in this tutorial.

Note

•

•

•

Ping SDK for Auth Journey tutorials Ping SDKs

356 Copyright © 2025 Ping Identity Corporation

http://localhost:9443/healthcheck
http://localhost:9443/healthcheck

The use of setAsync() should always be the first SDK method called and is frequently done at the application’s top-level file. To
configure the SDK to communicate with the journeys, OAuth clients, and realms of the appropriate server, pass a configuration
object with the appropriate values.

The configuration object you will use in this instance will pull most of its values out of the .env variables previously setup, which
are mapped to constants within our constants.js file.

Here’s an example config for an PingOne Advanced Identity Cloud tenant:

/reactjs-todo/client/index.js

 import { Config } from '@forgerock/javascript-sdk';
 import React from 'react';
 import { createRoot } from 'react-dom/client';

 import Router from './router';
 import { WELLKNOWN_URL, APP_URL, JOURNEY_LOGIN, WEB_OAUTH_CLIENT } from './constants';
 import { AppContext, useGlobalStateMgmt } from './global-state';

 import './styles/index.scss';

 const urlParams = new URLSearchParams(window.location.search);
 const journeyParam = urlParams.get('journey');

 await Config.setAsync(
+ {
+ clientId: WEB_OAUTH_CLIENT,
+ redirectUri: `${window.location.origin}/callback`,
+ scope: 'openid profile email address',
+ serverConfig: {
+ wellknown: WELLKNOWN_URL,
+ timeout: 3000,
+ },
+ tree: `${journeyParam || JOURNEY_LOGIN}`,
+ }
);

@@ collapsed @@

Go back to your browser and refresh the home page. There should be no change to what’s rendered, and no errors in the
console. Now that the app is configured to your server, let’s wire up the simple login page.

Building the login page

First, let’s review how the application renders the home page:

index.js > router.js > views/home.js > inline code + components (components/)

For the login page, the same pattern applies except it has less code within the view file:

index.js > router.js > views/login.js > components/journey/form.js

In the top-right of the home page, click Sign In to open the login page.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 357

You should see a "loading" spinner and message that’s persistent since it doesn’t have the callbacks from your server that are
needed to render the form. Obtaining these callbacks is the first task.

Figure 1. Screenshot of the todo app’s login page with spinner.

Since most of the action is taking place in reactjs-todo/client/components/journey/form.js , open it and add the FRAuth
module from the Ping SDK for JavaScript:

reactjs-todo/client/components/journey/form.js

+ import { FRAuth } from '@forgerock/javascript-sdk';
import React from 'react';

import Loading from '../utilities/loading';

@@ collapsed @@

FRAuth is the first object used as it provides the necessary methods for authenticating a user by using an authentication journey
or tree. Use the start() method of FRAuth as it returns data we need for rendering the form.

You will need to add new imports. Add useContext and useState from the React package.

Ping SDK for Auth Journey tutorials Ping SDKs

358 Copyright © 2025 Ping Identity Corporation

You’ll use the useState() method for managing the data received from the server, and the useEffect is needed due to the
FRAuth.start() method resulting in a network request.

reactjs-todo/client/components/journey/form.js

 import { FRAuth } from '@forgerock/javascript-sdk';
- import React from 'react';
+ import React, { useEffect, useState } from 'react';

 import Loading from '../utilities/loading';

 export default function Form() {
+ const [step, setStep] = useState(null);

+ useEffect(() => {
+ async function getStep() {
+ try {
+ const initialStep = await FRAuth.start();
+ console.log(initialStep);
+ setStep(initialStep);
+ } catch (err) {
+ console.error(`Error: request for initial step; ${err}`);
+ }
+ }
+ getStep();
+ }, []);
 return <Loading message="Checking your session ..." />;
 }

This code prints the response to starting the journey to the debug console in the browser. This response contains the first step of
the journey and its callbacks . These callbacks are the instructions for what needs to be rendered to the user to collect their
input.

info
We are passing an empty array as the second argument into useEffect . This instructs the useEffect to only run
once after the component mounts.
To learn more, refer to What an Effect with empty dependencies means in the React Developer Documentation.

Note

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 359

https://react.dev/learn/lifecycle-of-reactive-effects#what-an-effect-with-empty-dependencies-means
https://react.dev/learn/lifecycle-of-reactive-effects#what-an-effect-with-empty-dependencies-means

Figure 2. Screenshot of browser console showing first step of the journey and the callbacks returned from the server.

Below is a summary of what you’ll do to get the form to react to the new callback data:

Import the needed form-input components

Create a function to map received callbacks to the appropriate component

Use the components to render the appropriate UI for each callback in the response from the server

First, import the Alert , AppContext , Password , Text , and Unknown components.

reactjs-todo/client/components/journey/form.js

 import { FRAuth } from '@forgerock/javascript-sdk';
 import React, { useEffect, useState } from 'react';

+ import Alert from './alert';
+ import Password from './password';
+ import Text from './text';
+ import Unknown from './unknown';
 import Loading from '../utilities/loading';

@@ collapsed @@

1.

2.

3.

Ping SDK for Auth Journey tutorials Ping SDKs

360 Copyright © 2025 Ping Identity Corporation

Next, within the Form function body, create the function that maps these imported components to their appropriate callback.

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

 export default function Form() {
 const [step, setStep] = useState(null);

@@ collapsed @@

+ function mapCallbacksToComponents(cb, idx) {
+ const name = cb?.payload?.input?.[0].name;
+ switch (cb.getType()) {
+ case 'NameCallback':
+ return <Text callback={cb} inputName={name} key='username' />;
+ case 'PasswordCallback':
+ return <Password callback={cb} inputName={name} key='password' />;
+ default:
+ // If current callback is not supported, render a warning message
+ return <Unknown callback={cb} key={`unknown-${idx}`} />;
+ }
+ }
 return <Loading message="Checking your session ..." />;
 }

Finally, check for the presence of the step.callbacks , and if they exist, map over them with the function from above. Replace
the single return of <Loading message="Checking your session ..." /> with the following:

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

+ if (!step) {
 return <Loading message='Checking your session ...' />;
+ } else if (step.callbacks?.length) {
+ return (
+ <form className='cstm_form'>
+ {step.callbacks.map(mapCallbacksToComponents)}
+ <button className='btn btn-primary w-100' type='submit'>
+ Sign In
+ </button>
+ </form>
+);
+ } else {
+ return <Alert message={step.payload.message} />;
* }
 }

Refresh the page, and you should now have a dynamic form that reacts to the callbacks returned from our initial call to
ForgeRock.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 361

Figure 3. Screenshot of login page with rendered form
Handling the login form submission

Since a form that can’t submit anything isn’t very useful, we’ll now handle the submission of the user input values to ForgeRock.
First, let’s edit the current form element, <form className="cstm_form"> , and add an onSubmit handler with a simple, inline
function.

Ping SDK for Auth Journey tutorials Ping SDKs

362 Copyright © 2025 Ping Identity Corporation

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

- <form className='cstm_form'>
+ <form
+ className="cstm_form"
+ onSubmit={(event) => {
+ event.preventDefault();
+ async function getStep() {
+ try {
+ const nextStep = await FRAuth.next(step);
+ console.log(nextStep);
+ setStep(nextStep);
+ } catch (err) {
+ console.error(`Error: form submission; ${err}`);
+ }
+ }
+ getStep();
+ }}
+ >

Refresh the login page and use the test user to login. You will get a mostly blank login page if the user’s credentials are valid and
the journey completes. You can verify this by going to the Network panel within the developer tools and inspect the last /
authenticate request. It should have a tokenId and successUrl property.

Figure 4. Screenshot of empty login form & network request showing success data

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 363

You may ask, "How did the user’s input values get added to the step object?" Let’s take a look at the component for rendering
the username input. Open up the Text component: components/journey/text.js . Notice how special methods are being used
on the callback object. These are provided as convenience methods by the SDK for getting and setting data.

reactjs-todo/client/components/journey/text.js

@@ collapsed @@

 export default function Text({ callback, inputName }) {
 const [state] = useContext(AppContext);
 const existingValue = callback.getInputValue();

 const textInputLabel = callback.getPrompt();
 function setValue(event) {
 callback.setInputValue(event.target.value);
 }

 return (
 <div className={`cstm_form-floating form-floating mb-3`}>
 <input
 className={`cstm_form-control form-control ${validationClass} bg-transparent ${state.theme.textClass} $
{state.theme.borderClass}`}
 defaultValue={existingValue}
 id={inputName}
 name={inputName}
 onChange={setValue}
 placeholder={textInputLabel}
 />
 <label htmlFor={inputName}>{textInputLabel}</label>
 </div>
);
 }

The two important items to focus on are the callback.getInputValue() and the callback.setInputValue() . The
getInputValue retrieves any existing value that may be provided by ForgeRock, and the setInputValue sets the user’s input on
the callback while they are typing (i.e. onChange). Since the callback is passed from the Form to the components by
"reference" (not by "value"), any mutation of the callback object within the Text (or Password) component is also contained
within the step object in Form .

Each callback type has its own collection of methods for getting and setting data in addition to a base set of generic callback
methods. These methods are added to the callback prototype by the SDK automatically. For more information about these
callback methods, see our API documentation, or the source code in GitHub, for more details.

Now that the form is rendering and submitting, add conditions to the Form component for handling the success and error
response from ForgeRock. This condition handles the success result of the authentication journey.

info
You may think, "That’s not very idiomatic React! Shared, mutable state is bad." And, yes, you are correct, but we are
taking advantage of this to keep everything simple (and this guide from being too long), so I hope you can excuse the
pattern.

Note

Ping SDK for Auth Journey tutorials Ping SDKs

364 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

 if (!step) {
 return <Loading message='Checking your session ...' />;
+ } else if (step.type === 'LoginSuccess') {
+ return <Alert message="Success! You're logged in." type='success' />;
 } else if (step.callbacks?.length) {

@@ collapsed @@

Once you handle the success and error condition, return to the browser and remove all cookies created from any previous logins
. Refresh the page and login with your test user created in the Setup section above. You should see a "Success!" alert message.
Congratulations, you are now able to authenticate users!

Figure 5. Screenshot of login page with success alert

Step 5. Start an OAuth 2.0 flow

At this point, the user is authenticated. The session has been created and a session cookie has been written to the browser. This
is "session-based authentication", and is viable when your system (apps and services) can rely on cookies as the access artifact.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 365

https://developer.chrome.com/docs/devtools/storage/cookies/
https://developer.chrome.com/docs/devtools/storage/cookies/
https://developer.chrome.com/docs/devtools/storage/cookies/

However, there are increasing limitations with the use of cookies. In response to this, and other reasons, it’s common to add a
step to your authentication process; the "OAuth" or "OIDC flow".

The goal of this flow is to attain a separate set of tokens, replacing the need for cookies as the shared access artifact. The two
common tokens are the Access Token and the ID Token. We will focus on the access token in this guide. The specific flow that the
SDK uses to acquire these tokens is called the Authorization Code Flow with PKCE.

To start, import the TokenManager object from the Ping SDK into the same form.js file.

reactjs-todo/client/components/journey/form.js

- import { FRAuth } from '@forgerock/javascript-sdk';
+ import { FRAuth, TokenManager } from '@forgerock/javascript-sdk';

@@ collapsed @@

Only an authenticated user that has a valid session can successfully request OAuth/OIDC tokens. Make sure we make this token
request after we get a 'LoginSuccess' back from the authentication journey. This is an asynchronous call to the server. There
are multiple ways to handle this, but we’ll use the useEffect and useState hooks.

Add a useState to the top of the function body to create a simple boolean flag of the user’s authentication state.

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

 export default function Form() {
 const [step, setStep] = useState(null);
+ const [isAuthenticated, setAuthentication] = useState(false);

@@ collapsed @@

Now, add a new useEffect hook to allow us to work with another asynchronous request. Unlike our first useEffect , this one
will be dependent on the state of isAuthenticated . To do this, add isAuthenticated to the array passed in as the second
argument. This instructs React to run the useEffect function when the value of isAuthenticated is changed.

Ping SDK for Auth Journey tutorials Ping SDKs

366 Copyright © 2025 Ping Identity Corporation

https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

 useEffect(() => {
 async function getStep() {
 try {
 const initialStep = await FRAuth.start();
 setStep(initialStep);
 } catch (err) {
 console.error(`Error: request for initial step; ${err}`);
 }
 }
 getStep();
 }, []);

+ useEffect(() => {
+ async function oauthFlow() {
+ try {
+ const tokens = await TokenManager.getTokens();
+ console.log(tokens);
+ } catch (err) {
+ console.error(`Error: token request; ${err}`);
+ }
+ }
+ if (isAuthenticated) {
+ oauthFlow();
+ }
+ }, [isAuthenticated]);

 @@ collapsed @@

Finally, we need to conditionally set this authentication flag when we have a success response from our authentication journey. In
your form element’s onSubmit handler, add a simple conditional and set the flag to true .

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 367

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

 <form
 className="cstm_form"
 onSubmit={(event) => {
 event.preventDefault();
 async function getStep() {
 try {
 const nextStep = await FRAuth.next(step);
+ if (nextStep.type === 'LoginSuccess') {
+ setAuthentication(true);
+ }
 console.log(nextStep);
 setStep(nextStep);
 } catch (err) {
 console.error(`Error: form submission; ${err}`);
 }
 }
 getStep();
 }}
 >

@@ collapsed @@

Once the changes are made, return to your browser and remove all cookies created from any previous logins. Refresh the page
and verify the login form is rendered. If the success message continues to display, make sure "third-party cookies" are also
removed.

Login with your test user. You should get a success message like you did before, but now check your browser’s console log. You
should see an additional entry of an object that contains your idToken and accessToken . Since the SDK handles storing these
tokens for you, which are in localStorage , you have completed a full login and OAuth/OIDC flow.

Ping SDK for Auth Journey tutorials Ping SDKs

368 Copyright © 2025 Ping Identity Corporation

Figure 1. Screenshot of login page with success alert and console log
Request user information

Now that the user is authenticated and an access token is attained, you can now make your first authenticated request! The SDK
provides a convenience method for calling the /userinfo endpoint, a standard OAuth endpoint for requesting details about the
current user. The data returned from this endpoint correlates with the "scopes" set within the SDK configuration. The scopes
profile and email will allow the inclusion of user’s first and last name as well as their email address.

Within the form.js file, add the UserManager object to our Ping SDK import statement.

reactjs-todo/client/components/journey/form.js

- import { FRAuth, TokenManager } from '@forgerock/javascript-sdk';
+ import { FRAuth, TokenManager, UserManager } from '@forgerock/javascript-sdk';

@@ collapsed @@

The getCurrentUser() method on this new object will request the user’s data and validate the existing access token. After the
TokenManager.getTokens() method call, within the oauthFlow() function from above, add this new method.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 369

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

 try {
 const tokens = await TokenManager.getTokens();
 console.log(tokens);
+ const user = await UserManager.getCurrentUser();
+ console.log(user);

@@ collapsed @@

If the access token is valid, the user information will be logged to the console, just after the tokens. Before we move on from the
form.js file, set a small portion of this state to the global context for application-wide state access. Add the remaining imports
for setting the state and redirecting back to the home page: useContext , AppContext and useNavigate .

reactjs-todo/client/components/journey/form.js

- import React, { useEffect, useState } from 'react';
+ import React, { useContext, useEffect, useState } from 'react';
+ import { useNavigate } from 'react-router-dom';

+ import { AppContext } from '../../global-state';

@@ collapsed @@

At the top of the Form function body, use the useContext() method to get the app’s global state and methods . Call the
useNavigate() method to get the navigation object.

reactjs-todo/client/components/journey/form.js

 export default function Form() {
 const [step, setStep] = useState(null);
 const [isAuthenticated, setAuthentication] = useState(false);
+ const [_, methods] = useContext(AppContext);
+ const navigate = useNavigate();

@@ collapsed @@

After the UserManager.getCurrentUser() call, set the new user information to the global state and redirect to the home page.

Ping SDK for Auth Journey tutorials Ping SDKs

370 Copyright © 2025 Ping Identity Corporation

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

 const user = await UserManager.getCurrentUser();
 console.log(user);

+ methods.setUser(user.name);
+ methods.setEmail(user.email);
+ methods.setAuthentication(true);

+ navigate('/');

@@ collapsed @@

Revisit the browser, clear out all cookies, storage and cache, and log in with you test user. If you landed on the home page and
the logs in the console show tokens and user data, you have successfully used the access token for retrieving use data. Notice
that the home page looks a bit different with an added success alert and message with the user’s full name. This is due to the app
"reacting" to the global state that we set just before the redirection.

Figure 2. Screenshot of home page with successful login and user info

Step 6. Manage access tokens

To ensure your app provides a good user experience, it’s important to have a recognizable, authenticated experience, even if the
user refreshes the page or closes and reopens the browser tab. This makes it clear to the user that they are logged in.

Currently, if you refresh the page, the authenticated experience is lost. Let’s fix that!

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 371

Because the SDK stores the tokens in localStorage, you can use their presence as a hint for their authentication status without
requiring a network request. This allows for quickly rendering the appropriate navigational elements and content to the screen.

To do this, add the TokenStorage.get method to the index.js file as it will provide what we need to rehydrate the user’s
authentication status. First, import TokenStorage into the file. Use the TokenStorage.get() method within the
initAndHydrate function. Second, add these values to the useGlobalStateMgmt function call.

reactjs-todo/client/index.js

- import { Config } from '@forgerock/javascript-sdk';
+ import { Config, TokenStorage } from '@forgerock/javascript-sdk';

 (async function initAndHydrate() {
 let isAuthenticated;
+ try {
+ isAuthenticated = !!(await TokenStorage.get());
+ } catch (err) {
+ console.error(`Error: token retrieval for hydration; ${err}`);
+ }

@@ collapsed @@

 function Init() {
 const stateMgmt = useGlobalStateMgmt({
 email,
+ isAuthenticated,
 prefersDarkTheme,
 username,
 });

@@ collapsed @@

With a global state API available throughout the app, different components can pull this state in and use it to conditionally render
one set of UI elements versus another. Navigation elements and the displaying of profile data are good examples of such
conditional rendering. Examples of this can be found by reviewing components/layout/header.js and views/home.js .

Validating the access token

The presence of the access token can be a good hint for authentication, but it doesn’t mean the token is actually valid. Tokens can
expire or be revoked on the server-side.

You can ensure the token is still valid with the use of getCurrentUser() method from earlier. This is optional, depending on your
product requirements. If needed, you can protect routes with a token validation check before rendering portions of your
application. This can prevent a potentially jarring experience of partial rendering UI that may be ejected due to an invalid token.

To validate a token for protecting a route, open the router.js file, import the ProtectedRoute module and replace the regular
<Route path="todos"> with the new ProtectedRoute wrapper.

Ping SDK for Auth Journey tutorials Ping SDKs

372 Copyright © 2025 Ping Identity Corporation

reactjs-todo/client/router.js

@@ collapsed @@

 import Register from './views/register';
+ import { ProtectedRoute } from './utilities/route';
 import Todos from './views/todos';

@@ collapsed @@

<Route
 path="todos"
 element={
- <>
+ <ProtectedRoute>
 <Header />
 <Todos />
 <Footer />
- </>
+ </ProtectedRoute>
 }
/>

@@ collapsed @@

Let’s take a look at what this wrapper does. Open utilities/route.js file and focus just on the validateAccessToken function
within the useEffect function. Currently, it’s just checking for the existence of the tokens with TokenStorage.get , which may be
fine for some situations. We can optionally call the UserManager.getCurrentUser() method to ensure the stored tokens are still
valid.

To do this, import UserManager into the file, and then replace TokenStorage.get with UserManager.getCurrentUser .

reactjs-todo/client/utilities/route.js

 import React, { useContext, useEffect, useState } from 'react';
 import { Route, Redirect } from 'react-router-dom';
- import { TokenStorage } from '@forgerock/javascript-sdk';
+ import { UserManager } from '@forgerock/javascript-sdk';

@@ collapsed @@

 useEffect(() => {
 async function validateAccessToken() {
 if (auth) {
 try {
- await TokenStorage.get();
+ await UserManager.getCurrentUser();
 setValid('valid');
 } catch (err) {

@@ collapsed @@

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 373

In the code above, we are reusing the getCurrentUser() method to validate the token. If it succeeds, we can be sure our token
is valid and call setValid to 'valid' . If it fails, we know it is not valid and call setValid to 'invalid' . We set that outcome
with our setValid() state method and the routing will know exactly where to redirect the user.

Revisit the browser and refresh the page. Navigate to the todos page. You will notice a quick spinner and text communicating that
the app is "verifying access". Once the server responds, the Todos page renders. As you can see, the consequence of this is the
protected route now has to wait for the server to respond, but the user’s access is being verified against the server.

At this point, that verification fails, as we aren’t including the access token in the request.

Request protected resources with an access token

Once the Todos page renders, notice how the todo collection has a persistent spinner to indicate the process of requesting todos.
This is due to the fetch request not having an authorization header, so the request does not succeed.

Figure 1. Screenshot of to-dos page with persistent spinner

To make resource requests to a protected endpoint use the HttpClient module. This module provides a simple wrapper around
the native fetch method of the browser.

When you call the HttpClient.request() method the Ping SDK retrieves the user’s access token and attaches it to the request
in an authorization header as a Bearer token.

When the API backend server receives the request with the authorization header it calls your PingOne Advanced Identity Cloud
tenant or PingAM server to validate the enclosed access token, and grants access to the route if successful.

Ping SDK for Auth Journey tutorials Ping SDKs

374 Copyright © 2025 Ping Identity Corporation

To attach the user’s access token to outgoing requests, open utilities/request.js and import the HttpClient from the Ping
SDK. Then, replace the native fetch method with the HttpClient.request() method:

reactjs-todo/client/utilities/request.js

+ import { HttpClient } from '@forgerock/javascript-sdk';
 import { API_URL, DEBUGGER } from '../constants';

 export default async function apiRequest(resource, method, data) {
 let json;
 try {
- const response = await fetch(`${API_URL}/${resource}`, {
+ const response = await HttpClient.request({
+ url: `${API_URL}/${resource}`,
+ init: {
 body: data && JSON.stringify(data),
 headers: {
 'Content-Type': 'application/json',
 },
 method: method,
+ },
 });

@@ collapsed @@

The init object in the above maps directly to the init options object seen in the official Request documentation in the
Mozilla Web Docs.

The interface of the response from the request also maps directly to the official Response object seen in the Mozilla Web Doc.

At this point, the user can log in, request access tokens, and access the page of the protected resources (the "todos").

Now, revisit the browser and clear out all cookies, storage and cache. Keeping the developer tools open and on the network tab,
log in with you test user. Once you have been redirected to the home page, do the following:

Click on the "Todos" item in the nav; a lot of network activity will be listed

Find the network call to the /todos endpoint (http://localhost:9443/todos)

Click on that network request and view the request headers

Notice the authorization header with the bearer token; that’s the HttpClient in action

1.

2.

3.

4.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 375

https://developer.mozilla.org/en-US/docs/Web/API/Request/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request/Request
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Response

Figure 2. Screenshot of successful request for to-dos with Network panel open

Step 7. Handle logout requests

Of course, you can’t have a protected app without providing the ability to log out. Luckily, this is a fairly easy task.

Open up the views/logout.js file and import the following:

FRUser from the Ping SDK

useEffect and useContext from React

useNavigate from React Router

AppContext from the global state module.

1.

2.

3.

4.

Ping SDK for Auth Journey tutorials Ping SDKs

376 Copyright © 2025 Ping Identity Corporation

reactjs-todo/client/views/logout.js

+ import { FRUser } from '@forgerock/javascript-sdk';
- import React from 'react';
+ import React, { useContext, useEffect } from 'react';
+ import { useNavigate } from 'react-router-dom';

+ import { AppContext } from '../global-state';

@@ collapsed @@

Since logging out requires a network request, we need to wrap it in a useEffect and pass in a callback function with the
following functionality:

reactjs-todo/client/views/logout.js

@@ collapsed @@

 export default function Logout() {
+ const [_, { setAuthentication, setEmail, setUser }] = useContext(AppContext);
+ const navigate = useNavigate();

+ useEffect(() => {
+ async function logout() {
+ try {
+ await FRUser.logout();

+ setAuthentication(false);
+ setEmail('');
+ setUser('');

+ navigate('/');
+ } catch (err) {
+ console.error(`Error: logout; ${err}`);
+ }
+ }
+ logout();
+ }, []);

 return <Loading classes="pt-5" message="You're being logged out ..." />;
 }

Since we only want to call this method once, after the component mounts, we will pass in an empty array as a second argument
for useEffect() . After FRUser.logout() completes, we just empty or falsify the global state to clean up and redirect back to the
home page.

You have now completed the coding part of this tutorial, and can proceed to the final step, Test the app.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 377

Step 8. Test the app

Once all the previous steps are complete you can run the app end-to-end to see the flow.

In your browser, empty the local storage and cache.

Ensure that the client and API apps are running.

You can run both apps with a single command:

npm run start:reactjs-todo

In your browser, visit the home page of the client app at https://localhost:8443.

Figure 1. Screenshot of the home page

Click Sign In, and enter the credentials of the demo user you created earlier.

The app displays a welcome message, and outputs the data retrieved from the /userinfo OAuth 2.0 endpoint.

1.

2.

3.

info
You may need to dismiss warning from your browser about the self-signed certificate the client app uses.

Note

4.

Ping SDK for Auth Journey tutorials Ping SDKs

378 Copyright © 2025 Ping Identity Corporation

Figure 2. Screenshot of a user signed in to the home page, with userinfo data in the console.

Click Todos.

The app opens the protected /todos route and inserts the access token as a bearer token in the authorization header. If
the access token is valid the app displays an empty list of todo items.

5.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 379

Figure 3. Screenshot of the todo page and console output showing the bearer token.

Click the user icon, and then click Sign out.6.

Ping SDK for Auth Journey tutorials Ping SDKs

380 Copyright © 2025 Ping Identity Corporation

Figure 4. Screenshot of logout page with spinner

The app revokes the access token and removes the session cookies from storage, before returning the user to the home
page.

Congratulations, you just built a protected app with ReactJS.

Authentication journey tutorial for an iOS React Native app

This tutorial covers the basics of developing a protected mobile app with React Native. You will develop the iOS bridge code
along with a minimal React UI to authenticate a user.

Ping does not provide a React Native version of the Ping SDK. Instead we present this how-to as a guide to basic development of
"bridge code" for connecting the Ping SDK for iOS to the React Native layer.

This guide covers how to implement the following application features using the Ping SDK for iOS and Ping SDK for JavaScript:

Authentication through a simple journey/tree.

Requesting OAuth/OIDC tokens.

Requesting user information.

Logging a user out.

1.

2.

3.

4.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 381

Figure 1. The to-do sample app

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need to configure an OAuth 2.0 client application, as well as an authentication journey for the app to
navigate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Ping SDK for Auth Journey tutorials Ping SDKs

382 Copyright © 2025 Ping Identity Corporation

Step 2. Configure the projects

In this step you install the dependencies the projects require, and configure the connection properties.

Start step 2 

Step 3. Configure connection properties

In this step, you configure the samples to connect to the authentication tree/journey and OAuth 2.0 client you created
when setting up your server configuration.

Start step 3 

Step 4. Build and run the project

Build and run the apps, and learn about Hot Module Reloading.

Start step 4 

Step 5. Implement the iOS bridge code

In this step you implement the bridge code and add methods for starting the Ping SDK, logging a user in, stepping through
a journey, and finally logging a user out.

Start step 5 

Step 6. Implement the UI in React Native

In this final step you implement the user interface for logging in, and code for submitting the forms. You will also handle
returning to the list view, requesting user info, and handling logout triggers.

This is also the moment you can try out the fully functioning app.

Start step 6 

Before you begin

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 383

The tutorial also requires a configured server.

Compatibility

iOS

This sample app is compatible with iOS 12 and later.

Prerequisites

Xcode

You can download the latest version for free from https://developer.apple.com/xcode/.

Node.js

This tutorial requires Node.js 14 or higher and npm 7 or higher

You can check your version with node -v and npm -v .

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

PingOne Advanced Identity Cloud
PingAM

1.

2.

3.

4.

◦

◦

◦

Ping SDK for Auth Journey tutorials Ping SDKs

384 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 1. Example username and password authentication journey

◦

◦

5.

1.

2.

3.

◦

◦

◦

◦

4.

5.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 385

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

https://com.example.reactnative.todo/callback

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

6.

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

Ping SDK for Auth Journey tutorials Ping SDKs

386 Copyright © 2025 Ping Identity Corporation

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

PingAM

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

11.

1.

2.

3.

4.

5.

6.

1.

2.

3.

◦

◦

◦

4.

1.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 387

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 2. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

2.

3.

◦

◦

◦

◦

4.

5.

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

7.

1.

2.

3.

4.

5.

Ping SDK for Auth Journey tutorials Ping SDKs

388 Copyright © 2025 Ping Identity Corporation

https://com.example.reactnative.todo/callback

In Scopes, enter the following values:

openid profile email address

Click Create.

PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.

On the Core tab:

In Client type, select Public .

Disable Allow wildcard ports in redirect URIs.

Click Save Changes.

On the Advanced tab:

In Grant Types, enter the following values:

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

emergency_home
Also add any other domains where you will be hosting SDK applications.

Important

6.

7.

8.

1.

2.

3.

9.

1.

2.

3.

10.

1.

2.

3.

4.

5.

6.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 389

Step 1. Download the samples

To start this tutorial, you need to download the React Native sample app repo, which contains the projects you will use.

In a web browser, navigate to the React Native Sample App repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/forgerock-react-native-sample.git

The result of these steps is a local folder named forgerock-react-native-sample .

Step 2. Configure the projects

In this step you install the dependencies the projects require.

This React Native app requires two types of dependencies:

JavaScript and its Node package modules

Swift dependencies, using CocoaPods.

First, let’s install the JavaScript dependencies. Within the project directory:
forgerock-react-native-sample/reactnative-todo/ (file and directory references are from this location), use the following
command:

npm install

When the command finishes, cd into the ios directory and install the needed CocoaPods dependencies.

cd ios
pod install

When done, you can return to the project directory.

1.

2.

1.

2.

1.

2.

1.

2.

Ping SDK for Auth Journey tutorials Ping SDKs

390 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/forgerock-react-native-sample
https://github.com/ForgeRock/forgerock-react-native-sample

cd ..

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the authentication tree/journey you created when setting up your server
configuration.

Using the server settings from earlier, create a .env.js file within the project, using the .env.js.template as a source. This can
be found the root folder of the project.

Add your relevant values to configure all the important server settings in the project. Not all variables will need values at this time.

You can list the file in the Terminal by doing ls -a , and edit it using a text editor like nano or vi .

Example .env.js file

/**
 * Avoid trailing slashes in the URL string values below
 */
const AM_URL = 'https://openam-forgerock-sdks.forgeblocks.com/am'; // Required; enter _your_ PingAM URL
const API_PORT = 8080; // Required; default port is 8080

const API_BASE_URL = 'http://localhost'; // Required; default domain is http://localhost

const DEBUGGER_OFF = true;
const REALM_PATH = 'alpha'; // Required
const REST_OAUTH_CLIENT = 'sdkPublicClient';
const REST_OAUTH_SECRET = '';

Descriptions of relevant values:

AM_URL

The URL that references PingAM itself (for PingOne Advanced Identity Cloud, the URL is likely https://<tenant-
name>.forgeblocks.com/am).

API_PORT and API_BASE_URL

These just need to be "truthy" (not 0 or an empty string) right now to avoid errors, and we will use them in a future part of
this series.

DEBUGGER_OFF

When true , this disables the debugger statements in the JavaScript layer. These debugger statements are for learning
the integration points at runtime in your browser. When the browser’s developer tools are open, the app pauses at each
integration point. Code comments above each integration point explain its use.

REALM_PATH

The realm of your server (likely root , alpha , or bravo).

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 391

http://localhost
http://localhost

REST_OAUTH_CLIENT and REST_OAUTH_SECRET

We will use these values in a future part of this series, so any string value will do.

Step 4. Build and run the project

Now that everything is set up, build and run the to-do app project.

Open your Finder application and find the following file ios/reactnativetodo.xcworkspace .

Double click this file to open and load the project within Xcode.

Once Xcode is ready, select iPhone 11 or higher as the target for the device simulator on which to run the app.

Now, click the build/play button to build and run this application in the target simulator.

With everything up and running, you will need to rebuild the project with Xcode when you modify the bridge code (Swift files). But,
when modifying the React Native code, it will use "hot module reloading" to automatically reflect the changes in the app without
having to manually rebuild the project.

Troubleshooting

Make sure libFRAuth.a is added to your Target’s Frameworks, Libraries, and Embedded Content under the General
tab.

Make sure the Metro server is running; npx react-native start if you want to run it manually.

Bridge code has been altered, so be aware of API name changes.

If you get the error, [!] CocoaPods could not find compatible versions for pod "FRAuth" , run pod repo update
then pod install .

Xcode, iOS Simulator and Safari dev tools

We recommend the use of iPhone 11 or higher as the target for the iOS Simulator. When you first run the build command in
Xcode (clicking the "play" button), it takes a while for the app to build, the OS to load, and app to launch within the Simulator.
Once the app is launched, rebuilding it is much faster if the changes are not automatically "hot reloaded" when made in the React
layer.

1.

2.

3.

4.

1.

2.

3.

4.

Ping SDK for Auth Journey tutorials Ping SDKs

392 Copyright © 2025 Ping Identity Corporation

Figure 1. To-do app home screen

Once the app is built and running, you will have access to all the logs within Xcode’s output console. Both the native and
JavaScript logs display here. Because of this, there’s quite a lot of output, so you may want to use it only when the Safari console
does not provide enough information for debugging purposes.

info
Only the home screen will render successfully at this moment. If you click on the Sign In button, it won’t be fully
functional. This is intended as you will develop this functionality throughout this tutorial.

Note

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 393

Figure 2. Xcode log output

For additional tooling, click "Device" within the top menu, and then select "Shake". This triggers the React Native dev tools,
allowing you to reload the app, inspect the UI, as well as other actions.

warning
Due to a particular confusing bug in React Native, we do not recommend using the Chrome debugger, but
recommend using Safari for debugging. To use Safari for debugging the React code, follow the instructions found in
the React Native docs.

Warning

Ping SDK for Auth Journey tutorials Ping SDKs

394 Copyright © 2025 Ping Identity Corporation

https://github.com/facebook/react-native/issues/28531
https://github.com/facebook/react-native/issues/28531
https://reactnative.dev/docs/debugging#safari-developer-tools
https://reactnative.dev/docs/debugging#safari-developer-tools
https://reactnative.dev/docs/debugging#safari-developer-tools

Figure 3. Safari dev tools

Tips if the home screen doesn’t render

Restart the app (in Xcode) and Metro (in terminal).

Didn’t work? Using Xcode, clean the build folder and rebuild/rerun the app.

If that doesn’t work, remove the following from the reactnative-todo directory: node_modules , package-lock.json ,
ios/.Pods , ios/Podfile.lock , and then reinstall dependencies with npm i and within the ios/ directory
pod install .

If you’re still having issues, within the simulator, click the Home button and long press the React Todo application
to .remove it. Then, restart from the project Xcode.

You can also use Device > Erase All Content and Settings if the problem persists.

Step 5. Implement the iOS bridge code

Review the files that allow for the "bridging" between the React Native project and the native Ping SDK.

1.

2.

3.

4.

5.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 395

Within Xcode, navigate to the forgerock-react-native-sample/reactnative-todo/ios directory, and you will see a few
important files:

reactnativetodo-Bridging-Header.h : Header file that exposes the React Native bridging module and the FRAuth
module into the Swift context.

reactnativetodo/FRAuthSampleBridge.m : The module file that defines the exported interfaces of our bridging code.

reactnativetodo/FRAuthSampleBridge.swift : The main Swift bridging code that provides the callable methods for the
React Native layer.

reactnativetodo/FRAuthSampleStructs.swift : Provides the structs for the Swift bridging code.

reactnativetodo/FRAuthSampleHelpers.swift : Provides the extensions to often used objects within the bridge code.

reactnativetodo/FRAuthConfig.plist : The .plist file that configures the Ping SDK for iOS to the appropriate
authorization server.

We provide the header file as-is. The file’s creation, naming and use requires very specific conventions that are outside the scope
of this tutorial. You will not need to modify it.

Configure your .plist file

Within Xcode’s directory/file list section (aka Project Navigator), complete the following:

Find FRAuthConfig.plist file within the ios/reactnativetodos directory.

Add the name of your PingOne Advanced Identity Cloud or PingAM cookie.

Add the OAuth client you created from above.

Add your authorization server URLs.

Add the login tree you created above.

A hypothetical example (your values may vary):

•

•

•

•

•

•

info
The remainder of the files within the workspace are automatically generated when you create a React Native project
with the CLI command, so you can ignore them.

Note

1.

2.

3.

4.

5.

Ping SDK for Auth Journey tutorials Ping SDKs

396 Copyright © 2025 Ping Identity Corporation

 <dict>
 <key>forgerock_cookie_name</key>
- <string></string>
+ <string>iPlanetDirectoryPro</string>
 <key>forgerock_enable_cookie</key>
 <true/>
 <key>forgerock_oauth_client_id</key>
 <string>ReactNativeOAuthClient</string>
 <key>forgerock_oauth_redirect_uri</key>
 <string>https://com.example.reactnative.todo/callback</string>
 <key>forgerock_oauth_scope</key>
 <string>openid profile email</string>
 <key>forgerock_oauth_url</key>
- <string></string>
+ <string>https://auth.forgerock.com/am</string>
 <key>forgerock_oauth_threshold</key>
 <string>60</string>
 <key>forgerock_url</key>
- <string></string>
+ <string>https://auth.forgerock.com/am</string>
 <key>forgerock_realm</key>
- <string></string>
+ <string>alpha</string>
 <key>forgerock_timeout</key>
 <string>60</string>
 <key>forgerock_keychain_access_group</key>
 <string>org.reactjs.native.example.reactnativetodo</string>
 <key>forgerock_auth_service_name</key>
- <string></string>
+ <string>UsernamePassword</string>
 <key>forgerock_registration_service_name</key>
- <string></string>
+ <string>Registration</string>
</dict>

Descriptions of relevant values:

forgerock_cookie_name : If you have PingOne Advanced Identity Cloud, you can find this random string value under the
Tenant Settings found in the top-right dropdown in the admin UI. If you have your own installation of PingAM, this is often
iPlanetDirectoryPro .

forgerock_url & forgerock_oauth_url : The URL of PingAM within your server installation.

forgerock_realm : The realm of your server (likely root , alpha or bravo).

forgerock_auth_service_name : This is the journey/tree that you use for login.

forgerock_registration_service_name : This is the journey/tree that you use for registration, but it will not be used until
a future part of this tutorial series.

Write the start() method

Staying within the reactnativetodo directory, find the FRAuthSampleBridge file and open it. We have some of the files already
stubbed out and the dependencies are already installed. All you need to do is write the functionality.

For the SDK to initialize with the FRAuth.plist configuration from Step 2, write the start() function as follows:

•

•

•

•

•

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 397

 import Foundation
 import FRAuth
 import FRCore
 import UIKit

 @objc(FRAuthSampleBridge)
 public class FRAuthSampleBridge: NSObject {
 var currentNode: Node?

 @objc static func requiresMainQueueSetup() -> Bool {
 return false
 }

+ @objc func start(
+ _ resolve: @escaping RCTPromiseResolveBlock,
+ rejecter reject: @escaping RCTPromiseRejectBlock) {

+ /**
+ * Set log level to all
+ */
+ FRLog.setLogLevel([.all])
+
+ do {
+ try FRAuth.start()
+ let initMessage = "SDK is initialized"
+ FRLog.i(initMessage)
+ resolve(initMessage)
+ } catch {
+ FRLog.e(error.localizedDescription)
+ reject("Error", "SDK Failed to initialize", error)
+ }
+ }

 /**
 * Method for calling the `getUserInfo` to retrieve the user information from
 * the OIDC endpoint
 */
 @objc func getUserInfo(
 _ resolve: @escaping RCTPromiseResolveBlock,
 rejecter reject: @escaping RCTPromiseRejectBlock) {

@@ collapsed @@

The start() function above calls the Ping SDK for iOS’s start() method on the FRAuth class. There’s a bit more that may be
required within this function for a production app. We’ll get more into this in a separate part of this series, but for now, let’s keep
this simple.

Write the login() method

Once the start() method is called and it has initialized, the SDK is now ready to handle user requests. Let’s start with login() .

Just underneath the start() method we wrote above, add the login() method.

Ping SDK for Auth Journey tutorials Ping SDKs

398 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@

 @objc func start(
 _ resolve: @escaping RCTPromiseResolveBlock,
 rejecter reject: @escaping RCTPromiseRejectBlock) {

 /**
 * Set log level according to all
 */
 FRLog.setLogLevel([.all])

 do {
 try FRAuth.start()
 let initMessage = "SDK is initialized"
 FRLog.i(initMessage)
 resolve(initMessage)
 } catch {
 FRLog.e(error.localizedDescription)
 reject("Error", "SDK Failed to initialize", error)
 }
 }

+ @objc func login(
+ _ resolve: @escaping RCTPromiseResolveBlock,
+ rejecter reject: @escaping RCTPromiseRejectBlock) {
+
+ FRUser.login { (user, node, error) in
+ self.handleNode(user, node, error, resolve: resolve, rejecter: reject)
+ }
+ }

@@ collapsed @@

This login() function initializes the journey/tree specified for authentication. You call this method without arguments as it does
not login the user. This initial call to the server will return the first set of callbacks that represents the first node in your journeyt/
tree to collect user data.

Also, notice that we have a special "handler" function within the callback of FRUser.login() . This handleNode() method
serializes the node object that the Ping SDK for iOS returns in a JSON string. Data passed between the "native" layer and the
React layer is limited to strings. This method can be written in many ways and should be written in whatever way is best for your
application. However, a unique use of the Ping SDK for JavaScript to convert this basic JSON of data into a decorated object for
better ergonomics is used in this tutorial.

Write the next() method

To finalize the functionality needed to complete user authentication, we need a way to iteratively call next until the tree
completes successfully or fails. To do this, continue in the bridge file, and add a private method called handleNode() .

First, we will write the decoding of the JSON string and prepare the node for submission.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 399

@@ collapsed @@

 @objc func login(
 _ resolve: @escaping RCTPromiseResolveBlock,
 rejecter reject: @escaping RCTPromiseRejectBlock) {

 FRUser.login { (user, node, error) in
 self.handleNode(user, node, error, resolve: resolve, rejecter: reject)
 }
 }

+ @objc func next(
+ _ response: String,
+ resolve: @escaping RCTPromiseResolveBlock,
+ rejecter reject: @escaping RCTPromiseRejectBlock) {
+
+ let decoder = JSONDecoder()
+ let jsonData = Data(response.utf8)
+ if let node = self.currentNode {
+ var responseObject: Response?
+ do {
+ responseObject = try decoder.decode(Response.self, from: jsonData)
+ } catch {
+ FRLog.e(String(describing: error))
+ reject("Error", "UnknownError", error)
+ }
+
+ let callbacksArray = responseObject!.callbacks ?? []
+
+ for (outerIndex, nodeCallback) in node.callbacks.enumerated() {
+ if let thisCallback = nodeCallback as? SingleValueCallback {
+ for (innerIndex, rawCallback) in callbacksArray.enumerated() {
+ if let inputsArray = rawCallback.input, outerIndex == innerIndex,
+ let value = inputsArray.first?.value {
+
+ thisCallback.setValue(value.value as! String)
+ }
+ }
+ }
+ }
+ } else {
+ reject("Error", "UnknownError", nil)
+ }
+ }

@@ collapsed @@

Now that you’ve prepared the data for submission, introduce the node.next call from the Ping SDK for iOS. Then, handle the
subsequent node returned from the next call, or process the success or failure representing the completion of the journey/tree.

Ping SDK for Auth Journey tutorials Ping SDKs

400 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@

 for (outerIndex, nodeCallback) in node.callbacks.enumerated() {
 if let thisCallback = nodeCallback as? SingleValueCallback {
 for (innerIndex, rawCallback) in callbacksArray.enumerated() {
 if let inputsArray = rawCallback.input, outerIndex == innerIndex,
 let value = inputsArray.first?.value {

 thisCallback.setValue(value)
 }
 }
 }
 }

+ node.next(completion: { (user: FRUser?, node, error) in
+ if let node = node {
+ self.handleNode(user, node, error, resolve: resolve, rejecter: reject)
+ } else {
+ if let error = error {
+ reject("Error", "LoginFailure", error)
+ return
+ }
+
+ let encoder = JSONEncoder()
+ encoder.outputFormatting = .prettyPrinted
+ if let user = user,
+ let token = user.token,
+ let data = try? encoder.encode(token),
+ let accessInfo = String(data: data, encoding: .utf8) {
+
+ resolve(["type": "LoginSuccess", "accessInfo": accessInfo])
+ } else {
+ resolve(["type": "LoginSuccess", "accessInfo": ""])
+ }
+ }
+ })
 } else {
 reject("Error", "UnknownError", nil)
 }
 }

@@ collapsed @@

The above code handles a limited number of callback types. Handling full authentication and registration journeys/trees requires
additional callback handling. To keep this tutorial simple, we’ll focus just on SingleValueCallback type.

Write the logout() bridge method

Finally, add the following lines of code to enable logout for the user:

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 401

@@ collapsed @@

 } else {
 reject("Error", "UnknownError", nil)
 }

+ @objc func logout() {
+ FRUser.currentUser?.logout()
+ }
 }

@@ collapsed @@

Step 6. Implement the UI in React Native

Let’s review how the application renders the home view:

index.js > src/index.js > src/router.js > src/screens/home.js

Open up the second file in the above sequence, the src/index.js file, and write the following:

Import useEffect from the React library.

Import NativeModules from the react-native package.

Pull FRAuthSampleBridge from the NativeModules object.

Write an async function within the useEffect callback to call the SDK start() method.

1.

2.

3.

4.

Ping SDK for Auth Journey tutorials Ping SDKs

402 Copyright © 2025 Ping Identity Corporation

- import React from 'react';
+ import React, { useEffect } from 'react';
+ import { NativeModules } from 'react-native';
 import { SafeAreaProvider } from 'react-native-safe-area-context';

 import Theme from './theme/index';
 import { AppContext, useGlobalStateMgmt } from './global-state';
 import Router from './router';

+ const { FRAuthSampleBridge } = NativeModules;

 export default function App() {
 const stateMgmt = useGlobalStateMgmt({});

+ useEffect(() => {
+ async function start() {
+ await FRAuthSampleBridge.start();
+ }
+ start();
+ }, []);

 return (
 <Theme>
 <AppContext.Provider value={stateMgmt}>
 <SafeAreaProvider>
 <Router />
 </SafeAreaProvider>
 </AppContext.Provider>
 </Theme>
);
 }

FRAuthSampleBridge is the JavaScript representation of the Swift bridge code we developed earlier. Any public methods added
to the Swift class within the bridge code are available in the FRAuthSampleBridge object.

Build the login view

Navigate to the app’s login view within the Simulator. You should see a "loading" spinner and a message that’s persistent, since
the app doesn’t have the data needed to render the form. To ensure the correct form is rendered, the initial data needs to be
retrieved from the server. That will be the first task.

info
It’s important to initialize the SDK at a root level. Call this initialization step, so it resolves before any other native SDK
methods can be used.

Note

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 403

Figure 1. Login screen with spinner

Since most of the action is taking place in src/components/journey/form.js , open it and add the following:

Import FRStep from the @forgerock/javascript-sdk for improved ergonomics for handling callbacks.

Import NativeModules from the react-native package.

Pull FRAuthSampleBridge from the NativeModules object.

+ import { FRStep } from '@forgerock/javascript-sdk';
 import React from 'react';
+ import { NativeModules } from 'react-native';

 import Loading from '../utilities/loading';

+ const { FRAuthSampleBridge } = NativeModules;

@@ collapsed @@

To develop the login functionality, we first need to use the login() method from the bridge code to get the first set of callbacks,
and then render the form appropriately. This login() method is an asynchronous method, so import a few additional packages
from React to encapsulate this "side effect". Let’s get started!

1.

2.

3.

Ping SDK for Auth Journey tutorials Ping SDKs

404 Copyright © 2025 Ping Identity Corporation

Import two new modules from React: useState and useEffect . The useState () method is for managing the data received from
the server, and the useEffect is for the FRAuthSampleBridge.login() method’s asynchronous, network request.

Compose the data gathering process using the following:

Import useEffect from the React library.

Write the useEffect function inside the component function.

Write an async function within the useEffect for calling login .

Write an async logout function to ensure user if fully logged out before attempting to login .

Call FRAuthSampleBridge.login() to initiate the call to the login journey/tree.

When the login() call returns with the data, parse the JSON string.

Assign that data to our component state via the setState() method.

Lastly, call this new method to execute this process.

 import { FRStep } from '@forgerock/javascript-sdk';
- import React from 'react';
+ import React, { useEffect, useState } from 'react';
 import { NativeModules } from 'react-native';

 import Loading from '../utilities/loading';

 const { FRAuthSampleBridge } = NativeModules;

 export default function Form() {
+ const [step, setStep] = useState(null);
+ console.log(step);
+
+ useEffect(() => {
+ async function getStep() {
+ try {
+ await FRAuthSampleBridge.logout();
+ const dataString = await FRAuthSampleBridge.login();
+ const data = JSON.parse(dataString);
+ const initialStep = new FRStep(data);
+ setStep(initialStep);
+ } catch (err) {
+ setStep({
+ type: 'LoginFailure',
+ message: 'Application state has an error.',
+ });
+ }
+ }
+ getStep();
+ }, []);

 return <Loading message="Checking your session ..." />;
 }

1.

2.

3.

4.

5.

6.

7.

8.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 405

The above code will result in two logs to your console:

null

An object with a few properties.

The property to focus on is the callbacks property. This property contains the instructions for what needs to be rendered to the
user for input collection.

Import the components from NativeBase as well as the custom, local components within this journey/ directory:

 import { FRStep } from '@forgerock/javascript-sdk';
+ import { Box, Button, FormControl, ScrollView } from 'native-base';
 import React, { useEffect, useState } from 'react';
 import { NativeModules } from 'react-native';

 import Loading from '../utilities/loading';
+ import Alert from '../utilities/alert';
+ import Password from './password';
+ import Text from './text';
+ import Unknown from './unknown';

@@ collapsed @@

Now, within the Form function body, create the function that maps these imported components to their appropriate callbacks.

lightbulb_2
We are passing an empty array as the second argument into useEffect. This instructs the useEffect to only run once
after the component mounts. This is functionally is equivalent to a class component using componentDidMount to run
an asynchronous method after the component mounts.

Tip

1.

2.

Ping SDK for Auth Journey tutorials Ping SDKs

406 Copyright © 2025 Ping Identity Corporation

https://reactjs.org/docs/react-component.html#componentdidmount
https://reactjs.org/docs/react-component.html#componentdidmount
https://reactjs.org/docs/react-component.html#componentdidmount
https://reactjs.org/docs/react-component.html#componentdidmount

@@ collapsed @@

 export default function Form() {
 const [step, setStep] = useState(null);
 console.log(step);

@@ collapsed @@

+ function mapCallbacksToComponents(cb, idx) {
+ const name = cb?.payload?.input?.[0].name;
+ switch (cb.getType()) {
+ case 'NameCallback':
+ return <Text callback={cb} inputName={name} key="username" />;
+ case 'PasswordCallback':
+ return <Password callback={cb} inputName={name} key="password" />;
+ default:
+ // If current callback is not supported, render a warning message
+ return <Unknown callback={cb} key={`unknown-${idx}`} />;
+ }
+ }

 return <Loading message="Checking your session ..." />;
 }

Finally, return the appropriate component for the following states:

If there is no step data, render the Loading component to indicate the request is still processing.

If there is step data, and it is of type 'Step' , then map over step.callbacks with the function from above.

If there is step data, but the type is 'LoginSuccess' or 'LoginFailure' , render an alert.

@@ collapsed @@

+ if (!step) {
 return <Loading message='Checking your session ...' />;
+ } else if (step.type === 'Step') {
+ return (
+ <ScrollView>
+ <Box safeArea flex={1} p={2} w="90%" mx="auto">
+ <FormControl>
+ {step.callbacks?.map(mapCallbacksToComponents)}
+ <Button>Sign In</Button>
+ </FormControl>
+ </Box>
+ </ScrollView>
+);
+ } else {
+ // Handle success or failure of the journey/tree
+ return (
+ <Box safeArea flex={1} p={2} w="90%" mx="auto">
+ <Alert message={step.message} type={step.type} />
+ </Box>
+);
+ }

•

•

•

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 407

Refresh the page, and you should now have a dynamic form that reacts to the callbacks returned from our initial call to
ForgeRock.

Figure 2. Login screen form
Handle the login form submission

Since a form that can’t submit anything isn’t very useful, we’ll now handle the submission of the user input values to ForgeRock.
First, add a second useState to track whether the user is authenticated or not, and then edit the current Button element,
adding an onPress handler with a simple, inline function. This function should do the following:

Submit the modified step data to the server with the FRAuthSampleBridge.next() method.

Test if the response property type has the value of 'LoginSuccess' .

If successful, parse the response JSON.

Call setStep () with the new object parsed from the JSON (this is mostly just for logging the step to the console).

Call setAuthentication() to true, which is a global state method that triggers the app to react (pun intended!) to the new
user state.

Handle errors with a generic failure message.

1.

2.

3.

4.

5.

6.

Ping SDK for Auth Journey tutorials Ping SDKs

408 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@

 export default function Form() {
 const [step, setStep] = useState(null);
+ const [isAuthenticated, setAuthentication] = useState(false);
 console.log(step);

@@ collapsed @@

 return (
 <ScrollView>
 <Box safeArea flex={1} p={2} w="90%" mx="auto">
 <FormControl>
 {step.callbacks?.map(mapCallbacksToComponents)}
- <Button>Sign In</Button>
+ <Button
+ onPress={() => {
+ async function getNextStep() {
+ try {
+ const response = await FRAuthSampleBridge.next(
+ JSON.stringify(step.payload),
+);
+ if (response.type === 'LoginSuccess') {
+ const accessInfo = JSON.parse(response.accessInfo);
+ setStep({
+ accessInfo,
+ message: 'Successfully logged in.',
+ type: 'LoginSuccess',
+ });
+ setAuthentication(true);
+ } else {
+ setStep({
+ message: 'There has been a login failure.',
+ type: 'LoginFailure',
+ });
+ }
+ } catch (err) {
+ console.error(`Error: form submission; ${err}`);
+ }
+ }
+ getNextStep();
+ }}
+ >
+ Sign In
+ </Button>
 </FormControl>
 </Box>
 </ScrollView>
);

@@ collapsed @@

After the app refreshes, use the test user to login. If successful, you should see a success message. Congratulations, you are now
able to authenticate users!

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 409

Figure 3. Login screen with successful authentication

What’s more, you can verify the authentication details by going to the Xcode or Safari log and observing the result of the last call
to the server. It should have a type of "LoginSuccess" along with token information.

Ping SDK for Auth Journey tutorials Ping SDKs

410 Copyright © 2025 Ping Identity Corporation

Figure 4. Successful login response from Xcode

Handle the user provided values

You may ask, "How did the user’s input values get added to the step object?" Let’s take a look at the component for rendering
the username input. Open up the Text component: components/journey/text.js . Notice how special methods are being used
on the callback object. These are provided as convenience methods by the Ping SDK for JavaScript for getting and setting data.

info
If you got a login failure, you can re-attempt the login by going to the Device menu on the Simulator and selecting
"Shake". This will allow you to reload the app, providing a fresh login form.

Note

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 411

@@ collapsed @@

 export default function Text({ callback }) {

@@ collapsed @@

 const error = handleFailedPolicies(
 callback.getFailedPolicies ? callback.getFailedPolicies() : [],
);
 const isRequired = callback.isRequired ? callback.isRequired() : false;
 const label = callback.getPrompt();
 const setText = (text) => callback.setInputValue(text);
 return (
 <FormControl isRequired={isRequired} isInvalid={error}>
 <FormControl.Label mb={0}>{label}</FormControl.Label>
 <Input
 autoCapitalize="none"
 autoComplete="off"
 autoCorrect={false}
 onChangeText={setText}
 size="lg"
 type="text"
 />
 <FormControl.ErrorMessage>
 {error.length ? error : ''}
 </FormControl.ErrorMessage>
 </FormControl>
);
 }

There are two important items to focus on

callback.getPrompt() : Retrieves the input’s label to be used in the UI.

callback.setInputValue() : Sets the user’s input on the callback while they are typing (i.e. onChangeText).

Since the callback is passed from the Form to the components by "reference" (not by "value"), any mutation of the callback
object within the Text (or Password) component is also contained in the step object in the Form component.

Each callback type has its own collection of methods for getting and setting data in addition to a base set of generic callback
methods. The SDK automatically adds these methods to the callback’s prototype. For more information about these callback
methods, see our API documentation, or the source code in GitHub, for more details.

Request user info and redirecting to home screen

Now that the user can login, let’s go one step further and request information about the authenticated user to display their name
and other information. We will now utilize the existing FRAuthSampleBridge.getUserInfo() method already included in the
bridge code.

•

•

info
You may think, "That’s not very idiomatic React! Shared, mutable state is bad." And, yes, you are correct, but we are
taking advantage of this to keep everything simple (and this guide from being too long), so I hope you can excuse the
pattern.

Note

Ping SDK for Auth Journey tutorials Ping SDKs

412 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks

Let’s do a little setup before we make the request to the server:

Add useContext to the import from React so that we have access to the global state.

Import AppContext from the global-state module.

Call useContext with our AppContext to provide access to the setter methods.

Add one more useEffect function to detect the change of the user’s authentication.

 import { FRStep } from '@forgerock/javascript-sdk';
 import { Box, Button, FormControl, ScrollView } from 'native-base';
- import React, { useEffect, useState } from 'react';
+ import React, { useContext, useEffect, useState } from 'react';
 import { NativeModules } from 'react-native';

+ import { AppContext } from '../../global-state';
@@ collapsed @@

 export default function Form() {
+ const [_, methods] = useContext(AppContext);
 const [step, setStep] = useState(null);
 const [isAuthenticated, setAuthentication] = useState(false);
 console.log(step);

 useEffect(() => {
 async function getStep() {
 try {
 await FRAuthSampleBridge.logout();
 const dataString = await FRAuthSampleBridge.login();
 const data = JSON.parse(dataString);
 const initialStep = new FRStep(data);
 setStep(initialStep);
 } catch (err) {
 console.error(`Error: request for initial step; ${err}`);
 }
 }
 getStep();
 }, []);

+ useEffect(() => {
+
+ }, [isAuthenticated]);

@@ collapsed @@

It’s worth noting that the isAuthenticated declared in the array communicates to React that this useEffect should only
execute if the state of that variable changes. This prevents unnecessary code execution since the value is initially false , and
continues to be false until the user completes authentication.

With the setup complete, implement the request to the server for the user’s information. Within this empty useEffect , add an
async function to make that call to FRAuthSampleBridge.getUserInfo() and call it only when isAuthenticated is true .

1.

2.

3.

4.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 413

@@ collapsed @@

 useEffect(() => {
+ async function getUserInfo() {
+ const userInfo = await FRAuthSampleBridge.getUserInfo();
+ console.log(userInfo);
+
+ methods.setName(userInfo.name);
+ methods.setEmail(userInfo.email);
+ methods.setAuthentication(true);
+ }
+
+ if (isAuthenticated) {
+ getUserInfo();
+ }
 }, [isAuthenticated]);

@@ collapsed @@

In the code above, we collected the user information and set a few values to the global state to allow the app to react to this
information. In addition to updating the global state, the React Navigation also reacts to the global state change and renders the
new screens and tab navigation.

When you test this in the Simulator, completing a successful authentication results in the home screen being rendered with a
success message. The user’s name and email are included for visual validation. You can also view the console in Safari and see the
user’s information logged.

Ping SDK for Auth Journey tutorials Ping SDKs

414 Copyright © 2025 Ping Identity Corporation

Figure 5. Home screen after successful authentication
Add logout functionality to our bridge and React Native code

Clicking the Sign Out button within the navigation results in the logout page rendering with a persistent "loading" spinner and
message. This is due to the missing logic that we’ll add now.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 415

Figure 6. Logout screen with spinner

To add the logic into the view to call this new Swift method:

Open up the screens/logout.js file and import the following:

useEffect and useContext from React

useHistory from React Router

AppContext from the global state module

- import React from 'react';
+ import React, { useContext, useEffect } from 'react';
+ import { NativeModules } from 'react-native';

+ import { AppContext } from '../global-state';
 import { Loading } from '../components/utilities/loading';

+ const { FRAuthSampleBridge } = NativeModules;

@@ collapsed @@

Since logging out requires an async , network request, we need to wrap it in a useEffect and pass in a callback function
with the following functionality:

1.

1.

2.

3.

2.

Ping SDK for Auth Journey tutorials Ping SDKs

416 Copyright © 2025 Ping Identity Corporation

@@ collapsed @@

 export default function Logout() {
+ const [_, { setAuthentication }] = useContext(AppContext);
+
+ useEffect(() => {
+ async function logoutUser() {
+ try {
+ await FRAuthSampleBridge.logout();
+ } catch (err) {
+ console.error(`Error: logout; ${err}`);
+ }
+ setAuthentication(false);
+ }
+ logoutUser();
+ }, []);
+
 return <Loading message="You're being logged out ..." />;
 }

Since we only want to call this method once, after the component mounts, we will pass in an empty array as a second
argument for useEffect() . The use of the setAuthentication() method empties or falsifies the global state to clean up
and re-renders the home screen.

Revisit the app within the Simulator, and tap the Sign Out button.

You should see a quick flash of the loading screen, and then the home screen should be displayed with the logged out UI
state.

3.

Ping SDKs Ping SDK for Auth Journey tutorials

Copyright © 2025 Ping Identity Corporation 417

Figure 7. Logged out home screen
Testing the app

You should now be able to successfully authenticate a user, display the user’s information, and log a user out.

Congratulations, you just built a protected iOS app with React Native.

Ping SDK for Auth Journey tutorials Ping SDKs

418 Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping
SDKs

The SDKs enable you to implement many authentication, registration, and self-service use cases into your mobile and web apps.

Visit the following pages for more information on implementing different use cases using the Ping SDKs:

Set up PingOne Protect for risk evaluations

Applies to: Android |  iOS |  JavaScript

The Ping SDKs can integrate with PingOne Protect to evaluate the risk involved in a transaction.

Find out how to configure your application to use PingOne Protect.

Read more 

Set up user profile self service

Applies to: Android |  iOS|  JavaScript

View and edit user profile information, such as name, address, and marketing preferences.

Read more 

Implement your use cases with the Ping SDKs Ping SDKs

420 Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

Set up registered device self service

Applies to: Android |  iOS|  JavaScript

View, rename, and delete user-registered devices.

Read more 

Set up mobile biometrics

Applies to: Android |  iOS

Discover how to allow users to authenticate by using an authenticator device. For example, the fingerprint scanner on
their laptop or a phone.

Leverage passkey support to synchronize across multiple devices.

Read more 

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 421

Set up web biometrics

Applies to: JavaScript

Discover how to allow users to authenticate by using WebAuthn.

Leverage passkey support to synchronize across multiple devices.

Read more 

Set up Device Profiling

Applies to: Android |  iOS |  JavaScript

Instruct your client applications to collect device profile information for decision-making in authentication journeys.

Read more 

Implement your use cases with the Ping SDKs Ping SDKs

422 Copyright © 2025 Ping Identity Corporation

Set up Social Login

Applies to: Android |  iOS |  JavaScript

Add support for authenticating to your apps by using trusted Identity Providers (IdP), like Apple, Facebook, and Google.

Read more 

Set up Magic Links

Applies to: Android |  iOS |  JavaScript

Learn how to pause a user’s progress through an authentication tree, and later resume from the same point.

Read more 

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 423

Set up Transactional Authorization

Applies to: Android |  iOS |  JavaScript

Configure transactional authorization support in your app. Transactional authorization requires a user to authorize
individual access attempts to specific protected resources.

It is part of an PingAM policy that grants single-use or one-shot access.

Read more 

Implement your use cases with the Ping SDKs Ping SDKs

424 Copyright © 2025 Ping Identity Corporation

Set up QR Code handling

Applies to: JavaScript

Learn how to handle callbacks that require a QR code to be displayed.

A number of journeys make use of QR codes, such as device registration for multi-factor authentication.

Read more 

Set up Google reCAPTCHA Enterprise

Applies to: Android |  iOS |  JavaScript

This tutorial shows how integrate with Google reCAPTCHA Enterprise.

Read more 

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 425

Integrate with PingOne Protect for risk evaluations

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

The Ping SDKs can integrate with PingOne Protect to evaluate the risk involved in a transaction.

Figure 1. A flowchart illustrating how risk predictors evaluate many different data points.

You can instruct the Ping SDKs to use the embedded PingOne Signals SDK to gather information during a transaction. Your
authentication journeys can then gather this information together and request a risk evaluation from PingOne.

Based on the response, you can choose whether to allow or deny the transaction or perform additional mitigation, such as bot
detection measures.

You can use the audit functionality in PingOne to view the risk evaluations:

emergency_home
PingOne Protect is supported in the following servers:

Advanced Identity Cloud
Use the official PingOne Protect nodes

PingAM 7.5 and later
Use the official PingOne Protect nodes

PingAM 7.2 - 7.4
Use the marketplace PingOne Protect nodes

Important

Implement your use cases with the Ping SDKs Ping SDKs

426 Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk

Figure 2. Risk evaluation records in the PingOne audit viewer.

Steps

Step 1. Set up the servers

In this step, you set up your PingOne Advanced Identity Cloud or PingAM server, and your PingOne instance to perform
risk evaluations.

For example, you create a worker application in PingOne and configure your server to access it. You also create an
authentication journey that uses the relevant nodes.

Step 2. Install dependencies

In this step, you add the required PingOne Protect module and dependencies to your project.

We provide instructions for Android, iOS, and JavaScript projects.

Step 3. Develop the client app

With everything prepared, you can now add Ping SDK code to your client application to evaluate risk by using PingOne
Protect.

You’ll learn how to initialize the collection of contextual data, gather and send it to the server for a risk evaluation, and
how to pause and resume behavioral data collection.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 427

Step 1. Set up the servers

In this step, you set up your PingOne Advanced Identity Cloud or PingAM server, and your PingOne instance to perform risk
evaluations.

Create a worker application in PingOne

Configure the PingOne Worker service in your server

Configure a journey to perform PingOne Protect risk evaluations

Create a worker application in PingOne

To allow your server to access the PingOne administration API you must create a worker application in PingOne.

The worker application provides the client credentials your server uses to communicate with the PingOne admin APIs using the
OpenID Connect protocol.

To create a worker application in PingOne:

In the PingOne administration console, navigate to Applications › Applications, and then click Add ().

In the Add Application panel:

In Application name, enter a unique identifier for the worker application.

For example, Ping SDK Worker .

Optionally, enter a Description for the application and select an Icon.

These do not affect the operation of the worker application but do help you identify it in the list.

In Application Type, select Worker.

Click Save.

In the application properties panel for the worker application you created:

On the Roles tab, click Grant Roles.

On the Available responsibilities tab, select the Identity Data Admin row, and ensure the environment is correct.

Click Save.

On the Overview tab, ensure your worker application resembles the following image, and then enable it by using
the toggle (1):

1.

2.

3.

1.

2.

1.

2.

3.

4.

3.

1.

2.

3.

4.

Implement your use cases with the Ping SDKs Ping SDKs

428 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/r/en-us/pingone/p1_add_app_worker
https://docs.pingidentity.com/r/en-us/pingone/p1_add_app_worker

Figure 1. Example worker application in PingOne

Make a note of the Environment ID, Client ID, and Client Secret values (2).

You need these values in the next step when you Configure the PingOne Worker service in your server.

Configure the PingOne Worker service in your server

After you create a worker application in PingOne, you must configure the PingOne Worker service in your server with the
credentials.

Prerequisites

You need the following values from the PingOne Worker application you created in PingOne:

Client ID

Client ID of the worker application in PingOne.

Example: 6c7eb89a-66e9-ab12-cd34-eeaf795650b2

Client Secret

Client secret of the worker application in PingOne.

5.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 429

Example: Ch15~o5Hm8N4_eS_m8~ARrV0KQAIQS6d.sJWe8TMXurEb~KWexY_p0gelR

Environment ID

Identifier of the environment that contains the worker application in PingOne.

Example: 3072206d-c6ce-ch15-m0nd-f87e972c7cc3

Register the client secret in the server

You need to make the client secret of the worker application in PingOne available for use in the PingOne worker service.

Advanced Identity Cloud

If you are using Advanced Identity Cloud you will need to create an environment secret to hold the client secret value, as
follows:

In the Advanced Identity Cloud admin UI, go to  Tenant Settings > Global Settings > Environment Secrets &
Variables.

Click the Secrets tab.

Click + Add Secret.

In the Add a Secret modal window, enter the following information:

lightbulb_2
Use the Secret Mask () or Copy to Clipboard () buttons to obtain the value in the PingOne administration
console.

Tip


emergency_home
The PingOne Worker Service requires a configured OAuth2 provider service in your server.

If you are using a self-managed AM server, you must configure the OAuth2 Provider service in a realm to
expose the OAuth 2.0 endpoints and OAuth 2.0 administration REST endpoints..
The OAuth2 provider service is preconfigured in Advanced Identity Cloud.

Important

•

•

1.

2.

3.

4.

Name Enter a secret name. For example, ping-protect-client-secret .

Description (optional) Enter a description of the purpose of the secret.

Value Enter the Client Secret value you obtained when creating the worker application in PingOne.
For example, Ch15~o5Hm8N4_eS_m8~ARrV0KQAIQS6d.sJWe8TMXurEb~KWexY_p0gelR .
The field obscures the secret value by default. You can optionally click the visibility toggle ()
to view the secret value as you enter it.

info
Secret names cannot be modified after the secret has been created.
Note

Implement your use cases with the Ping SDKs Ping SDKs

430 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-configure-authz.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-configure-authz.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-configure-authz.html

Click Save to create the variable.

Click View Update, check the details of the new secret, and then click Apply Update.

Advanced Identity Cloud displays a final confirmation page.

Figure 2. Apply updated secrets in Advanced Identity Cloud

Click Apply Now.

Advanced Identity Cloud propagates the new secret and its value to all servers. You must wait until the secrets
have propagated throughout the environment before attempting to use the secret.

The Environment Secrets & Variables page displays the following message while the update is in progress:

5.

6.

7.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 431

Figure 3. Propagating secrets in progress in Advanced Identity Cloud.

Self-managed AM

For information on adding secret values for use in services in a self-managed AM instance, refer to Create key aliases in
the AM documentation.

Configure the PingOne worker service

To configure the PingOne worker service:

If you are using PingOne Advanced Identity Cloud, in the administration console navigate to Native Consoles > Access
Management.

In the AM admin UI, click Services.

If the PingOne Worker Service is in the list of services, select it.

If you do not yet have a PingOne Worker Service:

Click + Add a Service.

In Choose a service type, select PingOne Worker Service , and then click Create.

On the Secondary Configurations tab, click + Add a Secondary Configuration.

On the New workers configuration page:

Enter a Name for the configuration.

1.

2.

3.

4.

1.

2.

5.

6.

1.

Implement your use cases with the Ping SDKs Ping SDKs

432 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/security-guide/configuring-keys.html#creating-new-keys
https://docs.pingidentity.com/pingam/8/security-guide/configuring-keys.html#creating-new-keys

For example, SDK PingOne Worker .

You use this value when you configure an authentication journey that performs risk evaluations.

In Client ID, enter the client ID of the PingOne Worker application you created earlier.

In Client Secret Label Identifier, enter an identifier to create a specific secret label to represent the client secret of
the worker application.

For example, workerAppClientSecret .

The secret label uses the template am.services.pingone.worker.identifier.clientsecret where identifier is
the Client Secret Label Identifier value.

This field can only contain characters a-z , A-Z , 0-9 , and . and can’t start or end with a period.

In Environment ID, enter the environment ID containing the PingOne Worker application you created earlier.

Click Create

On the Workers Configuration page, ensure that the PingOne API Server URL and PingOne Authorization Server URL are
correct for the region of your PingOne servers:

Confirm your configuration resembles the image below, and then click Save changes.

2.

3.

4.

5.

7.

PingOne URLs by region

Region Authorization URL API URL

North America
(Excluding Canada)

https://auth.pingone.com https://api.pingone.com/v1

Canada https://auth.pingone.ca https://api.pingone.ca/v1

Europe https://auth.pingone.eu https://api.pingone.eu/v1

Asia-Pacific https://auth.pingone.asia https://api.pingone.asia/v1

8.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 433

Figure 4. Example worker application in PingOne

Map the Client Secret Label Identifier to a secret

To make the client secret available to the PingOne Worker Service, you must map the secret to the ID created.

Map secrets in Advanced Identity Cloud

In the Advanced Identity Cloud admin UI, click Native Consoles > Access Management.

In the AM admin UI (native console), go to Realm > Secret Stores.

Click the ESV secret store, then click Mappings.

Click + Add Mapping.

In Secret Label, select the label generated when you entered the Client Secret Label Identifier previously.

For example, am.services.pingone.worker.workerAppClientSecret.clientsecret .

In aliases, enter the name of the ESV secret you created earlier, including the esv- prefix, and then click Add.

For example, esv-ping-protect-client-secret

1.

2.

3.

4.

1.

2.

Implement your use cases with the Ping SDKs Ping SDKs

434 Copyright © 2025 Ping Identity Corporation

The result resembles the following:

Click Create.

To learn more about mapping secrets and label identifiers in Advanced Identity Cloud, refer to Secret labels.

Map secrets in self-managed AM

To learn about mapping secrets in self-managed AM, refer to Map and rotate secrets.

You have now configured the PingOne Worker service in your server. You can now Configure a journey to perform PingOne
Protect risk evaluations.

Configure a journey to perform PingOne Protect risk evaluations

To make risk evaluations in PingOne, you must configure an authentication journey in your server.

The following table covers the authentication nodes and callbacks for integrating your authentication journeys with PingOne
Protect.

5.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 435

https://docs.pingidentity.com/pingoneaic/latest/am-reference/secret-id-mappings.html
https://docs.pingidentity.com/pingoneaic/latest/am-reference/secret-id-mappings.html
https://docs.pingidentity.com/pingam/8/security-guide/secret-mapping.html
https://docs.pingidentity.com/pingam/8/security-guide/secret-mapping.html

In your server, log in as an administrator and create a new authentication journey similar to the following example:

Figure 5. An example PingOne Protect journey

The PingOne Protect Initialize node 1 instructs the SDK to initialize the PingOne Protect Signals API with the configured
properties.

Initialize the PingOne Protect Signals API as early in the journey as possible, before any user interaction.

This enables it to gather sufficient contextual data to make an informed risk evaluation.

Node Callback Description

PingOne Protect Initialization node PingOneProtectInitiateCallback Instruct the embedded PingOne Signals
SDK to start gathering contextual
information.

PingOne Protect Evaluation node PingOneProtectEvaluationCallback Returns contextual information that the
server can send to your PingOne
Protect instance to perform a risk
evaluation.

PingOne Protect Result node Non-interactive Inform the PingOne Protect instance
about the status of the transaction.

info
These official PingOne Protect nodes are available in PingAM 7.5 and later, as well as PingOne Advanced Identity
Cloud.
If you are using PingAM versions 7.2 to 7.4, you should instead use the equivalent PingOne Protect Marketplace
nodes.
The PingOne Protect marketplace nodes use a MetadataCallback  callback. The SDK recognizes the specific
configuration the marketplace nodes place in this callback and can use it for use with PingOne Protect.

Note

•

lightbulb_2
You can initialize the PingOne Protect Signals API whenever you want to start collecting data. This could be at
application startup, or when a particular page or view is visited.
Learn more at initializing data collection.

Tip

Implement your use cases with the Ping SDKs Ping SDKs

436 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectInitiateCallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectInitiateCallback
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectEvaluationCallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectEvaluationCallback
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-read-only-callbacks.html#metadatacallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-read-only-callbacks.html#metadatacallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-read-only-callbacks.html#metadatacallback
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html

The user enters their credentials, which are verified against the identity store.

The PingOne Protect Evaluation node 2 performs a risk evaluation against a risk policy in PingOne.

The example journey continues depending on the outcome:

High

The journey requests that the user respond to a push notification.

Medium or Low

The risk is not significant, so no further authentication factors are required.

Exceeds Score Threshold

The score returned is higher than the configured threshold and is considered too risky to complete successfully.

Failure

The risk evaluation could not be completed, so the authentication attempt continues to the Failure node.

BOT_MITIGATION

The risk evaluation returned a recommended action to check for the presence of a human, so the journey
continues to a CAPTCHA node.

ClientError

The client returned an error when attempting to capture the data to perform a risk evaluation, so the
authentication attempt continues to the Failure node.

An instance of the PingOne Protect Result node 3 returns the Success result to PingOne, which can be viewed in the
audit console to help with analysis and risk policy tuning.

A second instance of the PingOne Protect Result node 4 returns the Failed result to PingOne, which can be viewed in
the audit console to help with analysis and risk policy tuning.

You have now configured a suitable authentication journey in your server. You can now proceed to Step 2. Install dependencies.

Step 2. Install dependencies

To capture contextual data and perform risk evaluations, you must add the PingOne Protect module to your Ping SDK project.

Select your platform below for instructions on installing the required modules or dependencies:

•

•

•

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 437

https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html

Add Android dependencies

To add the PingOne Protect dependencies to your Android project:

In the Project tree view of your Android Studio project, open the Gradle Scripts/build.gradle file for the module.

In the dependencies section, add the required dependencies:

Example dependencies section after editing:

dependencies {
 // Ping SDK main module
 implementation 'org.forgerock:forgerock-auth:4.8.1'

 // PingOne Protect module
 implementation 'org.forgerock:ping-protect:4.8.1'
}

After installing the module, you can proceed to Step 3. Develop the client app.

Add iOS dependencies

You can use CocoaPods or the Swift Package Manager to add the PingOne Protect dependencies to your iOS project.



Ping SDK for Android

Add the PingOne Protect dependencies to your
Android project.



Ping SDK for iOS

Add the PingOne Protect dependencies to your
iOS project by using Cocoapods or Swift Package

Manager.



Ping SDK for JavaScript

Add the PingOne Protect dependencies to your
JavaScript project by using npm.

1.

2.

Implement your use cases with the Ping SDKs Ping SDKs

438 Copyright © 2025 Ping Identity Corporation

Add dependencies using CocoaPods

If you do not already have CocoaPods, install the latest version.

If you do not already have a Podfile, in a terminal window, run the following command to create a new Podfile:

pod init

Add the following lines to your Podfile:

pod 'PingProtect' // Add-on for {p1p_name}

Run the following command to install pods:

pod install

Add dependencies using Swift Package Manager

With your project open in Xcode, select File > Add Package Dependencies.

In the search bar, enter the Ping SDK for iOS repository URL: https://github.com/ForgeRock/forgerock-ios-sdk .

Select the forgerock-ios-sdk package, and then click Add Package.

In the Choose Package Products dialog, ensure that the PingProtect library is added to your target project.

Click Add Package.

In your project, import the library:

// Import the {p1p_name} library
import PingProtect

After installing the module, you can proceed to Step 3. Develop the client app.

Add JavaScript dependencies

Install the PingOne Protect module by using npm:

npm install @forgerock/ping-protect

After installing the module, you can proceed to Step 3. Develop the client app.

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 439

https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/syntax/podfile.html
https://guides.cocoapods.org/syntax/podfile.html

Step 3. Develop the client app

Integrating your application with PingOne Protect enables you to perform risk evaluations during your customer’s journey.

Add code for the following tasks to fully integrate with PingOne Protect:

Initialize data collection

Pause and resume behavioral data capture

Return collected data for a risk evaluation

Initialize data collection

You must initialize the PingOne Signals SDK so that it collects the data needed to evaluate risk.

The earlier you can initialize the PingOne Signals SDK, the more data it can collect to make a risk evaluation.

You can initialize the PingOne Signals SDK by using the start() method, which supports the following parameters:

1.

2.

3.

Parameter
Description

Android iOS JavaScript

envID Required. Your PingOne environment identifier.

deviceAttributesToIgnore

Optional. A list of device attributes to ignore
when collecting device signals.
For example, AUDIO_OUTPUT_DEVICES or
IS_ACCEPT_COOKIES .

isBehavioralDataCollection behavioralDataCollection
When true , collect behavioral data.
Default is true .

isConsoleLogEnabled consoleLogEnabled

When true , output SDK log messages in the
developer console.
Default is false .

isLazyMetadata lazyMetadata

When true , calculate metadata on demand
rather than automatically after calling start .
Default is false .

N/A
deviceKeyRsync

Intervals

Number of days that device attestation can rely
upon the device fallback key.
Default: 14

N/A disableHub

When true , the client stores device data in the
browser’s localStorage only.
When false the client uses an iframe.
Default is false .

Implement your use cases with the Ping SDKs Ping SDKs

440 Copyright © 2025 Ping Identity Corporation

There are two options for initializing the PingOne Signals SDK:

Initialize manually

Initialize based on a callback

Initialize manually

Call the start() method before users start interacting with your application to gather the most data and make the most
informed risk evaluations.

Pass in the configuration parameters as required.

try {
 val params =
 PIInitParams(
 envId = "3072206d-c6ce-ch15-m0nd-f87e972c7cc3",
)
 PIProtect.start(context, params)
 Logger.info("Settings Protect", "Initialize succeeded")
} catch (e: Exception) {
 Logger.error("Initialize Error", e.message)
 throw e
}

N/A disableTags

When true , the client does not collect tag data.
Tags are used to record the pages the user
visited, forming a browsing history.
Default is false .

N/A enableTrust

When true , tie the device payload to a non-
extractable crypto key stored in the browser for
content authenticity verification.
Default is false .

N/A
externalIdenti

fiers

Optional. A list of custom identifiers that are
associated with the device entity in PingOne
Protect.

N/A hubUrl
Optional. The iframe URL to use for cross-
storage device IDs.

N/A
waitForWindowL

oad

When true , initialize the SDK on the load
event, instead of the DOMContentLoaded event.
Default is true .

1.

2.

Android

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 441

let initParams = PIInitParams(envId: "3072206d-c6ce-ch15-m0nd-f87e972c7cc3")
 PIProtect.start(initParams: initParams) { error in
 if let error = error as? NSError {
 FRLog.e("Initialize error: \(error.localizedDescription)")
 } else {
 FRLog.i("Initialize succeeded")
 }
 }

import { PIProtect } from '@forgerock/ping-protect';

try {
 // Initialize PingOne Protect with manual configuration
 PIProtect.start({ envId: '3072206d-c6ce-ch15-m0nd-f87e972c7cc3' });
} catch (err) {
 console.error(err);
}

Initialize based on a callback

Not all authentication journeys perform risk evaluations, and therefore do not need to initialize data collection. You can choose to
initialize capture of data on receipt of the PingOneProtectInitializeCallback callback rather than during app start up.

The callback also provides the configuration parameters.

try {
 val callback =
 node.getCallback(PingOneProtectInitializeCallback::class.java)
 callback.start(context)
} catch (e: PingOneProtectInitException) {
 Logger.error("PingOneInitException", e, e.message)
} catch (e: Exception) {
 Logger.error("PingOneInitException", e, e.message)
 callback.setClientError(e.message);
}
node.next()

iOS

JavaScript

Android

Implement your use cases with the Ping SDKs Ping SDKs

442 Copyright © 2025 Ping Identity Corporation

if callback.type == "PingOneProtectInitializeCallback",
 let pingOneProtectInitCallback = callback as? PingOneProtectInitializeCallback
{
 pingOneProtectInitCallback.start { result in
 DispatchQueue.main.async {
 var initResult = ""
 switch result {
 case .success:
 initResult = "Success"
 case .failure(let error):
 initResult = "Error: \(error.localizedDescription)"
 }
 FRLog.i("{p1p_name} Initialize Result: \n\(initResult)")
 handleNode(node)
 }
 }
 return
}

import { PIProtect } from '@forgerock/ping-protect';

if (step.getCallbacksOfType('PingOneProtectInitializeCallback')) {
 const callback = step.getCallbackOfType('PingOneProtectInitializeCallback');

 // Obtain config properties from the callback
 const config = callback.getConfig();

 console.log(JSON.stringify(config));

 try {
 // Initialize {p1p_name} with configuration from callback
 await PIProtect.start(config);
 } catch (err) {
 // Add any errors to the callback
 callback.setClientError(err.message);
 }
}

FRAuth.next(step);

Pause and resume behavioral data capture

The PingOne Protect Signals SDK can capture behavioral data, such as how the user interacts with the app, to help when
performing evaluations.

iOS

JavaScript

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 443

There are scenarios where you might want to pause the collection of behavioral data. For example, the user might not be
interacting with the app, or you only want to use device attribute data to be considered when performing PingOne Protect
evaluations. You can then resume behavioral data collection when required.

The SDKs provide the pauseBehavioralData() and resumeBehavioralData() methods for pausing and resuming the capture of
behavioral data.

The PingOneProtectEvaluationCallback callback can include a flag to pause or resume behavioral capture that you should
respond to as follows:

val callback =
 node.getCallback(PingOneProtectEvaluationCallback::class.java)

const shouldPause = callback.pauseBehavioralData

Logger.info("PingOneProtectEvaluationCallback", "getPauseBehavioralData: ${shouldPause}")

if (shouldPause) {
 PIProtect.pauseBehavioralData()
}

if callback.type == "PingOneProtectEvaluationCallback",
 let pingOneProtectEvaluationCallback = callback as? PingOneProtectEvaluationCallback
{
 if let shouldPause = pingOneProtectEvaluationCallback.pauseBehavioralData, shouldPause {
 PIProtect.pauseBehavioralData()
 }
}

const callback = step.getCallbackOfType('PingOneProtectEvaluationCallback');
const shouldPause = callback.getPauseBehavioralData();

console.log(`getPauseBehavioralData: ${shouldPause}`);

if (shouldPause) {
 PIProtect.pauseBehavioralData();
}

Android

iOS

JavaScript

Implement your use cases with the Ping SDKs Ping SDKs

444 Copyright © 2025 Ping Identity Corporation

Return collected data for a risk evaluation

To perform risk evaluations, the PingOne server requires the captured data.

On receipt of a PingOneProtectEvaluationCallback callback, use the getData() method to populate the response with the
captured data.

try {
 val callback =
 node.getCallback(PingOneProtectEvaluationCallback::class.java)
 callback.getData(context)
} catch (e: PingOneProtectEvaluationException) {
 Logger.error("PingOneRiskEvaluationCallback", e, e.message)
} catch (e: Exception) {
 Logger.error("PingOneRiskEvaluationCallback", e, e.message)
}

if callback.type == "PingOneProtectEvaluationCallback",
 let pingOneProtectEvaluationCallback = callback as? PingOneProtectEvaluationCallback
{
 pingOneProtectEvaluationCallback.getData { result in
 DispatchQueue.main.async {
 var evaluationResult = ""
 switch result {
 case .success:
 evaluationResult = "Success"
 case .failure(let error):
 evaluationResult = "Error: \(error.localizedDescription)"
 }
 FRLog.i("{p1p_name} Evaluation Result: \n\(evaluationResult)")
 handleNode(node)
 }
 }
 return
}

Android

iOS

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 445

let data;

if (step.getCallbacksOfType('PingOneProtectEvaluationCallback')) {
 const callback = step.getCallbackOfType('PingOneProtectEvaluationCallback');
 try {
 // Asynchronous call
 data = await PIProtect.getData();
 } catch (err) {
 // Add any errors to the callback
 callback.setClientError(err.message);
 }
}
callback.setData(data);
FRAuth.next(step);

Set up user profile self service

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

The Ping SDKs support many of the callbacks used by authentication journeys, including ones that enable your users to manage
their own profile information, such as name, address, phone numbers and marketing preferences.

To update a user’s profile information you must have already authenticated them and issued a session token. You can then use
that session token to start a new journey which allows the user to update their profile data.

Compatibility

PingIDM is responsible for profile management. Therefore this tutorial is only compatible with the following server environments:

PingOne Advanced Identity Cloud

PingAM and PingIDM deployed together as the Ping Identity Platform (ForgeRock Identity Platform)

PingAM and PingIDM deployed together by using ForgeRock DevOps (ForgeOps)

Before you begin

You must create an authentication journey that checks for the presence of a user session and then displays the user profile fields
for editing. The journey must also update the profile with any changed values.

JavaScript

•

•

•

Implement your use cases with the Ping SDKs Ping SDKs

446 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/platform/8/platform-guide/about.html
https://docs.pingidentity.com/platform/8/platform-guide/about.html
https://docs.pingidentity.com/forgeops/2025.1
https://docs.pingidentity.com/forgeops/2025.1

Create a user profile management journey

Follow the steps below to create a user profile management journey:

Create a new journey or tree and give it a name:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkProfileManagement and click Save.

The authentication journey designer appears.

Under Realm Overview, click Authentication Trees, then click Create Tree.

Enter a tree name, for example sdkProfileManagement , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes into the designer area:

Get Session Data

Attribute Collector

Patch Object

Data Store Decision

Connect the nodes as follows:

Figure 1. Example profile management authentication journey

Select the Get Session Data node and configure it to obtain the user’s account name from the session and store it in
shared state, as follows:

In Session Data Key, enter UserToken .

1.

1.

2.

1.

2.

2.

◦

◦

◦

◦

3.

4.

1.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 447

In Shared State Key, enter userName .

The result resembles the following:

Figure 2. Configure the Get Session Data node for profile management.

Select the Attribute Collector node and configure it with the profile attributes you want the user to view and edit:

In Attributes to Collect, enter the profile attributes to display. For example:

givenName

sn

mail

telephoneNumber

postalAddress

city

emergency_home
This field is case-sensitive. The value must exactly match the name of a property in the user’s session.
For a list of properties, refer to Get Session Data node.

Important

2.

5.

1.

▪

▪

▪

▪

▪

▪

Implement your use cases with the Ping SDKs Ping SDKs

448 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-get-session-data.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-get-session-data.html

country

preferences/marketing

In Identity Attribute, enter userName .

The result resembles the following:

Figure 3. Configure the Attribute Collector node for profile management.

Select the Patch Object node and configure it to update the user’s profile:

In Identity Resource, enter managed/alpha_user .

In Identity Attribute, enter userName .

The result resembles the following:

▪

▪

2.

6.

1.

2.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 449

Figure 4. Configure the Patch Object node for profile management.

Click Save.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

7.

PingOne Advanced Identity Cloud
PingAM

1.

2.

Implement your use cases with the Ping SDKs Ping SDKs

450 Copyright © 2025 Ping Identity Corporation

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

3.

4.

◦

◦

◦

◦

◦

5.

1.

2.

3.

◦

◦

◦

◦

4.

5.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 451

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Figure 5. Example username and password authentication journey

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

org.forgerock.demo://oauth2redirect

6.

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

Implement your use cases with the Ping SDKs Ping SDKs

452 Copyright © 2025 Ping Identity Corporation

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

PingAM

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

1.

2.

3.

4.

5.

6.

1.

2.

3.

◦

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 453

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 6. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

◦

◦

4.

1.

2.

3.

◦

◦

◦

◦

4.

5.

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

Implement your use cases with the Ping SDKs Ping SDKs

454 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

org.forgerock.demo://oauth2redirect

In Scopes, enter the following values:

openid profile email address

Click Create.

PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.

On the Core tab:

In Client type, select Public .

Disable Allow wildcard ports in redirect URIs.

Click Save Changes.

On the Advanced tab:

In Grant Types, enter the following values:

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

7.

1.

2.

3.

4.

5.

emergency_home
Also add any other domains where you will be hosting SDK applications.

Important

6.

7.

8.

1.

2.

3.

9.

1.

2.

3.

10.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 455

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

Try it out

Follow the steps below to configure and run one of our sample applications to test profile self-management.

Step 1. Download the sample apps

To start this tutorial, you need to download the Ping SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the Ping SDK sample apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure sample apps

Depending on the platform you are using, follow the steps below to configure a sample application to connect to your server.

1.

2.

3.

4.

5.

6.

1.

2.

1.

2.

1.

2.

Implement your use cases with the Ping SDKs Ping SDKs

456 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git

In this step, you configure the "kotlin-ui-prototype" sample to connect to your server.

In Android Studio, open the sdk-sample-apps/android/kotlin-ui-prototype folder you cloned in the previous
step.

In the Project pane, switch to the Android view.

In the Android view, navigate to app > kotlin+java > com.example.app > env, and open EnvViewModel.kt .

This file has the server environments the sample app uses. Each specifies the properties using the
FROptionsBuilder.build method.

Update the PingAM or PingAdvancedIdentityCloud example configuration values to match your server
environment:

url

The URL of the server to connect to.

Identity Cloud example:

https://openam-forgerock-sdks.forgeblocks.com/am

Self-hosted example:

https://openam.example.com:8443/openam

cookieName

The name of the cookie that contains the session token.

For example, with a self-hosted PingAM server this value might be iPlanetDirectoryPro .

realm

The realm in which the OAuth 2.0 client profile and authentication journeys are configured.

Usually, root for AM and alpha or beta for Advanced Identity Cloud.

oauthClientId

The client ID of your OAuth 2.0 application in PingOne Advanced Identity Cloud or PingAM.

For example, sdkPublicClient

oauthRedirectUri

The redirect_uri as configured in the OAuth 2.0 client profile.

Android

1.

2.

3.

4.

lightbulb_2
PingOne Advanced Identity Cloud tenants use a random alpha-numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud tenant, navigate to Tenant
settings > Global Settings, and copy the value of the Cookie property.

Tip

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 457

For example, org.forgerock.demo://oauth2redirect .

Update the USER_PROFILE_JOURNEY variable with the name of the profile management journey you created
earlier.

For example, sdkProfileManagement

Save your changes.

info
This value must exactly match a value configured in your OAuth 2.0 client.

Note

5.

6.

Implement your use cases with the Ping SDKs Ping SDKs

458 Copyright © 2025 Ping Identity Corporation

In this step, you configure the "FRExample" sample app to connect to your server.

In Xcode, on the File menu, click Open.

Navigate to the sdk-sample-apps folder you cloned in the previous step, navigate to iOS > uikit-frexamples >
FRExample > FRExample.xcodeproj , and then click Open.

In the navigator pane in Xcode, right-click FRExample/Configs/FRAuthConfig and select Open As > Source Code.

Update the following key values to match your server environment:

forgerock_url

The URL of the server to connect to.

Identity Cloud example:

https://openam-forgerock-sdks.forgeblocks.com/am

Self-hosted example:

https://openam.example.com:8443/openam

forgerock_cookie_name

The name of the cookie that contains the session token.

For example, with a self-hosted PingAM server this value might be iPlanetDirectoryPro .

forgerock_realm

The realm in which the OAuth 2.0 client profile and authentication journeys are configured.

Usually, root for AM and alpha or beta for Advanced Identity Cloud.

forgerock_oauth_client_id

The client ID of your OAuth 2.0 application in PingOne Advanced Identity Cloud or PingAM.

For example, sdkPublicClient

forgerock_oauth_redirect_uri

The redirect_uri as configured in the OAuth 2.0 client profile.

iOS

1.

2.

3.

4.

lightbulb_2
PingOne Advanced Identity Cloud tenants use a random alpha-numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud tenant, navigate to Tenant
settings > Global Settings, and copy the value of the Cookie property.

Tip

info
This value must exactly match a value configured in your OAuth 2.0 client.

Note

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 459

For example, org.forgerock.demo://oauth2redirect .

Save your changes.

Step 3. Run the sample app

Depending on the platform you are using, follow the steps below to run the sample application, obtain a session token, and use it
to complete the self-registration journey you created earlier.

5.

Implement your use cases with the Ping SDKs Ping SDKs

460 Copyright © 2025 Ping Identity Corporation

In Android Studio, select Run > Run 'app'.

Tap the menu icon (), and then tap rocket_launch Launch Journey.

In Journey Name enter the name of a journey that will authenticate the user and issue a session, and then click
Submit.

For example, enter sdkUsernamePasswordJourney to use the authentication tree you created earlier.

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

After successful authentication, tap the menu icon (), and then tap account_box User Profile.

The app sends the session token to the journey which extracts the username and returns their profile information:

Figure 7. Viewing a user’s profile information in an Android sample app.

Update any of the presented properties and then click Next.

To verify the profile was updated, tap the menu icon (), and then tap account_box User Profile.

Android

1.

2.

3.

4.

◦

◦

5.

6.

7.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 461

The app displays the updated profile values.

Implement your use cases with the Ping SDKs Ping SDKs

462 Copyright © 2025 Ping Identity Corporation

In Xcode, select Product > Run.

Xcode launches the FRExample app in the iPhone simulator.

In the sample app on the iPhone simulator, in the Select an action menu, select Login with UI (FRUser), and then
click Perform Action.

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

After successful authentication, in the Select an action menu, select FRSession.authenticate with UI (Token), and
then click Perform Action.

In the popup window, enter the name of the profile management journey you created earlier, and then click
Continue.

For example, sdkProfileManagement

Update any of the presented properties and then click Next.

The app sends the session token to the journey which extracts the username and returns their profile information:

iOS

1.

2.

3.

◦

◦

4.

5.

6.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 463

Figure 8. Viewing a user’s profile information in an iOS sample app.

Update any of the presented properties and then click Next.

To verify the profile was updated, tap Perform Action again, enter the name of your profile management tree and
then click Continue.

The app displays the updated profile values.

Set up registered device self service

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

7.

8.

Implement your use cases with the Ping SDKs Ping SDKs

464 Copyright © 2025 Ping Identity Corporation

The Ping SDKs can retrieve a list of the devices your users register to their accounts. Users can then manage their own devices,
for example delete or rename them.

PingOne Advanced Identity Cloud and PingAM support registration of many different device types to support your multi-factor
authentication journeys:

OATH devices

The registered device generates a one-time passcode that your users enter into the authentication journey.

Register OATH devices using the OATH Registration node.

To learn more about implementation, refer to Implement MFA using OATH one-time passwords.

PUSH devices

The registered device receives a PUSH notification from the server that the user must approve to continue their
authentication journey.

Register PUSH devices using the Push Registration node.

To learn more about implementation, refer to Implement MFA using push notifications.

WebAuthn devices

The registered device acts as an authenticator and uses public-key cryptography to securely sign an assertion from the
server.

Register WebAuthn devices using the WebAuthn Registration node.

To learn more about implementation, refer to Implement mobile biometrics and Implement web biometrics.

Device binding

The registered device generates a key pair and a key ID. The Ping SDKs send the public key and key ID to PingOne
Advanced Identity Cloud or PingAM for storage in the user’s profile.

Bind devices using the Device Binding node.

To learn more about implementation, refer to Bind and verify user devices.

Device profiling

The Ping SDKs collect specific data about the registered device to create a profile that helps to identify it during
authentication journeys.

Profile devices using the Device Profile Collector node.

To learn more about implementation, refer to Device profile client configuration.

The Ping SDKs provide utility methods for managing each type of registered device:

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 465

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-profile-collector.html

Getting lists of devices

To get a list of devices you must have an active session for the user. The Ping SDKs include the session token when making calls to
the device management endpoints.

Session tokens often have a short duration and expire after 5 minutes. If the client does not have an active session token you
should trigger an authentication journey to obtain a new session token before attempting to manage registered devices.

Methods for managing devices

Type Get Update Delete

OATH oath.get() Not supported oath.delete(device)

PUSH push.get() Not supported push.delete(device)

WebAuthn webAuthn.get() webAuthn.update(device) webAuthn.delete(device)

Device
binding

bound.get() bound.update(device) bound.delete(device)

Device
profiles

profile.get() profile.update(device) profile.delete(device)

info
Device management is not available when using OIDC login, as the Ping SDKs do not have direct access to the session
token, which remains in the embedded browser.

Note

Implement your use cases with the Ping SDKs Ping SDKs

466 Copyright © 2025 Ping Identity Corporation

Examples

Import and initialize deviceClient :

import org.forgerock.android.auth.selfservice.Device

private val deviceClient = DeviceClient()

Call the get() method to retrieve lists of devices:

"Oath" -> deviceClient.oath.get()
"Push" -> deviceClient.push.get()
"WebAuthn" -> deviceClient.webAuthn.get()
"Binding" -> deviceClient.bound.get()
"Profile" -> deviceClient.profile.get()

Import FRAuth and initialize deviceClient :

import FRAuth

let deviceClient = DeviceClient()

Call the get() method to retrieve lists of devices:

let oathDevices = try await deviceClient.oath.get()
let pushDevices = try await deviceClient.push.get()
let webAuthnDevices = try await deviceClient.webAuthn.get()
let bindingDevices = try await deviceClient.bound.get()
let profileDevices = try await deviceClient.profile.get()

Android

1.

2.

iOS

1.

2.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 467

Import the deviceClient module from the Ping SDK for JavaScript, and provide a ConfigOptions object to
initialize device self-service functionality:

import { deviceClient } from '@forgerock/javascript-sdk/device-client';
import { type ConfigOptions } from '@forgerock/javascript-sdk';

const config: ConfigOptions = {
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 },
 realmPath: 'alpha',
};

const deviceClient = deviceClient(config);

Call the get() method, with optional query, to retrieve a list of devices.

For example, the following code gets a list of all the user’s OATH devices:

const oathQuery: RetrieveOathQuery = {
 /* your query parameters */
};

deviceClient.oath
 .get(oathQuery)
 .then((response) => {
 console.log('OATH Devices:', response);
 })
 .catch((error) => {
 console.error('Error fetching OATH devices:', error);
 });

Renaming a device

You can rename some types of registered device, with the following caveats:

You can only rename these device types:

Bound devices

Device profiles

WebAuthn devices

The authentication journey that provided the users' session must fulfil one or more of the following criteria:

Used same multi-factor authentication method as the device you want to rename.

JavaScript

1.

2.

1.

◦

◦

◦

2.

◦

Implement your use cases with the Ping SDKs Ping SDKs

468 Copyright © 2025 Ping Identity Corporation

For example, to rename a WebAuthn device the authentication journey that created the session must also
authenticate using a WebAuthn device.

Or:

Used the Enable Device Management node that alters the Device Check Enforcement Strategy.

Examples

fun update(device: Device) {
 viewModelScope.launch {
 try {
 when (device) {
 is WebAuthnDevice -> deviceClient.webAuthn.update(device)
 is BoundDevice -> deviceClient.bound.update(device)
 is ProfileDevice -> deviceClient.profile.update(device)
 else -> throw IllegalArgumentException("Unsupported Device Type")
 }
 fetch(selectedType)
 } catch (e: Exception) {
 yield()
 state.update { it.copy(devices = emptyList(), throwable = e) }
 }
 }
}

◦

Android

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 469

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-enable-device-management.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-enable-device-management.html

let alert = UIAlertController(title: "Edit Device Name",
 message: device.id,
 preferredStyle: .alert)

alert.addTextField { textField in
 textField.text = device.deviceName
}

let okAction = UIAlertAction(title: "Submit", style: .default) { [unowned alert] _ in
 let updateDeviceName = alert.textFields![0].text!
 Task {
 do {
 if var device = device as? BoundDevice {
 device.deviceName = updateDeviceName
 try await self.deviceClient.bound.update(device)
 } else if var device = device as? ProfileDevice {
 device.deviceName = updateDeviceName
 try await self.deviceClient.profile.update(device)
 } else if var device = device as? WebAuthnDevice {
 device.deviceName = updateDeviceName
 try await self.deviceClient.webAuthn.update(device)
 }
 } catch AuthApiError.apiFailureWithMessage(let reason, let message, let code, _) {
 self.showAlert(title: reason, message: message + " - \(String(describing: code ?? 0))")
 }
 self.reloadAllDevices()
 }
}

const updateWebAuthnQuery: WebAuthnQueryWithUUID & WebAuthnBody = {
 /* your update query */
};

deviceClient.webAuthn
 .update(updateWebAuthnQuery)
 .then((response) => {
 console.log('Updated WebAuthn Device:', response);
 })
 .catch((error) => {
 console.error('Error updating WebAuthn device:', error);
 });

iOS

JavaScript

Implement your use cases with the Ping SDKs Ping SDKs

470 Copyright © 2025 Ping Identity Corporation

Deleting a device

You can delete or deregister a device, with the following caveats:

The authentication journey that provided the users' session must fulfil one or more of the following criteria:

Used same multi-factor authentication method as the device you want to delete.

For example, to delete a WebAuthn device the authentication journey that created the session must also
authenticate using a WebAuthn device.

Or:

Used the Enable Device Management node that alters the Device Check Enforcement Strategy.

Examples

fun delete(device: Device) {
 viewModelScope.launch {
 try {
 when (device) {
 is OathDevice -> deviceClient.oath.delete(device)
 is PushDevice -> deviceClient.push.delete(device)
 is WebAuthnDevice -> deviceClient.webAuthn.delete(device)
 is BoundDevice -> deviceClient.bound.delete(device)
 is ProfileDevice -> deviceClient.profile.delete(device)
 else -> throw IllegalArgumentException("Unsupported Device Type")
 }
 fetch(selectedType)
 } catch (e: Exception) {
 yield()
 state.update { it.copy(devices = emptyList(), throwable = e) }

 }
 }
}

1.

◦

◦

Android

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 471

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-enable-device-management.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-enable-device-management.html

let delete = UIContextualAction(style: .destructive, title: "Delete") { (action, view, completion) in
 let alert = UIAlertController(title: "Delete Device", message: "Are you sure you want to delete device
\"\(device.deviceName)\"?", preferredStyle: .alert)

 alert.addAction(UIAlertAction(title: "Yes", style: .destructive, handler: { (alert: UIAlertAction!) in
 Task {
 do {
 if let device = device as? BoundDevice {
 try await self.deviceClient.bound.delete(device)
 } else if let device = device as? ProfileDevice {
 try await self.deviceClient.profile.delete(device)
 } else if let device = device as? WebAuthnDevice {
 try await self.deviceClient.webAuthn.delete(device)
 } else if let device = device as? OathDevice {
 try await self.deviceClient.oath.delete(device)
 } else if let device = device as? PushDevice {
 try await self.deviceClient.push.delete(device)
 }
 } catch AuthApiError.apiFailureWithMessage(let reason, let message, let code, _) {
 self.showAlert(title: reason, message: message + " - \(String(describing: code ?? 0))")
 }
 self.reloadAllDevices()
 }
 completion(true)
 }))

const deleteWebAuthnQuery: WebAuthnQueryWithUUID & WebAuthnBody = {
 /* your delete query */
};

deviceClient.webauthn
 .delete(deleteWebAuthnQuery)
 .then((response) => {
 console.log('Deleted WebAuthn Device:', response);
 })
 .catch((error) => {
 console.error('Error deleting WebAuthn device:', error);
 });

Limitations

The SDK for JavaScript does not apply the following customizations when using the device management endpoints:

Customized REST calls using interceptors

Customized logging behaviors

iOS

JavaScript

•

◦

◦

Implement your use cases with the Ping SDKs Ping SDKs

472 Copyright © 2025 Ping Identity Corporation

What are mobile biometrics?

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

Mobile biometric authentication lets users authenticate by using a mobile device’s biometric authenticator. Communication with
the platform authenticator, such as fingerprint reader or facial recognition system, is handled by the SDK. The SDK communicates
with PingAM to perform biometric registration and authentication using WebAuthn nodes. You can configure the nodes in PingAM
to request that the SDK activates authenticators with certain criteria.

To enable mobile biometrics, the user’s authenticator must first be registered through an authentication journey with the
WebAuthn Registration node. Registration involves the selected authenticator creating a key pair. This key pair is specific to the
origin of the application performing the authentication. The private key is used to sign the challenge from PingAM and create
attestation for the authenticator.

The public key of the pair is sent to PingAM and stored in the user’s profile. The private key is securely stored within the mobile
device’s and never leaves the device at any time.

When authenticating using mobile biometrics, the registered user encounters the WebAuthn Authentication node via an
authentication journey. A challenge from PingAM is created and sent to the user’s device. The device then signs an assertion from
that challenge with its stored, private key. This assertion is then sent to PingAM for verification using the public key stored in the
user’s profile. If the data is verified as being from the registered authenticator and passes attestation checks, the authentication is
considered successful.

Differences between device binding and WebAuthn

There are many similarities between WebAuthn and Device Binding and JWS verification. We provide authentication nodes to
implement both technologies in your journeys.

Both can be used for usernameless and passwordless authentication, they both use public key cryptography, and both can be
used as part of a multi-factor authentication journey.

One major difference is that with device binding, the private key never leaves the device.

With WebAuthn, there is a possibility that the private key is synchronized across client devices because of Passkey support, which
may be undesirable for your organization.

For more details of the differences, refer to the following table:

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 473

Comparison of WebAuthn and Device Binding/JWS Verification

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

Industry-standards based

✅ ❌

You can refer to the WebAuthn W3C
specification.
Device binding and JWS verification are
proprietary implementations.

Public key cryptography
✅ ✅

Both methods use Public key
cryptography.

Usernameless support

✅ ✅

After registration, the username can be
stored in the device and obtained
during authentication without the user
having to enter their credentials.

Keys are bound to the
device

❌ ✅

With WebAuthn, if Passkeys are used,
they can be shared across devices.
With device binding, the private keys do
not leave the device.

Sign custom data

❌ ✅

With device binding, you can:

Customize the challenge that the
device must sign. For example,
you could include details of a
transaction, such as the amount
in dollars.
Add custom claims to the
payload when signing a
challenge. This gives additional
context that the server can make
use of by using a scripted node.
Refer to Add custom claims
when signing.

Format of signed data WebAuthn authenticator
data

JSON Web Signature
(JWS)

Integration

❌ ✅

With device binding, after verification,
the signed JWT is available in:

Audit Logs
Transient node state

This enables the data within to be used
for integration into your processes and
business logic.

•

•

•
•

Implement your use cases with the Ping SDKs Ping SDKs

474 Copyright © 2025 Ping Identity Corporation

https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#authenticator-data
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://openid.net/specs/draft-jones-json-web-signature-04.html

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

Platform support ✅ Android
✅ iOS
✅ Web browsers

✅ Android
✅ iOS
❌ Web browsers

As it is challenging to store secure data
in a browser as a client app, device
binding is not supported in web
browsers.

Authenticator support Determined by the
platform.
Configuration limited to:

Biometric with
Fallback to Device
Pin

Determined by the
authentication node.
Full configuration
options:

Biometric
Authentication
Biometric with
Fallback to Device
Pin
Application Pin
Silent

With device binding, you can specify
what authentication action the user
must perform to get access to the
private keys.
This provides greater flexibility in your
security implementation and can
reduce authentication friction for your
users.

Key storage Web browsers and iOS
synchronize to the cloud.
Android has the option to
synchronize to the cloud.

Android
KeyStore

iOS
Secure enclave:
hardware-backed
and not
synchronized to
the cloud.

Both technologies store the private keys
securely on the client.
WebAuthn supports synchronizing the
private keys to the cloud for use on
other devices.
This can reduce authentication friction
for your users but may also increase
the risk of a breach.

Managing device keys Managed by the device
OS.
Apps cannot delete local
client keys
programmatically and do
not have a reference to
the remote server key for
deletion.

Managed by the Ping
SDKs.
Provides an interface to
delete local client and
remote server keys.

The ability to programmatically delete
both client and server keys can greatly
simplify the process of registering a
new device if an old device is lost or
stolen.

Passkey Support ✅ ❌ WebAuthn supports synchronizing the
private keys to the cloud for use on
other devices.
Device binding keeps the private key
locked in the device.

•
•

•

•
•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 475

Prerequisites

To create a journey with mobile biometric authentication, you need the following:

A server that supports the WebAuthn nodes (PingOne Advanced Identity Cloud or PingAM 7.1 or later).

A mobile device that has biometric authentication, such as Face ID or a fingerprint reader, and the user has registered
their biometrics on the device.

An application with the latest native mobile SDK that includes the Biometric Authentication API (v3 or later).

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

App integrity verification
Android

Requires an
assetlinks.json

file.

iOS
Requires apple-
app-site-

association file.

Not provided by the
device binding or
verification nodes.
It can be added as part of
the journey by using app
integrity nodes.

App integrity verification helps ensure
your users are only using a supported
app rather than a third-party or
potentially malicious version.

Key attestation
Android

SafteyNet

iOS
None

Android
Uses hardware-
backed key pairs
with Key
Attestation.

iOS
It can be added as
part of the
journey by using
app integrity
nodes to support
key attestation.

Key attestation verifies that the private
key is valid and correct, is not forged,
and was not created in an insecure
manner.

Complexity Medium Low WebAuthn requires a bit more
configuration, for example, creating and
uploading the assetlinks.json and
apple-app-site-association files.
Device binding only requires the
journey and the SDK built into your app.

1.

2.

3.

Implement your use cases with the Ping SDKs Ping SDKs

476 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation

Prepare the server

The following example journey covers the "usernameless" authentication case. This is a simple prototype flow that does not cover
all edge cases that might be present in a production environment. If WebAuthn authentication is not possible for any reason, the
flow falls back to a normal login journey.

To access this configuration, you need to log in to PingOne Advanced Identity Cloud or PingAM as an administrator, and create a
new journey.

In the editor drag the following nodes into the journey:

WebAuthn Registration node

WebAuthn Authentication node

Inner Tree Evaluator node

Two Choice Collector nodes

Connect the nodes similar to the following example:

Configure the nodes:

In both the WebAuthn Registration and WebAuthn Authentication nodes, the Return challenge as JavaScript
option must be disabled.

In the WebAuthn Registration node, Authentication attachment must be either UNSPECIFIED or PLATFORM .

In the WebAuthn Registration node, enable the Username to device option.

info
The SDKs can only support the WebAuthn Registration and WebAuthn Authentication nodes when the Return
challenge as JavaScript option is disabled.
When this option is disabled, the WebAuthn nodes return a MetadataCallback , which the SDK converts to a
WebAuthnRegistrationCallback or a WebAuthnAuthenticationCallback .

Note

1.

◦

◦

◦

◦

2.

3.

◦

◦

◦

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 477

In the WebAuthn Authentication node, enable the Username from device option.

Use Choice Collector nodes to handle the user input in case of registration failure, and to give users the option to
enable biometrics for this journey.

Set the Relying party identifier to the domain of your PingAM instance.

For example: openam.example.com .

If you want your users to provide a username, deactivate the Username from/to device options, and add a Username Collector
node before the WebAuthn Registration node and WebAuthn Authentication node.

Accessing WebAuthn authenticator information

The Ping SDKs send WebAuthn assertion or attestation information back to the server when they encounter a WebAuthn
Authentication node or a WebAuthn Registration Node.

For example, whether the authenticator used is platform based, such as a built-in fingerprint reader, or is cross-platform ,
such as a USB security key that could be used on multiple clients.

The Ping SDKs also include a number of flags about the authenticator used, as defined in Web Authentication: An API for
accessing Public Key Credentials Level 2.

The authentication nodes store this data in transient state, so that you can use the information to alter the course of the
authentication journey, if required.

WebAuthnRegistration node

Stores the attestation information in a webauthnAttestationInfo object in transient state:

Example webauthnAttestationInfo object

{
 "authenticatorAttachment": "platform",
 "flags": {
 "UP": true,
 "UV": true,
 "ED": false,
 "AT": false,
 "BE": true,
 "BS": true
 }
}

WebAuthnAuthentication node

Stores the assertion information in a webauthnAttestationInfo object in transient state:

◦

◦

◦

Implement your use cases with the Ping SDKs Ping SDKs

478 Copyright © 2025 Ping Identity Corporation

https://www.w3.org/TR/webauthn-2/#sctn-authenticator-data
https://www.w3.org/TR/webauthn-2/#sctn-authenticator-data
https://www.w3.org/TR/webauthn-2/#sctn-authenticator-data

Example webauthnAttestationInfo object

{
 "authenticatorAttachment": "cross-platform",
 "flags": {
 "UP": true,
 "UV": true,
 "ED": false,
 "AT": false,
 "BE": false,
 "BS": false
 }
}

Catching client errors

The WebAuthn Registration and WebAuthn Authentication nodes might result in a Client Error . Client errors can happen for a
number of reasons.

In order to parse the error and act upon it, make use of a Scripted Decision node to access the shared state within the journey,
and read the WebAuthenticationDOMException thrown.

For more information regarding the use of the Scripted Decision node, see Scripted Decision Node API Functionality in the
PingAM documentation.

Biometrics using the Ping SDK for Android

This section covers how to implement mobile biometric authentication using the Ping SDK for Android.

Support for mobile biometrics lets users authenticate through the WebAuthn Registration and WebAuthn Authentication nodes
to register the user’s device, and use the device as an authenticator.

Associate your app with your server

To associate your server with your Android app you need to make public, verifiable statements by using a Digital Asset Links JSON
file (assetlinks.json).

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 479

https://docs.pingidentity.com/pingam/8/authentication-guide/scripting-api-node.html
https://docs.pingidentity.com/pingam/8/authentication-guide/scripting-api-node.html

Example assetlinks.json file

[
 {
 "relation": [
 "delegate_permission/common.handle_all_urls",
 "delegate_permission/common.get_login_creds"
],
 "target": {
 "namespace": "android_app",
 "package_name": "com.example.app",
 "sha256_cert_fingerprints": [
 "E6:5A:5D:37:22:FC...22:99:20:03:E6:47"
]
 }
 }
]

Get SHA-256 fingerprint of your signing certificates

The assetlinks.json file includes SHA-256 fingerprints of the certificates you use to sign your Android applications. The steps
for obtaining the fingerprint depend on the method you use to distribute your application.

Implement your use cases with the Ping SDKs Ping SDKs

480 Copyright © 2025 Ping Identity Corporation

If you are using Android App Bundles to distribute your apps, then the hashes of the certificate used to sign your
application are available in the Android Developer console.

Follow these steps to obtain the SHA-256 hash of your signing certificate:

Configure your Android App Bundle for signing. Google has a number of methods for managing the signing
certificates, including uploading your own or having Google manage them for you.

For information on how to set up signing, refer to Sign your app in the Google Developer Documentation.

In the Google Play Console:

Select the app that will be supporting mobile biometrics.

Navigate to Setup > App integrity > App signing.

Figure 1. App signing keys in the Google Play Console

In the App signing key certificate section, copy the SHA-256 certificate fingerprint value.

Create or update an assetlinks.json with the values copied from the Google Play Console for your app.

Android App Bundles

1.

2.

1.

2.

3.

lightbulb_2
In the Digital Asset Links JSON section is a file that you can copy with the SHA-256 fingerprint
already in place.

Tip

3.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 481

https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://play.google.com/console
https://play.google.com/console

For more information on creating an assetlinks.json file, refer to Google Digital Asset Links.

Implement your use cases with the Ping SDKs Ping SDKs

482 Copyright © 2025 Ping Identity Corporation

https://developers.google.com/digital-asset-links/v1/getting-started
https://developers.google.com/digital-asset-links/v1/getting-started

You must manually generate a SHA-256 fingerprint of your signing key in the following scenarios:

You are signing your APK with the default debug.jks that Android Studio created for the project

You are signing your APK with your own keys that you have generated that have not been uploaded to the Google
Play Console

Follow these steps to obtain the SHA-256 hash of your signing certificate:

In the build.gradle file for your application, check the settings defined in the signingConfigs property:

Example signingConfigs when using the default debug.jks

signingConfigs {
 debug {
 storeFile file('../debug.jks')
 storePassword 'android'
 keyAlias 'androiddebugkey'
 keyPassword 'android'
 }
}

In a terminal window, navigate to the location of the JKS file, and then run the following command:

keytool -list -v -alias <keyAlias> -keystore <storeFile> | grep SHA256

When requested, enter the keystore password, as specified in the keyPassword property in the build.gradle
file.

The command prints the SHA-256 fingerprint of the signing key:

Enter keystore password: android
SHA256: E6:5A:5D:37:22:FC...22:99:20:03:E6:47
Signature algorithm name: SHA256withRSA

Create or update an assetlinks.json with the SHA-256 fingerprint, and the details of your app.

For more information on creating an assetlinks.json file, refer to Google Digital Asset Links.

Local debug keys

•

•

1.

2.

emergency_home
Swap the <keyAlias> and <storeFile> placeholders with the values you obtained from your project. For
example:
keytool -list -v -alias "androiddebugkey" -keystore "./debug.jks" | grep SHA256

Important

3.

4.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 483

https://developers.google.com/digital-asset-links/v1/getting-started
https://developers.google.com/digital-asset-links/v1/getting-started

Host the digital asset links JSON file

For PingOne Advanced Identity Cloud deployments, refer to Upload an Android assetlinks.json file.

For self-managed deployments, host the file at https://<your domain>/.well-known/assetlinks.json .

Summary

You have now created and uploaded a digital asset links JSON file.

You can now proceed to Configure biometric authentication journeys.

Configure biometric authentication journeys

To use mobile biometrics with the Ping SDK for Android configure the authentication nodes in your journeys as follows:

In each WebAuthn Registration node and WebAuthn Authentication node:

Ensure the Return challenge as JavaScript option is not enabled

The SDK expects a JSON response from these nodes, enabling this option would cause the journey to fail

Set the Relying party identifier option to be the domain hosting the assetlinks.json file

For example, openam-docs.forgeblocks.com

You do not need the protocol or the path.

In each WebAuthn Registration node

Set the Authentication attachment option to either UNSPECIFIED or PLATFORM

Ensure the Accepted signing algorithms option includes either ES256 or RS256

Ensure the Limit registrations option is not enabled

Configure origin domains

To enable WebAuthn on Android devices, you must configure the nodes with the base64-encoded SHA-256 hash of the signing
certificate as the origin domain.

The steps for obtaining the base64-encoded SHA-256 hash depend on the method you use to distribute your application.

•

•

1.

◦

◦

2.

◦

◦

◦

Implement your use cases with the Ping SDKs Ping SDKs

484 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/idcloud/latest/developer-docs/upload-android-assetlinks.html
https://backstage.forgerock.com/docs/idcloud/latest/developer-docs/upload-android-assetlinks.html

Follow these steps to download the app signing certificate, and then generate a base64-encoded SHA-256 hash:

In the Google Play Console:

Select the app that will be supporting mobile biometrics.

Navigate to Setup > App integrity > App signing.

In the App signing key certificate section, click Download certificate.

This downloads a local copy of the signing certificate, named deployment_cert.der .

In a terminal window, navigate to the location of the deployment_cert.der file, and then run the following
command:

cat deployment_cert.der | openssl sha256 -binary | openssl base64 | tr '/+' '_-' | tr -d '='

The command prints the base64-encode SHA-256 fingerprint of the signing key:

jEFEYh80K55iHYkxsBRLGtAP6wvjOS5Pj-ZKHHjwi0k

Add a prefix of android:apk-key-hash: to the base64-encode SHA-256 fingerprint. For example:

android:apk-key-hash:jEFEYh80K55iHYkxsBRLGtAP6wvjOS5Pj-ZKHHjwi0k

In each WebAuthn Registration node and WebAuthn Authentication node, set the Origin domains option to the
value created in the previous step:

Android App Bundles

1.

1.

2.

3.

2.

3.

4.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 485

https://play.google.com/console
https://play.google.com/console

Figure 1. Example WebAuthn Registration node configuration

Implement your use cases with the Ping SDKs Ping SDKs

486 Copyright © 2025 Ping Identity Corporation

Follow these steps to extract the app signing certificate from the JKS and generate a base64-encoded SHA-256 hash:

In the build.gradle file for your application, check the settings defined in the signingConfigs property:

Example signingConfigs when using the default debug.jks

signingConfigs {
 debug {
 storeFile file('../debug.jks')
 storePassword 'android'
 keyAlias 'androiddebugkey'
 keyPassword 'android'
 }
}

In a terminal window, navigate to the location of the JKS file, and then run the following command:

keytool -exportcert -alias <keyAlias> -keystore <storeFile> | openssl sha256 -binary | openssl base64
| tr '/+' '_-' | tr -d '='

When requested, enter the keystore password, as specified in the keyPassword property in the build.gradle
file.

The command prints the base64-encoded SHA-256 fingerprint of the signing key:

Enter keystore password: android
jEFEYh80K55iHYkxsBRLGtAP6wvjOS5Pj-ZKHHjwi0k

Add a prefix of android:apk-key-hash: to the base64-encode SHA-256 fingerprint. For example:

android:apk-key-hash:jEFEYh80K55iHYkxsBRLGtAP6wvjOS5Pj-ZKHHjwi0k

In each WebAuthn Registration node and WebAuthn Authentication node, set the Origin domains option to the
value created in the previous step:

Local debug keys

1.

2.

emergency_home
Swap the <keyAlias> and <storeFile> placeholders with the values you obtained from your project. For
example:
keytool -exportcert -alias "androiddebugkey" -keystore "./debug.jks" | openssl sha256 -

binary | openssl base64 | tr '/+' '_-' | tr -d '='

Important

3.

4.

5.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 487

Figure 2. Example WebAuthn Registration node configuration

Summary

You have now configured your WebAuthn journey for use with the Ping SDK for Android.

You can now proceed to Configure the Ping SDK for Android for WebAuthn.

Configure the Ping SDK for Android for WebAuthn

Add the following dependency to the build.gradle file:

implementation 'com.google.android.gms:play-services-fido:20.0.1'

Link to assetlinks.json in the Android app, adding the following line to the manifest file under your application:

1.

2.

Implement your use cases with the Ping SDKs Ping SDKs

488 Copyright © 2025 Ping Identity Corporation

<meta-data android:name="asset_statements" android:resource="@string/asset_statements" />

Add an asset_statements string resource to the string.xml file:

<string name="asset_statements" translatable="false">
[{
 \"include\": \"https://<custom-domain-fqdn>/.well-known/assetlinks.json\"
}]
</string>

Register a WebAuthn device

To register a WebAuthn device on receipt of a WebAuthnRegistrationCallback from the server, use the register() method.

Optionally, use the deviceName parameter to assign a name to the device to help the user identify it.

WebAuthnRegistrationCallback callback =
 node.getCallback(WebAuthnRegistrationCallback.class);

callback.register(requireContext(), deviceName, node, new FRListener<Void>() {
 @Override
 public void onSuccess(Void result) {
 // Registration is successful
 // Continue the journey by calling next()
 }

 @Override
 public void onException(Exception e) {
 // An error occurred during the registration process
 // Continue the journey by calling next()
 }
});

3.

Android - Java

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 489

fun WebAuthnRegistrationCallback(
 callback: WebAuthnRegistrationCallback,
 node: Node,
 onCompleted: () -> Unit
) {

 val context = LocalContext.current
 var deviceName by remember { mutableStateOf(Build.MODEL) }

 try {
 callback.register(context, deviceName, node)
 // Registration is successful
 currentOnCompleted()
 } catch (e: CancellationException) {
 // User cancelled registration
 } catch (e: Exception) {
 // An error occurred during the registration process
 currentOnCompleted()
 }
}

Passkey support

The Ping SDK for Android supports passkeys when the app is running on Android P or later. For more information on passkeys,
refer to Passkey support on Android and Chrome.

If the WebAuthn Registration node has the Username to device option enabled and the app is running on Android P or later,
then the SDK sets the RESIDENT_KEY_REQUIRED flag and enables passkeys for WebAuthn.

In this case, the user is asked to create a new passkey on their device and is required to perform biometric authentication to
confirm. The device syncs the generated passkey to the user’s Google Account for use on their supported devices.

Android - Kotlin

Implement your use cases with the Ping SDKs Ping SDKs

490 Copyright © 2025 Ping Identity Corporation

https://developers.google.com/identity/passkeys/supported-environments
https://developers.google.com/identity/passkeys/supported-environments

Figure 1. Creating a new passkey on Android

If the device is not running Android P or later, the SDK sets the RESIDENT_KEY_DISCOURAGED flag, meaning passkeys are not used
nor synchronized to the Google Account.

For more information about resident keys and client-side discoverable credentials, refer to ResidentKeyRequirement in the
Google developer documentation.

Override passkey support

You can use the setResidentKeyRequirement() method to override the automatic behavior. For example, if you do not want to
use passkeys on Android P devices, you might use the following code:

callback.setResidentKeyRequirement(ResidentKeyRequirement.RESIDENT_KEY_DISCOURAGED)

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 491

https://developers.google.com/android/reference/com/google/android/gms/fido/fido2/api/common/ResidentKeyRequirement
https://developers.google.com/android/reference/com/google/android/gms/fido/fido2/api/common/ResidentKeyRequirement

Authenticate by using a WebAuthn device

After the user registers their mobile device they can use it as an authenticator, with its registered key pair, through the WebAuthn
Authentication node, which the Ping SDK for Android returns as a WebAuthnAuthenticationCallback .

If the device supports passkeys, the operating system displays a list of available passkeys:

Figure 1. Select the passkey to use for WebAuthn

Note that removing credentials stored on the client device does not remove the associated data from the server. You will need to
register the device again after removing credentials from the client.

As part of authentication process, the SDK provides the WebAuthnAuthenticationCallback for authenticating the device as a
credential.

Implement your use cases with the Ping SDKs Ping SDKs

492 Copyright © 2025 Ping Identity Corporation

https://developers.google.com/identity/passkeys/supported-environments
https://developers.google.com/identity/passkeys/supported-environments

WebAuthnAuthenticationCallback callback = node.getCallback(WebAuthnAuthenticationCallback.class);
callback.authenticate(requireContext(), node, webAuthnKeySelector.DEFAULT, new FRListener<Void>() {
 @Override
 public void onSuccess(Void result) {
 // Authentication is successful
 // Continue the journey by calling next()
 }

 @Override
 public void onException(Exception e) {
 // An error occurred during the authentication process
 // Continue the journey by calling next()
 }
});

fun WebAuthnAuthenticationCallback(
 callback: WebAuthnAuthenticationCallback,
 node: Node,
 onCompleted: () -> Unit
) {

 val context = LocalContext.current

 try {
 callback.authenticate(context, node)
 // Authentication successful
 currentOnCompleted()
 } catch (e: CancellationException) {
 // User cancelled authentication
 } catch (e: Exception) {
 // An error occurred during the authentication process
 currentOnCompleted()
 }
}

WebAuthnKeySelector

An optional WebAuthnKeySelector parameter can be provided for authentication.

Android - Java

Android - Kotlin

info
The WebAuthnAuthenticationCallback.authenticate() method has a parameter, Node .
If the current node has both WebAuthnAuthenticationCallback and HiddenValueCallback callbacks then the SDK
automatically sets the outcome of the authentication process for both success and failure to the designated
HiddenValueCallback .

Note

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 493

The WebAuthnKeySelector.select() method is invoked when Username from device is enabled in the WebAuthn
Authentication node. This feature requires that Username to device is enabled in the WebAuthn Registration node as well. With
these options enabled, the registered key pair is associated with the username, and the SDK can present a list of registered keys
to the user to continue the authentication process without collecting a username.

callback.authenticate(this, node, new WebAuthnKeySelector() {
 @Override
 public void select(@NonNull FragmentManager fragmentManager,
 @NonNull List<PublicKeyCredentialSource> sourceList,
 @NonNull FRListener<PublicKeyCredentialSource> listener) {
 //Always pick the first one.
 listener.onSuccess(sourceList.get(0));
 }
}, new FRListener<Void>() {
 @Override
 public void onSuccess(Void result) {
 //...
 }

 @Override
 public void onException(Exception e) {
 //...
 }
});

Handle WebAuthn errors

When an error occurs during the registration or authentication process, the Ping SDK for Android returns the
WebAuthnResponseException exception. In most cases, errors are returned as per the specification. The error code can be
found from WebAuthnResponseExcetpion.getErrorCode() .

Convert exceptions for handling by the PingAM server

When you use WebAuthnRegistrationCallback.register() or WebAuthnAuthenticationCallback.authenticate() , the SDK
automatically parses the error into the appropriate format for PingAM. When PingAM receives the completed callback from the
SDK the authentication flow follows the WebAuthn registration process to reach the appropriate outcome.

However, if the error has to be handled manually, the WebAuthnResponseException class provides a convenience method called
toServerError() to convert the error into the appropriate format.

info
The sourceList is a list of PublicKeyCredentialSource constructed during registration. You can alter the string
value and present the altered value to the user; however, you must return the selected PublicKeyCredentialSource
as it was provided in the original list to the provided listener .

Note

Implement your use cases with the Ping SDKs Ping SDKs

494 Copyright © 2025 Ping Identity Corporation

https://heycam.github.io/webidl/#idl-DOMException-error-names
https://heycam.github.io/webidl/#idl-DOMException-error-names

callback.register(this, node, new FRListener<Void>() {
 @Override
 public void onSuccess(Void result) {
 next();
 }

 @Override
 public void onException(Exception e) {
 if (e instanceof WebAuthnResponseException) {
 WebAuthnResponseException exception = (WebAuthnResponseException) e;
 exception.getErrorCode(); // Do something with the error or proceed to the next node.
 }
 }
});

Unregister a WebAuthn device

To unregister a WebAuthn device from a user’s profile, use the deleteCredentials function in your application. The function
requires the publicKeyCredentialSource as a parameter.

Use the loadAllCredentials method and pass in the relying party identifier (rpId) string to return an array of
publicKeyCredentialSource values. The rpId string must match the configuration you used when you configured the
authentication journeys earlier.

The SDK attempts to delete the record of the device from the server. If that succeeds, it will then remove the local keys held by
the client device. If it fails to remove the records from the server, it will not remove the local keys by default.

However, you can pass the forceDelete: true boolean parameter to the function to delete the local keys even if the call to the
server fails.

val rpId = "openam-docs.forgeblocks.com"

frWebAuthn.loadAllCredentials(rpId).let {
 frWebAuthn.deleteCredentials(it.first(), true)
}

info
WebAuthnResponseExcetpion.getErrorCode() ==

com.google.android.gms.fido.fido2.api.common.ErrorCode#NOT_SUPPORTED_ERR results in an Unsupported
outcome in both WebAuthn Registration node and WebAuthn Authentication node.
Any other WebAuthnResponseExcetpion.getErrorCode() results in a Client Error outcome in the nodes.

Note

info
You can only remove a device if it has the username embedded in the profile.
You must enable the Username to Device option in the WebAuthn Registration node to be able to remove the
device from a user’s profile on the server using the SDKs.

Note

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 495

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html

Removing keys from either the server or the device means you will need to register it again for WebAuthn journeys. Refer to
Register a WebAuthn device.

More information

deleteCredentials API reference

loadAllCredentials API reference

Biometrics using the Ping SDK for iOS

This section covers how to implement mobile biometric authentication using the Ping SDK for iOS.

Support for mobile biometrics lets users authenticate through the WebAuthn Registration and WebAuthn Authentication nodes
to register the user’s device, and use the device as an authenticator.

Prepare an apple-app-site-association file

You can create an apple-app-site-association file that creates a secure association between your domain and your app. This
allows you to share credentials, and use universal links to open your app from your website.

To create the secure association, you upload the apple-app-site-association file to your domain, and add matching
Associated Domains Entitlement keys to your app.

Prepare an apple-app-site-association file. For example:

{
 "applinks": {
 "details": [
 {
 "appIDs": [
 "XXXXXXXXXX.com.example.AppName"
],
 "components": [
 {
 "/": "/reset/*",
 "comment": "Success after reset password journey"
 }
]
 }
]
 },
 "webcredentials": {
 "apps": [
 "XXXXXXXXXX.com.example.AppName"
]
 }
}

For more information, refer to Supporting associated domains.

•

•

1.

Implement your use cases with the Ping SDKs Ping SDKs

496 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/delete-credentials.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/delete-credentials.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/delete-credentials.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/load-all-credentials.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/load-all-credentials.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/load-all-credentials.html
https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://developer.apple.com/documentation/xcode/supporting-associated-domains

Host the file at your domain.

For PingOne Advanced Identity Cloud deployments, refer to Upload an apple-app-site-association file in the
Identity Cloud documentation.

For self-managed deployments, host the file at https://<your domain>/.well-known/apple-app-site-
association .

Configure the associated domains entitlement key in your app.

For more information, refer to Associated Domains Entitlement.

Configure biometric authentication journeys

To use mobile biometrics with the Ping SDK for iOS configure the authentication nodes in your journeys as follows:

In each WebAuthn Registration node and WebAuthn Authentication node:

Ensure the Return challenge as JavaScript option is not enabled.

The SDK expects a JSON response from these nodes; enabling the Return challenge as JavaScript option would
cause the journey to fail.

Set the Relying party identifier option to be the domain hosting the apple-app-site-association file; for
example, openam-docs.forgeblocks.com .

You do not need the protocol or the path.

To enable passkey support, enable Username to device in the WebAuthn Registration node, and Username from
device in the WebAuthn Authentication node.

In each WebAuthn Registration node:

Set the Authentication attachment option to either UNSPECIFIED or PLATFORM .

Ensure the Accepted signing algorithms option includes ES256 .

Ensure the Limit registrations option is not enabled.

Configure origin domains

To enable WebAuthn on iOS devices, you must configure the nodes with a specially-formatted string containing the bundle
identifier of your application, which you can find in XCode, on the Signing & Capabilities tab of your apps target page:

2.

◦

◦

3.

1.

◦

◦

◦

2.

◦

◦

◦

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 497

https://backstage.forgerock.com/docs/idcloud/latest/developer-docs/upload-ios-apple-app-site-association.html
https://backstage.forgerock.com/docs/idcloud/latest/developer-docs/upload-ios-apple-app-site-association.html
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_associated-domains
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_associated-domains

Figure 1. Bundle identifier field in XCode

Prefix this value with the string ios:bundle-id: . For example:

ios:bundle-id:com.forgerock.ios.sdk.Quickstart

To enable passkey support, add the fully-qualified domain name of the PingOne Advanced Identity Cloud or PingAM instance as
an origin domain. For example, https://openam-docs.forgeblocks.com .

Add these values to the Origin domains property in each WebAuthn Registration node and WebAuthn Authentication node in
the journey.

Register a WebAuthn device

To register a WebAuthn device on receipt of a WebAuthnRegistrationCallback from the server, use the register() method.

Implement your use cases with the Ping SDKs Ping SDKs

498 Copyright © 2025 Ping Identity Corporation

https://openam-docs.forgeblocks.com
https://openam-docs.forgeblocks.com

if let registrationCallback = callback as? WebAuthnRegistrationCallback {

 registrationCallback.delegate = self

 registrationCallback.register(
 node: node,
 window: UIApplication.shared.windows.first,
 deviceName: UIDevice.current.name,
 usePasskeysIfAvailable: false)
 { (attestation) in
 // Registration is successful
 // Submit the Node using Node.next()
 } onError: { (error) in
 // An error occurred during the registration process
 // Submit the Node using Node.next()
 }
}

Use the optional deviceName parameter to assign a name to the device to help the user identify it.

Set the usePasskeysIfAvailable parameter to true to enable passkeys on supported devices.

Enable Passkey support

The Ping SDK for iOS supports passkeys when the app is running on iOS 16 or later, or recent versions of macOS. For more
information, refer to Passkeys in the Apple developer documentation.

To enable the use of passkeys during registration, you should: - In PingAM, enable the Username to device option in the
WebAuthn Registration node in your authentication journeys. - In the SDK, set the usePasskeysIfAvailable parameter to true
in the registrationCallback.register function. - Run your app on a passkey-enabled version of iOS or macOS.

When passkeys are enabled the user is asked to create a new passkey on their device and is required to perform biometric
authentication to confirm. The device syncs the generated passkey to the user’s iCloud account for use on their supported
devices.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 499

https://developer.apple.com/passkeys/
https://developer.apple.com/passkeys/

Figure 1. Creating a new passkey on iOS

Detect WebAuthn keys on passkey-enabled devices

The localKeyExistsAndPasskeysAreAvailable() method is invoked when the SDK detects an existing WebAuthn key on the
device, and that the device supports passkeys.

// MARK: PlatformAuthenticatorAuthenticationDelegate
func localKeyExistsAndPasskeysAreAvailable() {
 // You can prompt the user to Register a new Key to use with Apple Passkeys. From then on, use the `register` and
`authenticate` methods passing the `usePasskeysIfAvailable: true`.
}

You can use this delegate method to offer a journey that reregisters the device. Make sure you set usePasskeysIfAvailable to
true .

Implement your use cases with the Ping SDKs Ping SDKs

500 Copyright © 2025 Ping Identity Corporation

Request consent

You might need to ask the user for consent to perform certain actions depending on the configuration of the authentication
journey.

The Ping SDK for iOS provides the PlatformAuthenticatorRegistrationDelegate protocol for requesting user consent:

public protocol PlatformAuthenticatorRegistrationDelegate {
 func excludeCredentialDescriptorConsent(consentCallback: @escaping WebAuthnUserConsentCallback)
 func createNewCredentialConsent(keyName: String, rpName: String, rpId: String?, userName: String,
userDisplayName: String, consentCallback: @escaping WebAuthnUserConsentCallback)
}

Request consent when credentials already exist for the device

The SDK invokes the excludeCredentialDescriptorConsent() method when Limit registrations is enabled in the
WebAuthn Registration node.

This setting prevents a device from being registered if the server has a set of matching keys already stored for it.

During registration, the server returns a list of key descriptor identifiers that the SDK compares with its stored keys. If there is a
match, you must get consent from the user to generate a new set of identifiers without explaining the reason, which is they
already exist.

For more information, refer to section (6.3.2.3) in the WebAuthn specification.

The following example shows how to request consent:

func excludeCredentialDescriptorConsent(consentCallback: @escaping WebAuthnUserConsentCallback) {
 let alert = UIAlertController(title: "Create Credentials", message: nil, preferredStyle: .alert)
 let cancelAction = UIAlertAction(title: "Cancel", style: .cancel, handler: { (_) in
 consentCallback(.reject)
 })
 let allowAction = UIAlertAction(title: "Allow", style: .default) { (_) in
 consentCallback(.allow)
 }
 alert.addAction(cancelAction)
 alert.addAction(allowAction)

 guard let vc = self.viewController else {
 return
 }

 DispatchQueue.main.async {
 viewController.present(alert, animated: true, completion: nil)
 }
}

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 501

https://www.w3.org/TR/webauthn/#sctn-op-make-cred
https://www.w3.org/TR/webauthn/#sctn-op-make-cred

If the user selects Allow, the SDK returns WebAuthnError.notAllowed . If the user selects Cancel, the SDK returns
WebAuthnError.invalidState .

Request consent to create new credentials

The SDK invokes the createNewCredentialConsent() method to obtain user consent prior to the SDK generating a key-pair.

In addition to the consent, the SDK might prompt for biometric authentication if the WebAuthn Registration node’s User
verification requirement is set to PREFERRED or REQUIRED .

For more information, refer to section 6.3.2.6 in the WebAuthn specification.

The following example shows how to request consent:

func createNewCredentialConsent(
 keyName: String,
 rpName: String,
 rpId: String?,
 userName: String,
 userDisplayName: String,
 consentCallback: @escaping WebAuthnUserConsentCallback)
 {
 let alert = UIAlertController(
 title: "Create Credentials",
 message: "KeyName: \(keyName) | Relying Party Name: \(rpName) | User Name: \(userName)",
 preferredStyle: .alert)

 let cancelAction = UIAlertAction(
 title: "Cancel",
 style: .cancel,
 handler: { (_) in
 consentCallback(.reject)
 })

 let allowAction = UIAlertAction(
 title: "Allow",
 style: .default) { (_) in
 consentCallback(.allow)
 }
 alert.addAction(cancelAction)
 alert.addAction(allowAction)

 guard let vc = self.viewController else {
 return
 }

 DispatchQueue.main.async {
 viewController.present(alert, animated: true, completion: nil)
 }
 }

If the user selects Allow, the SDK creates the key pair and performs the attestation. If the user selects Cancel, the SDK returns
WebAuthnError.cancelled .

Implement your use cases with the Ping SDKs Ping SDKs

502 Copyright © 2025 Ping Identity Corporation

https://www.w3.org/TR/webauthn/#sctn-op-make-cred
https://www.w3.org/TR/webauthn/#sctn-op-make-cred

Authenticate by using a WebAuthn device

After the user’s mobile device has been registered in PingAM, the device can be used as an authenticator with its registered key
pair through the WebAuthn Authentication node, which is returned as a WebAuthnAuthenticationCallback by the Ping SDK for
iOS.

If the device supports Passkeys, the operating system displays passkeys that can be used:

Figure 1. Select a passkey to use for WebAuthn

Note that removing credentials stored on the client device does not remove the associated data from the server. You will need to
register the device again after removing credentials from the client.

With WebAuthnAuthenticationCallback , you must implement the following protocol method to handle the authentication
process:

public protocol PlatformAuthenticatorAuthenticationDelegate {
 func selectCredential(keyNames: [String], selectionCallback: @escaping WebAuthnCredentialsSelectionCallback)
}

As part of authentication process, the SDK provides the WebAuthnAuthenticationCallback for authenticating the device as a
credential.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 503

https://developer.apple.com/passkeys/
https://developer.apple.com/passkeys/

if let authenticationCallback = callback as? WebAuthnAuthenticationCallback {

 authenticationCallback.delegate = self

 // Note that the `Node` parameter in `.authenticate()` is an optional parameter.
 // If the node is provided, the SDK automatically returns the assertion
 // in the HiddenValueCallback.

 authenticationCallback.authenticate(
 node: node,
 window: UIApplication.shared.windows.first,
 preferImmediatelyAvailableCredentials: false,
 usePasskeysIfAvailable: true
) { (assertion) in
 // Authentication is successful
 // Submit the Node using Node.next()
 } onError: { (error) in
 // An error occurred during the authentication process
 // Submit the Node using Node.next()
 }
}

Set the usePasskeysIfAvailable parameter to true to enable passkeys on supported devices.

When passkeys are enabled, the device offers the ability to sign in using passkeys stored an a separate supported device, by first
scanning a QR code.

Implement your use cases with the Ping SDKs Ping SDKs

504 Copyright © 2025 Ping Identity Corporation

Figure 2. Use a stored passkey from another device by first scanning the QR code

To prevent this behavior and only accept passkeys stored on the initial client device, set the
preferImmediatelyAvailableCredentials parameter to true .

Select credentials

The func selectCredential() method is invoked when Username from device is enabled in the WebAuthn Authentication
node. This feature requires that Username to device is enabled in the WebAuthn Registration node as well. With these options
enabled, the registered key pair is associated with the username, and the SDK can present a list of registered keys to the user to
continue the authentication process without collecting a username.

info
The WebAuthnAuthenticationCallback.authenticate() method has an optional parameter, Node .
If the current node contains both WebAuthnAuthenticationCallback and HiddenValueCallback callbacks, and this
node is passed as a parameter to the WebAuthnAuthenticationCallback.authenticate() method, then the SDK
automatically returns the outcome of the authentication process for both success and failure into the designated
HiddenValueCallback .
If the node is not provided, the assertion or error outcome must be set manually.

Note

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 505

func selectCredential(keyNames: [String], selectionCallback: @escaping WebAuthnCredentialsSelectionCallback) {
 let actionSheet = UIAlertController(title: "Select Credentials", message: nil, preferredStyle: .actionSheet)

 for keyName in keyNames {
 actionSheet.addAction(UIAlertAction(title: keyName, style: .default, handler: { (action) in
 selectionCallback(keyName)
 }))
 }

 actionSheet.addAction(UIAlertAction(title: "Cancel", style: .cancel, handler: { (action) in
 selectionCallback(nil)
 }))

 guard let vc = self.viewController else {
 return
 }

 if actionSheet.popoverPresentationController != nil {
 actionSheet.popoverPresentationController?.sourceView = self
 actionSheet.popoverPresentationController?.sourceRect = self.bounds
 }

 DispatchQueue.main.async {
 viewController.present(actionSheet, animated: true, completion: nil)
 }
}

Error handling

When an error occurs during the registration or authentication process, the Ping SDK for iOS returns the following error. In most
cases, errors are returned as per the specification:

public enum WebAuthnError: FRError {
 case badData
 case badOperation
 case invalidState
 case constraint
 case cancelled
 case timeout
 case notAllowed
 case unsupported
 case unknown
}

info
The keyName is an array of strings constructed as <User’s displayName> <Registered Timestamp> .
You may alter the string value, and present the altered value to the user, but you must return the key name string as
it was provided in the original array.

Note

Implement your use cases with the Ping SDKs Ping SDKs

506 Copyright © 2025 Ping Identity Corporation

https://heycam.github.io/webidl/#idl-DOMException-error-names
https://heycam.github.io/webidl/#idl-DOMException-error-names

Error handling with PingAM node outcome

When you use WebAuthnRegistrationCallback.register() or WebAuthnAuthenticationCallback.authenticate() , the SDK
automatically parses the error into the appropriate format for PingAM. When PingAM receives the node, the authentication flow
follows the WebAuthn registration process to reach the appropriate outcome.

However, if the error has to be handled manually, the WebAuthnError provides a convenience method called
WebAuthnError.convertToWebAuthnOutcome() to convert the error into an appropriate format.

// keep HiddenValueCallback to set the value later
let hiddenValueCallback = HiddenValueCallback
if let registrationCallback = callback as? WebAuthnRegistrationCallback {
 // Perform registration
 registrationCallback.register { (attestation) in
 // Registration successful

 // only if HiddenValueCallback is designated for WebAuthn outcome
 if hiddenValueCallback.isWebAuthnOutcome {
 // set attestation manually
 hiddenValueCallback.setValue(attestation)
 }
 // Submit the Node using Node.next()
 } onError: { (error) in
 // only if HiddenValueCallback is designated for WebAuthn outcome
 // and, the error is WebAuthnError
 if hiddenValue.isWebAuthnOutcome, let webAuthnError = error as? WebAuthnError {
 // set error outcome manually
 hiddenValueCallback.setValue(webAuthnError.convertToWebAuthnOutcome())
 }
 // Submit the Node using Node.next()
 }
}

Unregister a WebAuthn device

To unregister a WebAuthn device from a user’s profile, use the deleteCredential function in your application. The function
requires the publicKeyCredentialSource as a parameter.

Use the loadAllCredentials method and pass in the relying party identifier (rpId) string to return an array of
publicKeyCredentialSource values. The rpId string must match the configuration you used when you configured the
authentication journeys earlier.

info
WebAuthnError.unsupported results in Unsupported outcome in both the WebAuthn Registration and WebAuthn
Authentication nodes.
Any other WebAuthnError results in a Client Error outcome in the nodes.

Note

info
You can only remove a device if it has the username embedded in the profile.
You must enable the Username to Device option in the WebAuthn Registration node to be able to remove the
device from a user’s profile on the server using the SDKs.

Note

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 507

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html

The SDK attempts to delete the record of the device from the server. If that succeeds, it will then remove the local keys held by
the client device. If it fails to remove the records from the server, it will not remove the local keys by default.

However, you can pass the forceDelete: true boolean parameter to the function to delete the local keys even if the call to the
server fails.

let rpId = "openam-docs.forgeblocks.com"

if let credentialSource = FRWebAuthn.loadAllCredentials(
 by: rpId
).first {
 try? FRWebAuthn.deleteCredential(
 publicKeyCredentialSource: credentialSource,
 forceDelete: true
)
}

Removing keys from either the server or the device means you will need to register it again for WebAuthn journeys. Refer to
Register a WebAuthn device.

More information

deleteCredential API reference

loadAllCredentials API reference

Web biometrics

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

What are web biometrics?

Web biometrics let users authenticate by using an authenticator device. For example:

The fingerprint scanner on a laptop or phone.

Face ID.

Communication with the authentication devices is handled by the SDK. You can configure the nodes in PingAM to request that the
SDK activates authenticators with certain criteria. For example, the authenticator can be:

Built into the platform.

A cross-platform USB device.

•

•

•

•

•

•

Implement your use cases with the Ping SDKs Ping SDKs

508 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuth/Classes/FRWebAuthn.html#/s:6FRAuth10FRWebAuthnC16deleteCredential4withyAA09PublicKeyE6SourceV_tFZ
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuth/Classes/FRWebAuthn.html#/s:6FRAuth10FRWebAuthnC16deleteCredential4withyAA09PublicKeyE6SourceV_tFZ
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuth/Classes/FRWebAuthn.html#/s:6FRAuth10FRWebAuthnC16deleteCredential4withyAA09PublicKeyE6SourceV_tFZ
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuth/Classes/FRWebAuthn.html#/s:6FRAuth10FRWebAuthnC18loadAllCredentials2bySayAA25PublicKeyCredentialSourceVGSS_tFZ
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuth/Classes/FRWebAuthn.html#/s:6FRAuth10FRWebAuthnC18loadAllCredentials2bySayAA25PublicKeyCredentialSourceVGSS_tFZ
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuth/Classes/FRWebAuthn.html#/s:6FRAuth10FRWebAuthnC18loadAllCredentials2bySayAA25PublicKeyCredentialSourceVGSS_tFZ

Bluetooth.

NFC.

You can also configure PingAM to request that the device verify the identity of the user, or that a user is present.

To use web biometrics, users must first register their authenticators. If recovery codes are enabled, users must also make a copy
of their codes.

Registration involves the selected authenticator creating or minting, a key pair. The key pair is specific to the origin of the site that
uses it. This helps fight against phishing attacks.

The public key of the pair is sent to PingAM and stored in the user’s profile. The private key is stored securely, either in the
authenticator itself or in the platform managing the authenticators. The private key does not leave the client at any time.

When authenticating using web biometrics, PingAM sends a challenge to the authenticator, expecting it to use this challenge to
create a signed assertion with its stored, private key.

The assertion is then sent to PingAM for verification using the public key stored in the user’s profile. If the data is verified as being
from the correct device, and passes any attestation checks, the authentication is successful.

Differences between device binding and WebAuthn

There are many similarities between WebAuthn and Device Binding and JWS verification. We provide authentication nodes to
implement both technologies in your journeys.

Both can be used for usernameless and passwordless authentication, they both use public key cryptography, and both can be
used as part of a multi-factor authentication journey.

One major difference is that with device binding, the private key never leaves the device.

With WebAuthn, there is a possibility that the private key is synchronized across client devices because of Passkey support, which
may be undesirable for your organization.

For more details of the differences, refer to the following table:

•

•

Comparison of WebAuthn and Device Binding/JWS Verification

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

Industry-standards based

✅ ❌

You can refer to the WebAuthn W3C
specification.
Device binding and JWS verification are
proprietary implementations.

Public key cryptography
✅ ✅

Both methods use Public key
cryptography.

Usernameless support

✅ ✅

After registration, the username can be
stored in the device and obtained
during authentication without the user
having to enter their credentials.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 509

https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

Keys are bound to the
device

❌ ✅

With WebAuthn, if Passkeys are used,
they can be shared across devices.
With device binding, the private keys do
not leave the device.

Sign custom data

❌ ✅

With device binding, you can:

Customize the challenge that the
device must sign. For example,
you could include details of a
transaction, such as the amount
in dollars.
Add custom claims to the
payload when signing a
challenge. This gives additional
context that the server can make
use of by using a scripted node.
Refer to Add custom claims
when signing.

Format of signed data WebAuthn authenticator
data

JSON Web Signature
(JWS)

Integration

❌ ✅

With device binding, after verification,
the signed JWT is available in:

Audit Logs
Transient node state

This enables the data within to be used
for integration into your processes and
business logic.

Platform support ✅ Android
✅ iOS
✅ Web browsers

✅ Android
✅ iOS
❌ Web browsers

As it is challenging to store secure data
in a browser as a client app, device
binding is not supported in web
browsers.

•

•

•
•

Implement your use cases with the Ping SDKs Ping SDKs

510 Copyright © 2025 Ping Identity Corporation

https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#authenticator-data
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://openid.net/specs/draft-jones-json-web-signature-04.html

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

Authenticator support Determined by the
platform.
Configuration limited to:

Biometric with
Fallback to Device
Pin

Determined by the
authentication node.
Full configuration
options:

Biometric
Authentication
Biometric with
Fallback to Device
Pin
Application Pin
Silent

With device binding, you can specify
what authentication action the user
must perform to get access to the
private keys.
This provides greater flexibility in your
security implementation and can
reduce authentication friction for your
users.

Key storage Web browsers and iOS
synchronize to the cloud.
Android has the option to
synchronize to the cloud.

Android
KeyStore

iOS
Secure enclave:
hardware-backed
and not
synchronized to
the cloud.

Both technologies store the private keys
securely on the client.
WebAuthn supports synchronizing the
private keys to the cloud for use on
other devices.
This can reduce authentication friction
for your users but may also increase
the risk of a breach.

Managing device keys Managed by the device
OS.
Apps cannot delete local
client keys
programmatically and do
not have a reference to
the remote server key for
deletion.

Managed by the Ping
SDKs.
Provides an interface to
delete local client and
remote server keys.

The ability to programmatically delete
both client and server keys can greatly
simplify the process of registering a
new device if an old device is lost or
stolen.

Passkey Support ✅ ❌ WebAuthn supports synchronizing the
private keys to the cloud for use on
other devices.
Device binding keeps the private key
locked in the device.

•
•

•

•
•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 511

Before using web biometrics

The device must have a biometric (platform) authenticator.

The OS must provide access to the platform authenticator via the API.

The browser must support WebAuthn capabilities, and support the OS’s platform authenticator’s API.

If any of the above prerequisites is missing, web biometrics will not work.

For more information on support in PingAM, see Minimum Web Authentication User Agent Versions in the PingAM
documentation.

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

App integrity verification
Android

Requires an
assetlinks.json

file.

iOS
Requires apple-
app-site-

association file.

Not provided by the
device binding or
verification nodes.
It can be added as part of
the journey by using app
integrity nodes.

App integrity verification helps ensure
your users are only using a supported
app rather than a third-party or
potentially malicious version.

Key attestation
Android

SafteyNet

iOS
None

Android
Uses hardware-
backed key pairs
with Key
Attestation.

iOS
It can be added as
part of the
journey by using
app integrity
nodes to support
key attestation.

Key attestation verifies that the private
key is valid and correct, is not forged,
and was not created in an insecure
manner.

Complexity Medium Low WebAuthn requires a bit more
configuration, for example, creating and
uploading the assetlinks.json and
apple-app-site-association files.
Device binding only requires the
journey and the SDK built into your app.

•

•

•

Implement your use cases with the Ping SDKs Ping SDKs

512 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-mfa-webauthn.html#table-supported-webauthn-browsers
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-mfa-webauthn.html#table-supported-webauthn-browsers

Prepare for web biometrics

You must create an authentication journey in PingAM to authenticate users by using a web biometrics device. The journey also
allows users to register a device if they have not already done so.

For more information, see Creating Trees for Web Authentication (WebAuthn) in the PingAM documentation.

Handle web biometrics

The Ping SDK for JavaScript has the following methods for handling web biometrics:

FRWebAuthn.register(step, deviceName)

For registering new devices. Optionally, assign a name to the device to help the user identify it. If you do not provide a
custom name, the server assigns a generic value such as New Security Key.

FRWebAuthn.authenticate(step)

For authenticating using a previously registered device.

Use the FRWebAuthn.getWebAuthnStepType() convenience method to determine which method to use:

// Determine if a step is a web biometrics step
const stepType = FRWebAuthn.getWebAuthnStepType(step);

if (stepType === WebAuthnStepType.Registration) {
 // Registering a new device, with optional device name
 step = await FRWebAuthn.register(step, 'myDeviceName');
} else if (stepType === WebAuthnStepType.Authentication) {
 // Authenticating with a registered device
 step = await FRWebAuthn.authenticate(step);
}

// `step` has now been populated with the web biometrics credentials

// Send this new step to the {fr_server}
nextStep = FRAuth.next(step);

Using the device name

The device name is available for display in other callbacks received from a journey.

For example, you can get the device name when displaying recovery codes as follows:

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 513

https://docs.pingidentity.com/pingam/8/authentication-guide/authn-mfa-webauthn.html#authn-mfa-web-authn
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-mfa-webauthn.html#authn-mfa-web-authn

// Determine if step is a display recovery codes step
const isDisplayRecoveryCodesStep = FRRecoveryCodes.isDisplayStep(step);

if (isDisplayRecoveryCodesStep) {
 // Obtain recovery codes
 const recoveryCodes = FRRecoveryCodes.getCodes(step);

 // Obtain device display name
 const deviceName = FRRecoveryCodes.getDisplayName(step);

 // Display `recoveryCodes` and `deviceName` to the user
}

Set up passwordless authentication with passkeys

What is passwordless?

Passwordless authentication is the term used to describe a group of identity verification methods that don’t rely on users
entering passwords. There are many ways to go passwordless, such as supporting biometrics, hardware security keys, or the use
of specialized mobile applications like authenticators that can all provide a secure alternative to inputting a password and
sending it over the network.

We offer extensive support for passwordless, including OTPs either via email or SMS, an authenticator application, push
notifications with number challenges and biometric unlock, magic links, WebAuthn, and more.

All these methods can be used in passwordless scenarios or as additional factors of authentication (2FA/MFA) to secure your
systems further. Some of these require an authenticator application, such as the ForgeRock Authenticator, while others just on
existing channels like email or SMS. Using the Ping SDKs, developers can include the functionality of the ForgeRock Authenticator
within their own applications.

In this blog post, we focus more on using biometrics for going passwordless. The Ping SDKs support the WebAuthn protocol,
offering out-of-the-box nodes in both PingAM and PingOne Advanced Identity Cloud. Furthermore, using the SDKs, developers
can utilize the power of passkeys on every supported platform.

Biometrics and WebAuthn

What are these technologies, and how can we use them? Let’s dive a bit deeper into that.

WebAuthn is an abbreviation of Web Authentication. It is a specification issued by W3C. It specifies a set of interfaces for
browsers and apps to implement.

To use the WebAuthn protocol, the user requires access to a strong authenticator. Newer laptops and most Android and iOS
mobile devices include biometric sensors that can be used for this. Those biometric scanners, more commonly known by their
marketing names such as FaceID or TouchID, are used to register the user’s biometric data with the mobile operating system.
They can be used to unlock the device itself, unlock information stored in the secure storage, and more.

lightbulb_2
The Ping (ForgeRock) Login Widget has built-in support and associated UI for displaying the device name alongside
the recovery codes.

Tip

Implement your use cases with the Ping SDKs Ping SDKs

514 Copyright © 2025 Ping Identity Corporation

https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/#sctn-intro
https://www.w3.org/TR/webauthn-2/#sctn-intro

WebAuthn requires two distinct ceremonies:

Registration

During registration, the device (called "authenticator") generates a cryptographic keypair. The public key is sent to the
server, and the private key is safely stored locally.

Authentication

During authentication, the server asks the client to sign a message with a nonce (called "challenge") with its private key.

This signed message with the nonce can then be verified by the server using the public key obtained through registration.

This has really strong security properties because the private key is hardware bound and never leaves the device. The
signing of the message is done directly by the authenticator, the device, and protected by some form of local user
verification (PIN or Biometrics).

Differences between WebAuthn keys and Passkeys

So, what is the difference between WebAuthn keys, as described above, and passkeys? Until now, the private key created during
the registration process was stored on the device. This has one shortcoming; if the user changes the device or loses it, they
cannot authenticate again. Moreover, the server needs to allow for registration of more than one key if users have multiple
devices for authenticating to a website or service.

Apple, Google, and Microsoft chose passkeys, an implementation of WebAuthn with the additional feature of storing the user’s
private keys in their respective cloud services. That means that those "passkeys" are available to use on all the devices logged in
to the same cloud account.

This means Apple, Google, and Microsoft are responsible for keeping the user’s private keys safe. Also, it is up to the user to
ensure their account on these providers is secure by using strong passwords, MFA, and so on.

Although this makes the attack vector broader, this way of handling keys makes the whole passwordless experience more
accessible and, therefore, more likely to be used by the everyday user. Additionally, it makes account recovery due to a single lost
device a thing of the past.

Differences between WebAuthn and Device Binding

There are many similarities between WebAuthn and Device Binding and JWS verification. We provide authentication nodes to
implement both technologies in your journeys.

Both can be used for usernameless and passwordless authentication, they both use public key cryptography, and both can be
used as part of a multi-factor authentication journey.

One major difference is that with device binding, the private key never leaves the device.

With WebAuthn, there is a possibility that the private key is synchronized across client devices because of Passkey support, which
may be undesirable for your organization.

For more details of the differences, refer to the following table:

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 515

Comparison of WebAuthn and Device Binding/JWS Verification

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

Industry-standards based

✅ ❌

You can refer to the WebAuthn W3C
specification.
Device binding and JWS verification are
proprietary implementations.

Public key cryptography
✅ ✅

Both methods use Public key
cryptography.

Usernameless support

✅ ✅

After registration, the username can be
stored in the device and obtained
during authentication without the user
having to enter their credentials.

Keys are bound to the
device

❌ ✅

With WebAuthn, if Passkeys are used,
they can be shared across devices.
With device binding, the private keys do
not leave the device.

Sign custom data

❌ ✅

With device binding, you can:

Customize the challenge that the
device must sign. For example,
you could include details of a
transaction, such as the amount
in dollars.
Add custom claims to the
payload when signing a
challenge. This gives additional
context that the server can make
use of by using a scripted node.
Refer to Add custom claims
when signing.

Format of signed data WebAuthn authenticator
data

JSON Web Signature
(JWS)

Integration

❌ ✅

With device binding, after verification,
the signed JWT is available in:

Audit Logs
Transient node state

This enables the data within to be used
for integration into your processes and
business logic.

•

•

•
•

Implement your use cases with the Ping SDKs Ping SDKs

516 Copyright © 2025 Ping Identity Corporation

https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#authenticator-data
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://openid.net/specs/draft-jones-json-web-signature-04.html

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

Platform support ✅ Android
✅ iOS
✅ Web browsers

✅ Android
✅ iOS
❌ Web browsers

As it is challenging to store secure data
in a browser as a client app, device
binding is not supported in web
browsers.

Authenticator support Determined by the
platform.
Configuration limited to:

Biometric with
Fallback to Device
Pin

Determined by the
authentication node.
Full configuration
options:

Biometric
Authentication
Biometric with
Fallback to Device
Pin
Application Pin
Silent

With device binding, you can specify
what authentication action the user
must perform to get access to the
private keys.
This provides greater flexibility in your
security implementation and can
reduce authentication friction for your
users.

Key storage Web browsers and iOS
synchronize to the cloud.
Android has the option to
synchronize to the cloud.

Android
KeyStore

iOS
Secure enclave:
hardware-backed
and not
synchronized to
the cloud.

Both technologies store the private keys
securely on the client.
WebAuthn supports synchronizing the
private keys to the cloud for use on
other devices.
This can reduce authentication friction
for your users but may also increase
the risk of a breach.

Managing device keys Managed by the device
OS.
Apps cannot delete local
client keys
programmatically and do
not have a reference to
the remote server key for
deletion.

Managed by the Ping
SDKs.
Provides an interface to
delete local client and
remote server keys.

The ability to programmatically delete
both client and server keys can greatly
simplify the process of registering a
new device if an old device is lost or
stolen.

Passkey Support ✅ ❌ WebAuthn supports synchronizing the
private keys to the cloud for use on
other devices.
Device binding keeps the private key
locked in the device.

•
•

•

•
•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 517

How to implement Passkeys using Ping SDKs

The first step is having access to a PingAM instance or a PingOne Advanced Identity Cloud tenant, as well as an existing
application that uses these for authentication. In this example, we use PingOne Advanced Identity Cloud.

Download the sample app

We provide a sample app we’ve built that implements authentication using the Ping SDK for iOS. You can download the full iOS
project from the SDK Sample Apps repo on GitHub.

Create WebAuthn registration and authentication journeys

In PingOne Advanced Identity Cloud, we will create new journeys for both WebAuthn device registration and authentication.

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

App integrity verification
Android

Requires an
assetlinks.json

file.

iOS
Requires apple-
app-site-

association file.

Not provided by the
device binding or
verification nodes.
It can be added as part of
the journey by using app
integrity nodes.

App integrity verification helps ensure
your users are only using a supported
app rather than a third-party or
potentially malicious version.

Key attestation
Android

SafteyNet

iOS
None

Android
Uses hardware-
backed key pairs
with Key
Attestation.

iOS
It can be added as
part of the
journey by using
app integrity
nodes to support
key attestation.

Key attestation verifies that the private
key is valid and correct, is not forged,
and was not created in an insecure
manner.

Complexity Medium Low WebAuthn requires a bit more
configuration, for example, creating and
uploading the assetlinks.json and
apple-app-site-association files.
Device binding only requires the
journey and the SDK built into your app.

Implement your use cases with the Ping SDKs Ping SDKs

518 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-passkeys/UnsummitAuthentication
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-passkeys/UnsummitAuthentication

Create the registration journey manually

If you decided not to import the journey file into your tenant, you need to create the journey manually.

Using the Journey editor, create a new journey in the alpha realm and name it BlogWebAuthnRegistration . Then, drag the
following nodes from the list and connect them as displayed on the screenshot below:

Four scripted Decision nodes

WebAuthn Registration Node

Get Session Data Node

Username Collector Node

Password Collector Node

Data Store Decision Node

lightbulb_2
To speed up the process of creating the required journeys, we provide a pre-configured JSON file that you can import
into your ID Cloud tenant.

This automatically creates both of the required journeys, as well as the scripts you require in the scripted nodes.
To import the JSON file, in the PingOne Advanced Identity Cloud admin UI, go to Journeys, and then click Import.
After successfully importing the journeys into your tenant, skip ahead and Configure the WebAuthn nodes in the
journeys.
For more information on importing journeys, refer to Import journeys.

Tip

Download

Click here to download the JSON file that
you can import into your tenant to create

the required journeys.



•

•

•

•

•

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 519

file:///home/jenkins/_attachments/journeys/Blog-passkeys-journeyExport-2023-08-24T14_30_59.130Z.json
file:///home/jenkins/_attachments/journeys/Blog-passkeys-journeyExport-2023-08-24T14_30_59.130Z.json
file:///home/jenkins/_attachments/journeys/Blog-passkeys-journeyExport-2023-08-24T14_30_59.130Z.json
file:///home/jenkins/_attachments/journeys/Blog-passkeys-journeyExport-2023-08-24T14_30_59.130Z.json
file:///home/jenkins/_attachments/journeys/Blog-passkeys-journeyExport-2023-08-24T14_30_59.130Z.json
file:///home/jenkins/_attachments/journeys/Blog-passkeys-journeyExport-2023-08-24T14_30_59.130Z.json
file:///home/jenkins/_attachments/journeys/Blog-passkeys-journeyExport-2023-08-24T14_30_59.130Z.json
file:///home/jenkins/_attachments/journeys/Blog-passkeys-journeyExport-2023-08-24T14_30_59.130Z.json
file:///home/jenkins/_attachments/journeys/Blog-passkeys-journeyExport-2023-08-24T14_30_59.130Z.json
https://docs.pingidentity.com/pingoneaic/latest/realms/journeys.html#import_journeys
https://docs.pingidentity.com/pingoneaic/latest/realms/journeys.html#import_journeys

Figure 1. The BlogWebAuthnRegistration journey

We need to assign the scripts for the scripted decision nodes. First, setUUIDtoDisplayName , and second,
WebAuthnErrorHandler . The first one ensures the creation of a user-friendly name for our passkey, and the second allows
developers to handle the WebAuthn client error cases in more detail.

Source for the userUUIDtoDisplayName script

var user = nodeState.get('username').asString();
nodeState.putShared('displayName', user.toString());

outcome = 'true';

Source for the WebAuthnErrorHandler script

// Error format example:
// ERROR::InvalidStateError:No Credential is registered

var error = sharedState.get("WebAuthenticationDOMException");
logger.message(error);

// Match word or phrase between "::" and ":"
var result = error.match(/::([\w\s]{1,}):{0,}/);
outcome = result ? result[1] : 'UnknownError';

logger.message("Outcome: " + outcome + "| ERROR: " + error);

Next, we set up the "HasSession" and "SharedStateHasUsername" scripts.

Implement your use cases with the Ping SDKs Ping SDKs

520 Copyright © 2025 Ping Identity Corporation

Source for the HasSession script

if (typeof existingSession !== 'undefined') {
 outcome = "hasSession";
} else {
 outcome = "noSession";
}

Source for the SharedStateHasUsername script

var user = nodeState.get('username');

if (user != null) {
 outcome = 'true';
} else {
 outcome = 'false';
}

Create the authentication journey manually

If you decided not to import the journey file into your tenant, you need to create the journey manually.

Using the journey editor, create a new journey named BlogWebAuthnAuthentication . For this journey, use the following nodes:

Scripted Decision node

WebAuthn Authentication node

Inner Tree Evaluator node (this calls the BlogWebAuthnRegistration you created previously)

Connect them as follows:

Figure 2. The BlogWebAuthnAuthentication journey

•

•

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 521

Configure the WebAuthn nodes in the journeys

You must configure the WebAuthn Registration node and the WebAuthn Authentication node in the new journeys with values
matching your environment.

Open each newly created tree and configure the WebAuthn nodes within to use identical configuration.

The important configuration options in this case are the following fields:

Relying party identifier

This needs to be set to the domain that will be the "Relying Party" for the registration. Set this to the domain name of your
tenant. If you are using custom domains, set this to match the custom domain configured for the realm.

Origin domains

This needs to be set to the origin of the application that registers passkeys.

For iOS and Android, this involves special configuration depending on the platform and whether you use plain WebAuthn
keys or passkeys.

For more information, refer to the following:

Configure Android origin domains

Configure iOS origin domains

When implementing passkeys, set this to the origin that serves the apple-app-site-association file.

Return challenge as JavaScript

Ensure this is NOT enabled.

Shared state attribute for display name

Set to displayName as indicated by the script above.

Lastly, in order to allow the application to register and authenticate against the server using passkeys, we need to configure and
upload the apple-app-site-association  file.

For more details on how to do this in PingOne Advanced Identity Cloud, refer to Prepare an apple-app-site-association file.

With both journeys configured, the server is able to register a device for passkeys and authentication.

In the BlogWebAuthnAuthentication journey, you will notice that if the authentication step fails, the user proceeds to the
registration step automatically. This is acceptable based on the requirements for the scope we have in this blogpost, but in other
scenarios allowing the user to authenticate with other means such as a password or OTP is advisable.

The BlogWebAuthnRegistration journey is built in a way that allows applications to call it directly when a user session exists or
call it internally from another journey.

Test the journeys in a browser

Using the out-of-the-box platform user interface you can test the functionality in a browser. Start by copying the Preview URL
from the journey editor for the BlogWebAuthnAuthentication journey.

•

•

Implement your use cases with the Ping SDKs Ping SDKs

522 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://developer.apple.com/documentation/xcode/supporting-associated-domains

Running for the first time, the flow should look something like this:

Figure 3. Registering a new passkey on the first attempt to authenticate

In subsequent authentication attempts, you are able to authenticate using your newly created passkey:

Figure 4. Using the new passkey on a subsequent attempt to authenticate

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 523

Using Passkeys with the Ping SDK for iOS

At this point it is advisable to download the complete project from GitHub. Open the project in Xcode and have a look at the
LoginViewController and SettingsViewController class. The logic described below can be found in those two controllers. If
you have an existing project using the Ping SDK, the code should look familiar. This tutorial focuses on the logic regarding passkey
(WebAuthn) authentication and registration.

Add support for the callbacks

In order to use passkeys with the Ping SDK for Android or iOS, developers need to handle the WebAuthnAuthentication and
WebAuthnRegistration callbacks.

The first node the app needs to handle on the authentication journey is the NameCallback from the username node. We assume
your iOS application already handles basic authentication with username and password, so we expect this to be implemented.

The first new callback to be handled is the WebAuthnAuthentication callback. In the handleNode method add some code to do
so:

Handling the WebAuthnAuthentication callback

else if let authenticationCallback = callback as? WebAuthnAuthenticationCallback {
 authenticationCallback.delegate = self
 ...
 ...
}

In order to start the WebAuthn authentication flow, we need to call the authenticationCallback.authenticate() method:

Starting the WebAuthn flow with Passkey support

authenticationCallback.authenticate(node: node, preferImmediatelyAvailableCredentials: false, usePasskeysIfAvailable:
self.usePasskeysIfAvailable) { (assertion) in
 // Authentication is successful
 // Submit the Node using Node.next()
 node.next { (user: FRUser?, node, error) in
 self.handleNode(user: user, node: node, error: error)
 }
 } onError: { (error) in
 // An error occurred during the authentication process
 // Submit the Node using Node.next()
 node.next { (user: FRUser?, node, error) in
 self.handleNode(user: user, node: node, error: error)
 }
 }

The full code should look something like this:

Implement your use cases with the Ping SDKs Ping SDKs

524 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-passkeys/UnsummitAuthentication
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-passkeys/UnsummitAuthentication

Code for handling the authentication journey callbacks

if let authenticationCallback = callback as? WebAuthnAuthenticationCallback {
 authenticationCallback.delegate = self

 // Note that the `Node` parameter in `.authenticate()` is an optional parameter.
 // If the node is provided, the SDK automatically sets the assertion to the designated HiddenValueCallback
 authenticationCallback.authenticate(
 node: node,
 usePasskeysIfAvailable: PebbleBankUtilities.usePasskeysIfAvailable
) { (assertion) in
 // Authentication is successful
 // Submit the Node using Node.next()
 node.next { (token: Token?, node, error) in
 self.handleNode(token: token, node: node, error: error)
 }
 } onError: { (error) in
 // An error occurred during the authentication process
 // Submit the Node using Node.next()
 let alert = UIAlertController(
 title: "WebAuthnError",
 message: "Something went wrong authenticating the device",
 preferredStyle: .alert
)
 let okAction = UIAlertAction(
 title: "OK",
 style: .default,
 handler: { (action) in
 node.next { (token: Token?, node, error) in
 self.handleNode(token: token, node: node, error: error)
 }
 }
)
 alert.addAction(okAction)
 DispatchQueue.main.async {
 self.present(alert, animated: true, completion: nil)
 }
 }
}

In a similar way, we need to add support for the WebAuthnRegistration callbacks.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 525

Code for handling the registration journey callbacks

if let registrationCallback = callback as? WebAuthnRegistrationCallback {
 registrationCallback.delegate = self

 // Note that the `Node` parameter in `.register()` is an optional parameter.
 // If the node is provided, the SDK automatically sets the error outcome or attestation to the designated
HiddenValueCallback
 registrationCallback.register(
 node: node,
 deviceName: UIDevice.current.name,
 usePasskeysIfAvailable: PebbleBankUtilities.usePasskeysIfAvailable
) { (attestation) in
 // Registration is successful
 // Submit the Node using Node.next()
 node.next { (token: Token?, node, error) in
 self.handleNode(token: token, node: node, error: error)
 }
 } onError: { (error) in
 // An error occurred during the registration process
 // Submit the Node using Node.next()
 let alert = UIAlertController(
 title: "WebAuthnError",
 message: "Something went wrong registering the device",
 preferredStyle: .alert
)
 let okAction = UIAlertAction(
 title: "OK",
 style: .default,
 handler: { (action) in
 node.next { (token: Token?, node, error) in
 self.handleNode(token: token, node: node, error: error)
 }
 }
)
 alert.addAction(okAction)
 DispatchQueue.main.async {
 self.present(alert, animated: true, completion: nil)
 }
 }
}

The application can now handle the callbacks returned by each of the nodes that appear on the journey. The full list of expected
callbacks is as follows:

NameCallback

PasswordCallback

WebAuthnAuthenticationCallback

WebAuthnRegistrationCallback

Furthermore, we allow the iOS application to call different journeys based on the situation. For example, when the users haven’t
registered for biometrics, the app calls the default Login journey. When the user has followed the BlogWebAuthnRegistration
journey and has registered for biometrics, the app uses the BlogWebAuthnAuthentication journey for authentication.

•

•

•

•

Implement your use cases with the Ping SDKs Ping SDKs

526 Copyright © 2025 Ping Identity Corporation

Call the journeys

When using the SDKs, we can call a journey directly by using the FRSession.authenticate method. In order to call the passkey
registration journey, we can use the following code:

Calling the passkey registration journey

FRSession.authenticate(authIndexValue: "BlogWebAuthnRegistration") { result, node, error in
 self.handleNode(token: result, node: node, error: error)
}

In order to call the passkey authentication journey:

Calling the passkey authentication journey

FRSession.authenticate(authIndexValue: "BlogWebAuthnAuthentication") { result, node, error in
 self.handleNode(token: result, node: node, error: error)
}

In the iOS app, upon successful completion of the BlogWebAuthnRegistration journey, the SDK saves a flag on the iOS device (in
UserDefaults) noting that this device is now registered with a passkey.

This client side logic allows us to swap to a passkey authentication journey as the main way of authenticating from this device.

Configure the project

With the sample project open, select the PebbleBankUtilities file. This file contains the SDK configuration options. Configure
these to point to your environment.

Additionally, this file contains the ForceAuthInterceptorBiometricRegistration request interceptor. When using the SDK,
developers have the option to create request interceptors that enrich the REST calls the SDK makes. In this case we have added
the following:

A URL query parameter to force the use of the journey despite the presence of an existing valid session:

ForceAuth=true

A header to inject the session cookie:

[Cookie Name]: <SessionToken>

This request interceptor is only used when the app calls BlogWebRegistrationJourney , and injects the existing user session and
the ForceAuth parameter.

info
The sample app has been implemented to call the BlogWebAuthnRegistration journey directly from its settings
screen.
This allows the user to register the device for biometrics after successfully authenticating.

Note

•

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 527

Lastly, the Xcode project needs to be configured to allow WebCredentials based on your server configuration. We also need to
create an apple-app-association file and upload it to PingOne Advanced Identity Cloud.

You can find more details on how to configure Xcode in the Apple developer docs. You can also find more details on how to
configure and upload the apple-app-association file in the SDK documentation.

Test the app

With the Xcode project fully configured, we can now run and test the flow. A reminder that a complete version of this project

can be found on GitHub. Complete documentation on mobile biometrics for iOS and Android can be found in the SDK
documentation.

Below is a complete demonstration of the functionality using the demo app:

Figure 5. Complete demo of app using passkeys

Summary

Building passwordless authentication for users is not trivial, as they will need to register a device that will act as an authenticator,
replacing the password.

Furthermore, users need to be driven down a passwordless journey by choice, or automatically if they have enabled this option in
the app.

Implement your use cases with the Ping SDKs Ping SDKs

528 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-passkeys/UnsummitAuthentication
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-passkeys/UnsummitAuthentication

Using PingOne Advanced Identity Cloud and the Ping SDKs for Android and iOS, developers have a set of tools to make the
experience as frictionless as possible and by writing minimal code.

When registering a device with passkeys to replace the traditional username and password, the following considerations should
come to mind:

Is the user or the device registering a valid and authenticated user, or is it a bad actor attempting an account take over?

What happens if the user attempts to authenticate on a device that does not have the passkey? Will there be an offering
for traditional username and password paths?

Is the flow clear and easy to understand for all users?

Could the use case support usernameless authentication? A step further to make this flow even smoother for end users

Passkeys are here to stay and seem to be a great stepping stone for replacing passwords. Improvements on the user experience
from the operating systems and browsers are sure to come in the future.

As this post shows, using the tools provided your applications are ready to go passwordless today!

Bind and verify user devices

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

The Ping SDKs for Android and iOS can cryptographically bind a mobile device to a user account.

Registered devices generate a key pair and a key ID. The SDK sends the public key and key ID to AM for storage in the user’s
profile.

The SDK stores the private key on the device in either the Android KeyStore, or the iOS Secure Enclave. Access to the private keys
is protected by either biometric security or a PIN.

A user can bind multiple devices to their account, and each device can bind to multiple users.

After binding a device your authentication journeys in AM can verify ownership of the bound device by requesting that it signs a
challenge using the private key.

Differences between device binding and WebAuthn

There are many similarities between WebAuthn and Device Binding and JWS verification. We provide authentication nodes to
implement both technologies in your journeys.

Both can be used for usernameless and passwordless authentication, they both use public key cryptography, and both can be
used as part of a multi-factor authentication journey.

One major difference is that with device binding, the private key never leaves the device.

•

•

•

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 529

With WebAuthn, there is a possibility that the private key is synchronized across client devices because of Passkey support, which
may be undesirable for your organization.

For more details of the differences, refer to the following table:

Comparison of WebAuthn and Device Binding/JWS Verification

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

Industry-standards based

✅ ❌

You can refer to the WebAuthn W3C
specification.
Device binding and JWS verification are
proprietary implementations.

Public key cryptography
✅ ✅

Both methods use Public key
cryptography.

Usernameless support

✅ ✅

After registration, the username can be
stored in the device and obtained
during authentication without the user
having to enter their credentials.

Keys are bound to the
device

❌ ✅

With WebAuthn, if Passkeys are used,
they can be shared across devices.
With device binding, the private keys do
not leave the device.

Sign custom data

❌ ✅

With device binding, you can:

Customize the challenge that the
device must sign. For example,
you could include details of a
transaction, such as the amount
in dollars.
Add custom claims to the
payload when signing a
challenge. This gives additional
context that the server can make
use of by using a scripted node.
Refer to Add custom claims
when signing.

Format of signed data WebAuthn authenticator
data

JSON Web Signature
(JWS)

•

•

Implement your use cases with the Ping SDKs Ping SDKs

530 Copyright © 2025 Ping Identity Corporation

https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#authenticator-data
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://openid.net/specs/draft-jones-json-web-signature-04.html

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

Integration

❌ ✅

With device binding, after verification,
the signed JWT is available in:

Audit Logs
Transient node state

This enables the data within to be used
for integration into your processes and
business logic.

Platform support ✅ Android
✅ iOS
✅ Web browsers

✅ Android
✅ iOS
❌ Web browsers

As it is challenging to store secure data
in a browser as a client app, device
binding is not supported in web
browsers.

Authenticator support Determined by the
platform.
Configuration limited to:

Biometric with
Fallback to Device
Pin

Determined by the
authentication node.
Full configuration
options:

Biometric
Authentication
Biometric with
Fallback to Device
Pin
Application Pin
Silent

With device binding, you can specify
what authentication action the user
must perform to get access to the
private keys.
This provides greater flexibility in your
security implementation and can
reduce authentication friction for your
users.

Key storage Web browsers and iOS
synchronize to the cloud.
Android has the option to
synchronize to the cloud.

Android
KeyStore

iOS
Secure enclave:
hardware-backed
and not
synchronized to
the cloud.

Both technologies store the private keys
securely on the client.
WebAuthn supports synchronizing the
private keys to the cloud for use on
other devices.
This can reduce authentication friction
for your users but may also increase
the risk of a breach.

Managing device keys Managed by the device
OS.
Apps cannot delete local
client keys
programmatically and do
not have a reference to
the remote server key for
deletion.

Managed by the Ping
SDKs.
Provides an interface to
delete local client and
remote server keys.

The ability to programmatically delete
both client and server keys can greatly
simplify the process of registering a
new device if an old device is lost or
stolen.

•
•

•
•

•

•
•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 531

Relevant authentication nodes and callbacks

The following table covers the authentication nodes and callbacks that AM provides for creating device binding journeys.

Feature WebAuthn / FIDO Device Binding / JWS
Verifier

Details

Passkey Support ✅ ❌ WebAuthn supports synchronizing the
private keys to the cloud for use on
other devices.
Device binding keeps the private key
locked in the device.

App integrity verification
Android

Requires an
assetlinks.json

file.

iOS
Requires apple-
app-site-

association file.

Not provided by the
device binding or
verification nodes.
It can be added as part of
the journey by using app
integrity nodes.

App integrity verification helps ensure
your users are only using a supported
app rather than a third-party or
potentially malicious version.

Key attestation
Android

SafteyNet

iOS
None

Android
Uses hardware-
backed key pairs
with Key
Attestation.

iOS
It can be added as
part of the
journey by using
app integrity
nodes to support
key attestation.

Key attestation verifies that the private
key is valid and correct, is not forged,
and was not created in an insecure
manner.

Complexity Medium Low WebAuthn requires a bit more
configuration, for example, creating and
uploading the assetlinks.json and
apple-app-site-association files.
Device binding only requires the
journey and the SDK built into your app.

Implement your use cases with the Ping SDKs Ping SDKs

532 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation

The SDKs support the default Authentication Type options provided by the authentication nodes. These options define how the
user must authenticate on their device to gain access to the private keys stored on it:

Biometric only

Request that the client secures access to private keys with biometric security, such as a fingerprint.

Biometric with PIN fallback

Request that the client secures access to the private keys with biometric security, such as a fingerprint, but allow use of
the device PIN if biometric is unavailable.

Application PIN

Request that the client secures access to the private keys with an application-specific PIN.

On Android devices, the private keys used for binding and verification are stored in a keystore file protected by the
application PIN specified by the user - it does not use hardware-backed encryption. However, this keystore file is
encrypted using keys from the hardware-backed AndroidKeyStore .

None

The user does not need to authenticate to gain access to the private keys on their device.

The SDKs provide the UI to handle these application types by default. You can also override the default UI and provide your own
implementations. Refer to Custom authentication UI.

Add device binding dependencies

To bind a device and perform signing verification, you must add the device binding module to your project.

Node Callback Description

Device Binding node DeviceBindingCallback Registers a device to the user and
optionally stores the public key and key
ID in the user’s profile

Device Binding Storage node Non-interactive Stores the public key and key ID in the
user’s profile if they were stored in
node state

Device Signing Verifier node DeviceSigningVerifierCallback Verifies ownership of a device by
requesting it signs a challenge and
verifying the result

emergency_home
The application-specific PIN applies only to your app, and is not linked to the device PIN used to unlock the
device.
The application-specific PIN is stored only on the client device and is not sent to AM.
If the user forgets their application-specific PIN, they must bind the device again.

Important

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 533

https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#DeviceBindingCallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#DeviceBindingCallback
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding-storage.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding-storage.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#DeviceSigningVerifierCallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#DeviceSigningVerifierCallback

Add Android dependencies

To add the device binding dependencies to your Android project:

In the Project tree view of your Android Studio project, open the Gradle Scripts/build.gradle file for the module.

In the dependencies section, add the required dependencies:

Example dependencies section after editing:

dependencies {
 implementation 'org.forgerock:forgerock-auth:4.8.1'

 // Device binding core dependencies
 implementation 'com.nimbusds:nimbus-jose-jwt:9.23'
 implementation 'androidx.security:security-crypto:1.0.0'

 // BIOMETRIC_ONLY, BIOMETRIC_WITH_FALLBACK
 implementation 'androidx.biometric:biometric-ktx:1.2.0-alpha04'

 // APPLICATION_PIN
 implementation 'com.madgag.spongycastle:bcpkix-jdk15on:1.58.0.0'
}

Add iOS dependencies

You can use CocoaPods or the Swift Package Manager to add the device binding dependencies to your iOS project.

Add dependencies using CocoaPods

If you do not already have CocoaPods, install the latest version.

If you do not already have a Podfile, in a terminal window run the following command to create a new Podfile:

pod init

Add the following lines to your Podfile:

pod 'FRDeviceBinding' // Add-on for Device Binding feature

Run the following command to install pods:

pod install

Add dependencies using Swift Package Manager

With your project open in Xcode, select File > Add Package Dependencies.

In the search bar, enter the Ping SDK for iOS repository URL: https://github.com/ForgeRock/forgerock-ios-
sdk .

Select the forgerock-ios-sdk package, and then click Add Package.

1.

2.

1.

2.

3.

4.

1.

2.

3.

Implement your use cases with the Ping SDKs Ping SDKs

534 Copyright © 2025 Ping Identity Corporation

https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/syntax/podfile.html
https://guides.cocoapods.org/syntax/podfile.html

In the Choose Package Products dialog, ensure that the FRDeviceBinding library is added to your target project.

Click Add Package.

In your project, import the library:

// Import the library
import FRDeviceBinding

Handle device binding callbacks

To bind a device on receipt of a DeviceBindingCallback , use the DeviceBindingCallback.bind() function.

This binds the device to the account using the default implementation.

Examples

DeviceBindingCallback callback = node.getCallback(DeviceBindingCallback.class);
callback.setDeviceName("My Android Device");
callback.bind(this.getActivity(), new FRListener<Void>() {
 @Override
 public void onSuccess(Void result) {
 // Proceed to the next node
 node.next();
 }

 @Override
 public void onException(Exception e) {
 // Proceed to the next node
 node.next();
 }
});

4.

5.

6.

Android - Java

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 535

try {
 // Provide a friendly name for the device
 callback.setDeviceName("My Android Device")
 // Bind the device
 callback.bind(context)
 // Proceed to the next node
} catch (e: CancellationException) {
 // Ignore, due to configuration change
} catch (e: DeviceBindingException) {
 // Proceed to the next node
}

// Provide a friendly name for the device
callback.setDeviceName("My iOS Device")

// Bind the device
callback.bind() { result in
 switch result {
 case .success:
 // Proceed to the next node
 case .failure(let error):
 // Handle the error and proceed to the next node
 }
}

Handle device signing verifier callbacks

To sign the challenge on receipt of a DeviceSigningVerifierCallback , use the DeviceBindingCallback.sign() function.

Examples

Android - Kotlin

iOS - Swift

emergency_home
Device Binding is not supported on iOS simulators.
You must use a physical device to test Device Binding on iOS.

Important

info
The examples above use the default user interface for authenticating users in order to create and securely store
private keys. For information on providing your own UI for authenticating access to the private keys, refer to
Implement custom UI.

Note

Implement your use cases with the Ping SDKs Ping SDKs

536 Copyright © 2025 Ping Identity Corporation

callback.sign(requireContext(), new FRListener<Void>() {
 @Override
 public void onSuccess(Void result) {
 // Proceed to the next node
 }

 @Override
 public void onException(Exception e) {
 // Proceed to the next node
 }
});

try {
 callback.sign(context)
 // Proceed to the next node
} catch (e: CancellationException) {
 // Ignore, due to configuration change
} catch (e: DeviceBindingException) {
 // Map custom client errors:
 when (e.status) {
 is UnRegister -> {
 callback.setClientError("UnReg")
 }
 is UnAuthorize -> {
 callback.setClientError("UnAuth")
 }
 }
 // Proceed to the next node
}

callback.sign() { result in
 switch result {
 case .success:
 // Proceed to the next node
 case .failure(let error):
 // Handle the error and proceed to the next node
 }
}

Android - Java

Android - Kotlin

iOS - Swift

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 537

Add custom claims when signing

When signing a challenge on receipt of a DeviceSigningVerifierCallback , you can also add custom claims to the payload to
provide additional context to the server.

A script in your authentication journey can access these claims and use them to implement additional functionality or logic.

The Device Signing Verifier node places the contents of the signed JWT in shared state in a variable named
DeviceSigningVerifierNode.JWT .

Examples

Map<String, String> customClaims = new HashMap<>() {{
 put("os", "value1");
}};

callback.sign(context, customClaims, new FRListener<Void>() {
 @Override
 public void onSuccess(Void result) {
 // Proceed to the next node
 }

 @Override
 public void onException(Exception e) {
 // Check for DeviceBindingErrorStatus.InvalidCustomClaims status
 // and fix invalid custom claims if needed
 // Proceed to the next node
 }
});

info
The examples above use the default user interface for authenticating users in order to access the private keys. For
information on providing your own UI for authenticating access to the private keys, refer to Implement custom UI.

Note

Android - Java

Implement your use cases with the Ping SDKs Ping SDKs

538 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html

try {
 callback.sign(context, mapOf("os" to "android"))
 // Proceed to the next node
} catch (e: CancellationException) {
 // Ignore, due to configuration change
} catch (e: DeviceBindingException) {
 // Map custom client errors:
 when (e.status) {
 is UnRegister -> {
 callback.setClientError("UnReg")
 }
 is UnAuthorize -> {
 callback.setClientError("UnAuth")
 }
 is DeviceBindingErrorStatus.InvalidCustomClaims -> {
 // Fix the invalid custom claims
 }
 }
 // Proceed to the next node
}

callback.sign(
 customClaims: [
 "platform": "iOS",
 "isCompanyPhone": true,
 "lastUpdated": Int(Date().timeIntervalSince1970)
]
) { result in
 switch result
 {
 case .success:
 // Proceed to the next node
 case .failure(let error):
 // Handle the error and proceed to the next node
 if error == .invalidCustomClaims {
 // Fix the invalid custom claims
 print(error.errorMessage)
 return
 }
 }
 }

Unbind devices by deleting keys

Registered devices store a public key and key ID on the AM server, and the private key in either the Android KeyStore or the iOS
Secure Enclave.

Android - Kotlin

iOS - Swift

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 539

To completely unbind a device from a user, you must delete the keys from both the client device and the server.

The following table outlines scenarios where the client deletes the local keys:

To completely unbind a device from a user, use the SDK delete method to contact the AM server to delete the keys.

When the keys are successfully removed from the server, the SDK removes the private keys from the device.

Step 1. Retrieve a list of keys

Call the FRUserKeys().loadAll() method to obtain a list of keys that are stored on the device:

val frUserKeys = FRUserKeys(context)
var keys: List<UserKey> = frUserKeys.loadAll()

let userKeys = FRUserKeys().loadAll()

Scenario Android Device iOS Device

User deletes the client application Local key is deleted Local key is NOT deleted.
Reinstall an app with the same AppID
and signature to gain access to the
original keys.
The device is still bound to the user.

User factory resets the client device Local key is deleted Local key is deleted

User restores a backup from the
original device to a new device

Local keys are not exported to the cloud
during backup and cannot be restored
to another device.
New device will require new keys.
Keys remain on the original device.

Local keys are stored in Secure Enclave
and are not exported to the cloud
during backup and cannot be restored
to another device.
New device will require new keys.
Keys remain on the original device.

emergency_home
Removing keys from the client device manually does not remove the keys from the server.
Use the SDK to remove both sets of keys from within your application, or an Administrator can remove server keys
by using the REST API.

Important

Android - Kotlin

iOS - Swift

Implement your use cases with the Ping SDKs Ping SDKs

540 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/am/7.5/authentication-guide/authn-mfa-reset-devices.html#reset_bound_devices
https://backstage.forgerock.com/docs/am/7.5/authentication-guide/authn-mfa-reset-devices.html#reset_bound_devices

Step 2. Delete the key from both the server and the device

Call the FRUserKeys().delete(userKey, forceDelete) method to delete a key from the server.

The parameters are as follows:

userKey

Which key to delete.

forceDelete

Whether to delete the local key if deleting the key from the server fails.

When set to true , the local key is deleted even if removal from the server was not successful.

Defaults to false , meaning the local key is not deleted if removal from the server fails.

Example:

val frUserKeys = FRUserKeys(context)
frUserKeys.delete(userKey, false)

do {
 try FRUserKeys().delete(
 userKey: userKey,
 forceDelete: false
)
}

catch {
 print("Failed to delete public key from server")
}

After deleting keys, the user needs to rebind the device for use in authentication journeys.

Implement custom UI

To ease implementation, the OS and Ping SDKs provide default user interfaces for authenticating to access private keys, and also
for selecting the private key to use if there is more than one.

Android - Kotlin

iOS - Swift

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 541

The user interface for authenticating to access the private keys uses the text strings returned by the callback. You can configure
these strings in the configuration of the relevant nodes on the server, or you can override these values using the SDK for
providing the prompts.

You can also implement your own user interface for requesting an application PIN, and key selection when there are multiple
available.

Custom authentication prompts

The default text strings used when prompting the user to authenticate to gain access to the private keys come from the callbacks.

You can override or localize these strings by using the Prompt object. You can then pass the customized object into the
deviceBindingCallback.bind and deviceSigningVerifierCallback.sign calls.

Customize authentication prompts

Customize or localize the text prompts that
appear when accessing the private keys.



Customize authentication UI

Learn how to implement your own user
interface for accessing the private keys when

requesting an application PIN.



Customize key selection UI

Discover how to implement a user interface for
choosing between multiple available keys.



Implement your use cases with the Ping SDKs Ping SDKs

542 Copyright © 2025 Ping Identity Corporation

Binding:

val deviceBindingCallback = node.getCallback(DeviceBindingCallback::class.java)

deviceBindingCallback.bind(
 activity,
 prompt = Prompt("Custom Title", "Custom Subtitle", "Custom Description"),
 listener =
 object : FRListener<Void?> {
 override fun onSuccess(result: Void?) {
 node.next(activity, activity)
 }

 override fun onException(e: java.lang.Exception) {
 node.next(activity, activity)
 }
 }
)

Signing:

val deviceSigningVerifierCallback = node.getCallback(DeviceSigningVerifierCallback::class.java)

deviceSigningVerifierCallback.sign(
 activity,
 prompt = Prompt("Custom Title", "Custom Subtitle", "Custom Description"),
 listener =
 object : FRListener<Void?> {
 override fun onSuccess(result: Void?) {
 node.next(activity, activity)
 }

 override fun onException(e: java.lang.Exception) {
 node.next(activity, activity)
 }
 }
)

Android - Kotlin

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 543

Binding:

if callback.type == "DeviceBindingCallback",
let deviceBindingCallback = callback as? DeviceBindingCallback {
 let customPrompt = Prompt (
 title: "Custom Title",
 subtitle: "Custom Subtitle",
 description: "Custom Description"
)
 deviceBindingCallback.bind (prompt: customPrompt)
 { result in
 /// process the result
 }
 return
}

Signing:

if callback.type == "DeviceSigningVerifierCallback",
let deviceSigningVerifierCallback = callback as? DeviceSigningVerifierCallback {
 let customPrompt = Prompt (
 title: "Custom Title",
 subtitle: "Custom Subtitle",
 description: "Custom Description"
)
 deviceSigningVerifierCallback.sign (prompt: customPrompt)
 { result in
 /// process the result
 }
 return
}

Apple iOS restrictions on custom prompts

On iOS devices, some of the prompts displayed to the user are system controlled and cannot be customized.

The following table outlines the situations where iOS uses your customized prompt:

iOS

Implement your use cases with the Ping SDKs Ping SDKs

544 Copyright © 2025 Ping Identity Corporation

Custom authentication UI

When binding a device or verifying ownership of a device with signing, the user is asked to authorize access to their private keys.

For biometric-backed authentication such as touch or face ID, the UI is provided by the OS. When using APPLICATION_PIN as the
authentication method you can customize the UI as required.

For example, the Ping SDK for Android uses the following UI when requesting an application PIN:

Biometric Only Biometric with allow fallback Application PIN

FaceID-registered devices display no
system-provided or custom text:

TouchID-registered devices show a
system-provided title and the custom
description text:

When allow fallback is enabled, the
biometric prompts match the
biometric-only display.
If authentication falls back to using the
device PIN, then the device shows a
system-provided title and the custom
description text:

When using an application PIN, the
device shows both the custom title and
custom description text:

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 545

Figure 1. Android OS UI for BIOMETRIC_ONLY, BIOMETRIC_ALLOW_FALLBACK, and a custom APPLICATION_PIN

When providing your own application PIN UI, you can use the same mechanism for both binding and signing.

The following code shows how to implement a custom application PIN UI:

Implement your use cases with the Ping SDKs Ping SDKs

546 Copyright © 2025 Ping Identity Corporation

callback.bind(requireContext(), deviceBindingAuthenticationType -> {
 switch (deviceBindingAuthenticationType) {
 case APPLICATION_PIN: {
 return new CustomAppPinDeviceAuthenticator();
 }
 default:
 return callback.getDeviceAuthenticator(deviceBindingAuthenticationType);
 }
}, new FRListener<Void>() {
 @Override
 public void onSuccess(Void result) {
 // Proceed to the next node
 }

 @Override
 public void onException(Exception e) {
 // Proceed to the next node
 }
});

public class CustomAppPinDeviceAuthenticator extends ApplicationPinDeviceAuthenticator {

 public CustomAppPinDeviceAuthenticator() {
 super((prompt, fragmentActivity, $completion) -> {
 $completion.resumeWith("1234".toCharArray());
 return IntrinsicsKt.getCOROUTINE_SUSPENDED();
 });
 }
}

class CustomPinCollector: PinCollector {
 override suspend fun collectPin(prompt: Prompt, fragmentActivity: FragmentActivity): CharArray {}
}

class CustomAppPinDeviceAuthenticator: ApplicationPinDeviceAuthenticator(CustomPinCollector())

callback.bind(context) {
 when (it) {
 // Implement your custom app PIN UI...
 APPLICATION_PIN -> CustomAppPinDeviceAuthenticator()
 else -> {
 callback.getDeviceAuthenticator(it)
 }
 }
}

Android - Java

Android - Kotlin

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 547

callback.bind(deviceAuthenticator: { type in
 switch type {
 case .applicationPin:
 return ApplicationPinDeviceAuthenticator(pinCollector: CustomPinCollector())
 default:
 return callback.getDeviceAuthenticator(type: type)
 }
}, completion: { result in
 switch result {
 case .success:
 // Proceed to the next node
 case .failure(let error):
 // Handle the error and proceed to the next node
 }
})

class CustomPinCollector: PinCollector {
 func collectPin(prompt: Prompt, completion: @escaping (String?) -> Void) {
 // Implement your custom app PIN UI...
 completion("1234")
 }
}

Custom key selection UI

When verifying ownership of a device using signing, the user could be asked to select which private key to use if they have more
than one on their device.

iOS - Swift

Implement your use cases with the Ping SDKs Ping SDKs

548 Copyright © 2025 Ping Identity Corporation

Figure 2. Default Android UI for selecting the private key

You can override the default key selection UI to implement your own.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 549

callback.sign(requireContext(), new CustomUserKeySelector(), new FRListener<Void>() {
 @Override
 public void onSuccess(Void result) {

 }

 @Override
 public void onException(Exception e) {

 }
});

// Custom user selector that always returns the most recently created key
public class CustomUserKeySelector implements UserKeySelector {

 @Nullable
 @Override
 public Object selectUserKey(@NonNull UserKeys userKeys, @NonNull FragmentActivity fragmentActivity,
@NonNull Continuation<? super UserKey> $completion) {
 $completion.resumeWith(userKeys.getItems().get(0));
 return IntrinsicsKt.getCOROUTINE_SUSPENDED();
 }
}

callback.sign(context, CustomUserKeySelector())

// Custom user selector that always returns the most recently created key
class CustomUserKeySelector : UserKeySelector {
 override suspend fun selectUserKey(userKeys: UserKeys,
 fragmentActivity: FragmentActivity): UserKey {
 return userKeys.items[0]
 }
}

Android - Java

Android - Kotlin

Implement your use cases with the Ping SDKs Ping SDKs

550 Copyright © 2025 Ping Identity Corporation

callback.sign(userKeySelector: CustomUserKeySelector()) { result in
 switch result {
 case .success:
 // Proceed to the next node
 case .failure(let error):
 // Handle the error and proceed to the next node
 }
}

// Custom user selector that always returns the most recently created key
class CustomUserKeySelector: UserKeySelector {
 func selectUserKey(userKeys: [UserKey], selectionCallback: @escaping UserKeySelectorCallback) {
 selectionCallback(userKeys.first)
 }
}

Error handling

If an error occurs when binding a device or signing a secret for verification, the SDK raises an exception. Check the status
property of the exception for information about the problem.

The following table lists the possible values, and the outcomes these map to in the authentication nodes:

iOS - Swift

Description Exception status Mapped node outcome

The client device does not support
device binding.
For example, it does not provide
biometric sensors, or the SDK cannot
generate the required key pair.

Unsupported Unsupported

Binding or signing did not complete
before the timeout expired.

Timeout Timeout

The user cancelled binding or signing
before completion.

Abort Abort

emergency_home
Device Binding is not supported
on iOS simulators.
You must use a physical device to
test Device Binding on iOS.

Important

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 551

You can map exceptions to custom client error outcomes in the nodes. For example, the following code maps the UnRegister
status to an outcome named CustomUnReg in the node:

deviceBindingCallback.bind(activity, object : FRListener<Void> {
 override fun onSuccess(result: Void?) {
 node.next(activity, activity)
 }

 override fun onException(e: java.lang.Exception?) {
 // Custom Error
 if (e is DeviceBindingException) {
 if (e.status is UnRegister) {
 deviceBindingCallback.setClientError("CustomUnReg")
 }
 }
 node.next(activity, activity)
 }
})

Description Exception status Mapped node outcome

The SDK could not locate an existing
private key.
Either the device has not yet been
bound, or the private key was removed.

UnRegister Unsupported

The user failed the authentication
required to access the private key.
For example, they used an
unrecognized fingerprint, or the wrong
application PIN.

UnAuthorize Unsupported

An unknown, unexpected error
occurred.

Abort Abort

Android - Kotlin

Implement your use cases with the Ping SDKs Ping SDKs

552 Copyright © 2025 Ping Identity Corporation

// Bind the device
callback.bind() { result in
 switch result {
 case .success:
 // Proceed to the next node
 case .failure(let error):
 // Custom Error
 if error == DeviceBindingStatus.unRegister {
 callback.setClientError("CustomUnReg")
 }
 }
}

Device profile client configuration

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

iOS - Swift

emergency_home
You must add the name of the custom client error, for example CustomUnReg , to the Client error outcomes property
in the node configuration:

Figure 3. Custom client error outcome in the device binding node.

Important

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 553

PingOne Advanced Identity Cloud and PingAM 7 and later include nodes that instruct your client applications to collect device
profile information for decision-making in authentication journeys.

Device profile information can help you build authentication journeys that:

Allow easy-pass for users on trusted devices.

Introduce stronger authentication requirements, or deny access, for users on suspicious devices.

This section explains how to work with device profile information in your client app.

Prepare the server

In this step, you set up your server to perform device profiling.

Configure a journey to perform device profiling

To profile devices you must configure an authentication journey in your server.

The following table covers the authentication nodes and callbacks available for profiling devices in your authentication journeys.

In your server, log in as an administrator and create a new authentication journey similar to the following example:

Figure 1. An example device profiling journey

You must identify the user to be able to retrieve any stored device profiles they already have.

In this example, we ask for their username and password, and verify the credentials against the data store.

•

•

Node Callback Description

Device Profile Collector node DeviceProfileCallback Gather location data and other
metadata from the client device.

Device Match node Non-interactive Compare collected device data with that
stored in the user’s profile.

Device Profile Save node Non-interactive Persist collected device data to a user’s
profile.

•

Implement your use cases with the Ping SDKs Ping SDKs

554 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#DeviceProfileCallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#DeviceProfileCallback
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-match.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-match.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-save.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-save.html

The Device Profile Collector node 1 instructs the SDK to collect and return metadata from the client device.

The Device Match node 2 compares the collected metadata against any stored in the user’s profile.

The example journey continues after comparing metadata, depending on the outcome:

True

The client device matches a device they have saved previously, and authentication succeeds without further
interaction.

False or Unknown Device

The client device does not match, or they have not saved a device profile, so authentication requires additional
steps, such as MFA verification.

After successful MFA verification, the Device Profile Save node 3 offers to save the metadata to the user’s profile,
marking the client device as trusted for future journeys.

Customize device profile matching

The default Device Match node logic matches devices based on the number of differences in the captured attribute values. You
can modify the threshold for difference by using the Acceptable Variance field in the node configuration.

The node also supports a custom matching script, where you can customize or write your own logic for matching device profiles.
The script type must be Decision node script for authentication trees in self-managed AM servers or Journey Decision Node in
Advanced Identity Cloud deployments.

Learn more about creating scripts:

Script with JavaScript in Advanced Identity Cloud

Scripting in AM

Download and modify a sample device match script

ForgeRock provides a sample repository that builds a device profile matching script you can download and customize for use in
your environment.

The code is available on GitHub: https://github.com/ForgeRock/forgerock-device-match-script

•

•

lightbulb_2
You can write scripts to customize how the node compares captured and stored metadata.
For a complete sample script, as well as instructions for its use and a development toolkit, refer to https://
github.com/ForgeRock/forgerock-device-match-script on GitHub.

Tip

•

•

•

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 555

https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-match.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-match.html
https://github.com/ForgeRock/forgerock-device-match-script
https://github.com/ForgeRock/forgerock-device-match-script
https://github.com/ForgeRock/forgerock-device-match-script
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-save.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-save.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-match.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-match.html
https://docs.pingidentity.com/pingoneaic/latest/am-scripting/preface.html
https://docs.pingidentity.com/pingoneaic/latest/am-scripting/preface.html
https://docs.pingidentity.com/pingam/8/scripting-guide/preface.html
https://docs.pingidentity.com/pingam/8/scripting-guide/preface.html
https://github.com/ForgeRock/forgerock-device-match-script
https://github.com/ForgeRock/forgerock-device-match-script

Requirements

You require the following prerequisites to build this project:

Node v13.10 or higher

NPM v6 or higher

Customize the script

Without any modifications, the sample script performs matching on both metadata and location data.

You can modify src/index.js to prevent either of the matching types from running:

Perform both metadata and location matching

// Metadata and location matching
const [metadataMatch, locationMatch] = deviceMatcher();
const isMetadataMatching = metadataMatch(client.metadata, stored.metadata);
const isLocationMatching = locationMatch(client.location, stored.location);

Perform only metadata matching

const [metadataMatch] = deviceMatcher();
const isMetadataMatching = metadataMatch(client.metadata, stored.metadata);

Perform only location matching

const [_, locationMatch] = deviceMatcher();
const isLocationMatching = locationMatch(client.location, stored.location);

Configure the matching

The logic for both metadata and location matching can be configured according to your requirements.

•

•

lightbulb_2
To modify the logic the script uses, edit the following files:

Metadata matching: src/metadata.js
Location matching: src/location.js

Tip

•
•

Implement your use cases with the Ping SDKs Ping SDKs

556 Copyright © 2025 Ping Identity Corporation

Metadata matching

The metadata matching script uses recursive iteration to compare the metadata obtained from the client with the stored
metadata. It is written with small to moderately large sized JavaScript objects in mind, and not optimized for very large or
very deep structures.

When the recursion reaches a primitive value in the JSON, such as a string, number, or boolean, it does a comparison of
the associated values. If there’s a mismatch, it increments a counter.

You can modify this behavior as follows:

Configure the maxUnmatchedAttrs parameter to specify the maximum allowed number of allowed mismatches.

Alter the "weight" of specific attributes in the JSON, by using the attrWeights parameter.

The weightings assigned work alongside the configured maximum number of mismatches. For example, if
maxUnmatchedAttrs is set to 2, this could be exceeded by having three attributes with the default weight of 1 that
do not match (n=1+1+1), or you could have a single property with a weight of 3 that does not match (n=3).

Configuring the weighting means you can assign lower importance to certain profile properties, like display width
or height, which might vary if the user changes displays from the prior authentication.

If you’re less concerned with the display properties because they can easily change, and more concerned with
things that will remain unchanged, like the device’s memory, you can assign greater weight to them as appropriate.

Example:

const config = {
 attrWeights: {
 // Custom weights for metadata attributes (object keys)
 deviceMemory: 3 // type `number`
 // ... as many attributes as you want
 // all attributes default to 1
 },
 maxUnmatchedAttrs: 2, // type `number`; default to 0 (exact match)
};
const [metadataMatch] = deviceMatcher(config);
const isMetadataMatching = metadataMatch(client.metadata, stored.metadata);

Location matching

The location matching script does not internally compare geolocation coordinates. It uses an external library called
"geolib", which is well-built and very powerful.

The script uses the getDistance() function from the library, and wraps it with a comparison of the distance between two
points to that of the maximum allowed radius.

Specify the maximum radius by using the allowedRadius parameter. All measurements are in meters. Example:

const config = {
 allowedRadius: 250, // type `number`; defaults to 100 (meters)
};
const [_, locationMatch] = deviceMatcher(config);
const isLocationMatching = locationMatch(client.location, stored.location);

1.

2.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 557

https://www.npmjs.com/package/geolib
https://www.npmjs.com/package/geolib
https://www.npmjs.com/package/geolib

Build the script

To build the sample device match script, follow these steps:

Download the device match script project from the GitHub repository:

git clone https://github.com/ForgeRock/forgerock-device-match-script.git

In a terminal window, navigate to the root of the device match script project:

cd forgerock-device-match-script

Run npm to download and install the required packages and modules:

npm install

Build the device match script with npm :

npm run build:widget

Copy and paste the contents of the dist/script.js file into your ForgeRock server.

The script type must be Decision node script for authentication trees in self-managed AM servers or Journey Decision
Node in Advanced Identity Cloud deployments.

In your Device Match node configuration, select Use Custom Matching Script, and in the Custom Matching Script field,
select the script you created in the previous step.

Click Save.

For information on testing the script as well as some frequently asked questions, refer to the README.md in the repo.

Uniquely identifying devices

The Device Match node looks up a user’s stored device profiles using a device identifier as a key. The Ping SDKs generate the
device identifier as part of the device profile that it returns to the Device Profile Collector node as part of the JSON payload.

For example:

{
 "identifier": "d50cdb5ce8d055a3-86bd35e1b975a14d76b40940112c2380264c8efd",

}

Device identifier generation

This section covers the identifiers used on each platform, and how they are generated.

1.

2.

3.

4.

5.

6.

7.

Implement your use cases with the Ping SDKs Ping SDKs

558 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-match.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-match.html
https://github.com/ForgeRock/forgerock-device-match-script/blob/master/README.md
https://github.com/ForgeRock/forgerock-device-match-script/blob/master/README.md
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-match.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-match.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html

On Android, a static device ID is not possible.

Static device ID

An ID that never changes, even during a factory reset or app re-installation.

Instance ID

An identifier for an instance of an application.

Instead of using a device ID, Android uses an instance ID. The instance ID provides a unique identifier for each instance of
app, or app group.

Instance ID generation algorithm:

Generate a public/private key pair, and store the KeyPair in the AndroidKeyStore (Shared Storage).

Hash the public key with SHA1.

Encode with Base64.

Compile the ANDROID_ID with the hashed public key.

On iOS, FRDeviceIdentifier provides a unique identifier for each device that is defined in same Shared Keychain Access
Group.

FRDeviceIdentifier provides a secure mechanism to uniquely generate, persist, and manage the identifier.

Device ID generation algorithm:

Generate an RSA key pair with key size of 2048.

Persist RSA keys in the Shared Keychain Service.

Hash the public key with SHA1.

Convert the hashed data into a hex string.

To view code that shows how iOS generates the device ID, see FRDeviceIdentifier.swift.

Android

1.

2.

3.

4.

iOS

1.

2.

3.

4.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 559

https://github.com/ForgeRock/forgerock-ios-sdk/blob/master/FRAuth/FRAuth/Device/FRDeviceIdentifier.swift
https://github.com/ForgeRock/forgerock-ios-sdk/blob/master/FRAuth/FRAuth/Device/FRDeviceIdentifier.swift

In JavaScript, the browser’s crypto library generates the device ID. The ID is stored in the browser’s localStorage .

To view code that shows how JavaScript generates the device ID, see index.ts in the forgerock-javascript-sdk
repository.

When can identifiers change?

If the identifier changes, the Device Match node will be unable to match any stored device profiles.

If this happens, your journey must collect and store a new device profile, which contains the new identifier.

This section explains what can cause an identifier to change on each platform.

In Android, the instance ID is deleted or changes if any of the following occurs:

An app is restored on a new device.

The user uninstalls and re-installs the app.

The user clears app data.

On iOS, the device ID is stored in the Keychain. This means the ID persists when the app is removed.

However, the device ID is deleted or changes if any of the following occurs:

The user wipes or factory resets the phone.

The user migrates to a new phone.

The keychain is programmatically deleted from the phone.

The device ID is programmatically deleted from the Keychain.

The keychain identifier in the forgerock_keychain_access_group configuration property changes.

JavaScript

Android

•

•

•

iOS

•

•

•

•

•

Implement your use cases with the Ping SDKs Ping SDKs

560 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/forgerock-javascript-sdk/blob/master/packages/javascript-sdk/src/fr-device/index.ts#L131
https://github.com/ForgeRock/forgerock-javascript-sdk/blob/master/packages/javascript-sdk/src/fr-device/index.ts#L131
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-match.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-match.html

In JavaScript, the device ID is deleted or changes if any of the following occurs:

The browser window creates the device ID while in "private" or "incognito" mode. Closing the browser removes the
ID.

The browser removes the ID when cleaning up old data to make room for new data.

The browser is uninstalled and reinstalled. The ID is removed.

The user removes the device ID by clearing the browser data.

Set up device profiling in Android apps

This page shows how to detect the DeviceProfileCallback , how to collect the device profile, and how to send the profile to
PingAM.

Handle a device profile callback

If an authentication journey uses the device profile node, the SDK returns DeviceProfileCallback to collect device attributes.

You use various SDK methods to handle the callback.

Use the default device profile callback

Call the DeviceProfileCallback.execute() method to collect the device profile:

callback.execute(context, new FRListener<Void>() {
@Override
public void onSuccess(Void result) {
// call next

}

@Override
public void onException(Exception e) {
}
});

Customize the device profile callback

Extend the callback that you want to override, providing two constructors that match the parent constructors.

JavaScript

•

•

•

•

emergency_home
PingAM includes collected device information in its audit logs by default.
To configure PingAM to filter out this information and ensure no personally identifiable information (PII) is written to
the audit logs, refer to Prevent auditing of device data.

Important

1.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 561

Annotate the constructor with the @Keep annotation.

Override the default implementation:

public class MyCustomDeviceProfileCallback extends DeviceProfileCallback {

 public MyCustomDeviceProfileCallback() {
 }

 @Keep
 public MyCustomDeviceProfileCallback(JSONObject jsonObject, int index) {
 super(jsonObject, index);
 }

 @Override
 public void execute(Context context, FRListener<Void> listener) {
 super.execute(context, listener);
 }
}

Register the callback:

CallbackFactory.getInstance().register(MyCustomDeviceProfileCallback.class);

Manually collect device profile information

Instead of responding to a device callback, your app can get the device profile using default collectors.

You can also modify the default collectors. A set of collectors are predefined.

The FRDevice uses the default predefined collector to collect device profile:

The following code collects the device profile using the default collectors:

FRDeviceCollector.DEFAULT.collect(context, listener);

Default collectors

2.

3.

4.

Collector name Description

FRDeviceCollector Main collector that includes other collectors and provides a collector version.

BluetoothCollector Collect BLE support information of the device.

BrowserCollector Collect browser information of the device; specifically, the User-Agent .

CameraCollector Collect camera information of the device.

DisplayCollector Collect display information of the device.

Implement your use cases with the Ping SDKs Ping SDKs

562 Copyright © 2025 Ping Identity Corporation

Collector name Description

HardwareCollector Collect hardware-related information, such as the number of CPUs, number of
active CPUs, and so on.

LocationCollector Collect location Information of the device.

NetworkCollector Collect network information of the device.

PlatformCollector Collect platform-related information, such as device jailbreak status, time zone/
locale, OS version, device name, and device model.

TelephonyCollector Collect telephony information of the device.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 563

Sample device profile

{
 "identifier": "d50cdb5ce8d055a3-86bd35e1b975a14d76b40940112c2380264c8efd",
 "metadata": {
 "platform": {
 "platform": "Android",
 "version": 31,
 "device": "emulator64_x86_64_arm64",
 "deviceName": "sdk_gphone64_x86_64",
 "model": "sdk_gphone64_x86_64",
 "brand": "google",
 "locale": "en_US",
 "timeZone": "America/Vancouver",
 "jailBreakScore": 1
 },
 "hardware": {
 "hardware": "ranchu",
 "manufacturer": "Google",
 "storage": 5951,
 "memory": 1968,
 "cpu": 4,
 "display": {
 "width": 1080,
 "height": 2148,
 "orientation": 1
 },
 "camera": {
 "numberOfCameras": 2
 }
 },
 "browser": {
 "userAgent": "Mozilla/5.0 (Linux; Android 12; sdk_gphone64_x86_64 Build/SPB5.210812.003; wv) AppleWebKit/537.36
(KHTML, like Gecko) Version/4.0 Chrome/91.0.4472.114 Mobile Safari/537.36"
 },
 "bluetooth": {
 "supported": true
 },
 "network": {
 "connected": true
 },
 "telephony": {
 "networkCountryIso": "us",
 "carrierName": "T-Mobile"
 }
 },
 "location": {
 "latitude": 37.4219711,
 "longitude": -122.0849955
 },
 "lastSelectedDate": 1634068456582,
 "alias": "sdk_gphone64_x86_64"
}

Create a custom collector

Create a custom "DeviceCollector" class that implements the DeviceCollector interface:1.

Implement your use cases with the Ping SDKs Ping SDKs

564 Copyright © 2025 Ping Identity Corporation

public class MyCustomMetadataCollector implements DeviceCollector {

 private static final List<DeviceCollector> COLLECTORS = new ArrayList<>();

 static {
 //Pick from existing Collector or implement your own collector
 COLLECTORS.add(new PlatformCollector());
 COLLECTORS.add(new NetworkCollector());
 COLLECTORS.add(new TelephonyCollector());
 }

 @Override
 public String getName() {
 return "metadata";
 }

 @Override
 public void collect(Context context, FRListener<JSONObject> listener) {
 collect(context, listener, new JSONObject(), COLLECTORS);
 }
}

Use FRDeviceCollectorBuilder to add your custom Collector :2.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 565

public class MyCustomDeviceProfileCallback extends DeviceProfileCallback {

 public MyCustomDeviceProfileCallback() {
 }

 @Keep
 public MyCustomDeviceProfileCallback(JSONObject jsonObject, int index) {
 super(jsonObject, index);
 }

 @Override
 public void execute(Context context, FRListener<Void> listener) {
 FRDeviceCollector.FRDeviceCollectorBuilder builder = FRDeviceCollector.builder();
 if (isMetadata()) {
 builder.collector(new MyCustomMetadataCollector());
 }
 if (isLocation()) {
 builder.collector(new LocationCollector());
 }

 builder.build().collect(context, new FRListener<JSONObject>() {
 @Override
 public void onSuccess(JSONObject result) {
 setValue(result.toString());
 Listener.onSuccess(listener, null);
 }

 @Override
 public void onException(Exception e) {
 Listener.onException(listener, null);
 }
 });
 }
}

Device profile attributes

By default, the Ping SDK collects the following device attributes:

Attribute Value

identifier A unique ID for the device.
To learn more about the device identifier, refer to Uniquely identifying devices.

location The location of a device (longitude and latitude values).
This is configured in the node and requires user permissions.

Implement your use cases with the Ping SDKs Ping SDKs

566 Copyright © 2025 Ping Identity Corporation

Obtain user permission for the device location

Your app requires the user’s authorization to access the device location.

For information about how to request the authorization, refer to Request location permissions.

Implement default jailbreak/rooted device detection

The FRRootDetector class is responsible for analyzing whether the device is tampered.

The class analyzes the device by using multiple device tamper detectors, and returns the highest score in the range between 0.0
to 1.0 from all the detectors.

Sample using default tamper detection:

Attribute Value

metadata Metadata for the device, including:

platform
The device OS, such as Android or iOS.

deviceName
The name of the device.

locale
The locale of the device, such as en .

timeZone
The time zone of the device, such as Africa/Johannesburg .

brand
The brand of the device, such as Apple .

jailBreakScore
A value between 0 and 1 that denotes the tampering level for a device.

info
You can customize the metadata.platform.jailBreakScore with Root Detector.

Note

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 567

https://developer.android.com/training/location/permissions
https://developer.android.com/training/location/permissions

// The DEFAULT Detector uses all available detectors in the SDK to determine if the device is rooted.
RootDetector rootDetector = FRRootDetector.DEFAULT;

// Check if device is rooted
double rootedScore = rootDetector.isRooted(context)

// Evaluate the result
if rootedScore == 0.0 {
 // Detectors score result with 0.0, likely device is not rooted
}
else if rootedScore <= 0.5 {
 // Some of the detectors returned a possible positive result that indicates the device might be rooted
}
else {
 // Most of the detectors returned a possible positive result that indicates the device is likely rooted
}

Customize jailbreak/rooted detection

The SDKs provide a set of industry-standard detectors that allow you to customize the detectors to use.

Sample custom tamper detection code:

// Using Builder to choose two detectors
RootDetector rootDetector = FRRootDetector.builder()
 .detector(new SuCommandDetector())
 .detector(new RootAppDetector())
 .build();

// Get result
double rootedScore = rootDetector.isRooted(context)

Implement custom detectors

You can provide your own detectors by implementing the RootDetector interface on Android. The interface represents the
definition of an individual analyzer for detecting when the device is rooted or jailbroken.

Each detector determines whether the device is rooted or jailbroken. Each collector returns a result score as a Double , within the
range of 0.0 to 1.0 .

Sample custom detector code:

Implement your use cases with the Ping SDKs Ping SDKs

568 Copyright © 2025 Ping Identity Corporation

// Add custom detector to RootDetector
RootDetector rootDetector = FRRootDetector.builder()
 .detectors(FRRootDetector.DEFAULT_DETECTORS)
 .detector(new RootDetector() {
 @Override
 public double isRooted(Context context) {
 return 0;
 }
 })
 .build();

// Get result
double rootedScore = rootDetector.isRooted(context);

More information

API reference: FRDevice 

Set up device profiling in iOS apps

This page shows how to detect the DeviceProfileCallback , how to collect the device profile, and how to send the profile to
PingAM.

Handle a device profile callback

If an authentication journey uses the device profile node, the SDK returns DeviceProfileCallback to collect device attributes.

You use various SDK methods to handle the callback.

Use the default device profile callback

deviceProfileCallback.execute { _ in node.next
 { (user: FRUser?, node, error) in
 self.handleNode(user: user, node: node, error: error) //Handle the node
 }

}

Customize the device profile callback

The DeviceCollector protocol is a baseline class implementation protocol for the FRDeviceCollector .

Create a new class inheriting the protocol and implement the protocol methods:

emergency_home
PingAM includes collected device information in its audit logs by default.
To configure PingAM to filter out this information and ensure no personally identifiable information (PII) is written to
the audit logs, refer to Prevent auditing of device data.

Important

1.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 569

https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth/-f-r-device/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth/-f-r-device/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth/-f-r-device/index.html

public class CustomCollector: DeviceCollector {
 public var name: String = "customCollector"
 public func collect(completion: @escaping DeviceCollectorCallback) {
 var result: [String: Any] = [:]
 result["customID"] = "MyCustomIDValue"
 completion(result)
 }
 }

Add the custom collector in the DeviceProfileCallback array of ProfileCollectors :

deviceProfileCallback.profileCollector.collectors.append(CustomCollector())

To collect the device profile and submit the node, use the DeviceProfileCallback.execute() method:

deviceProfileCallback.execute { _ in node.next
 { (user: FRUser?, node, error) in
 self.handleNode(user: user, node: node, error: error) // Handle the node
 }
}

Manually collect device profile information

Instead of responding to a device callback, your app can get the device profile using default collectors.

The FRAuth SDK provides a device profile feature that enables you to identify and obtain details about the device.

The FRDevice class includes methods for getting information about a device.

Use the FRDevice.currentDevice?.getProfile() method to return device profile:

In your app, add the following code after the SDK initialization:

FRDevice.currentDevice?.getProfile(completion: { (deviceProfile) in
 print(deviceProfile)
})

2.

3.

lightbulb_2
If you want to remove any of the default profile collectors, access the profile collectors array of the
DeviceProfileCallback node. The default list contains the following collectors:

PlatformCollector()

HardwareCollector()

BrowserCollector()

TelephonyCollector()

NetworkCollector()

Tip

•
•
•
•
•

1.

Implement your use cases with the Ping SDKs Ping SDKs

570 Copyright © 2025 Ping Identity Corporation

When the above code is triggered, the app prints JSON text, including the device profile, in the console.

Default collectors

2.

info
The device identifier is not the same as Apple’s device vendor identifier. As long as the Keychain Service
configuration remains unchanged, the device identifier should remain the same for this device, even if you
delete and reinstall the application.

Note

Collector name Description

FRDeviceCollector Main collector that includes other collectors and provides a collector version.

BluetoothCollector Collect BLE support information of the device.

BrowserCollector Collect browser information from the device; specifically, the User-Agent .

CameraCollector Collect camera information of the device.

DisplayCollector Collect display information of the device.

HardwareCollector Collect hardware-related information such as the number of CPUs, number of
active CPUs, and so on.

LocationCollector Collect location information of the device.

NetworkCollector Collect network information of the device.

PlatformCollector Collect platform-related information, such as device jailbreak status, time zone/
locale, OS version, device name, and device model.

TelephonyCollector Collect telephony information of the device.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 571

Sample device profile

Implement your use cases with the Ping SDKs Ping SDKs

572 Copyright © 2025 Ping Identity Corporation

{
 "identifier": "uiCToe3h2kdfYLOzvHpaloxsKVE=",
 "version": "1.0",
 "platform": {
 "jailbreakScore": 0.0,
 "systemInfo": {
 "sysname": "Darwin",
 "release": "18.6.0",
 "version": "Darwin Kernel Version 18.6.0: Thu Apr 25 22:14:08 PDT 2019; root:xnu-4903.262.2~2/
RELEASE_ARM64_T8015",
 "nodename": "James-Go-iPhone-X",
 "machine": "iPhone10,6"
 },
 "timezone": "America/Vancouver",
 "model": "iPhone10,6",
 "version": "12.3.1",
 "locale": "en",
 "platform": "iOS",
 "device": "iPhone",
 "brand": "Apple",
 "deviceName": "James Go iPhone X"
 },
 "hardware": {
 "cpu": 6,
 "storage": 60975.11328125,
 "manufacturer": "Apple",
 "activeCPU": 6,
 "display": {
 "orientation": 1,
 "width": 375.0,
 "height": 812.0
 },
 "memory": 2823.0,
 "multitaskSupport": true,
 "camera": {
 "numberOfCameras": 4
 }
 },
 "bluetooth": {
 "supported": true
 },
 "browser": {
 "agent": "FRExample/1.0 (com.forgerock.frexample; iPhone; build:1; iOS 12.3.1) CFNetwork/978.0.7 Darwin/
18.6.0 FRAuth/1.0"
 },
 "telephony": {
 "mobileCountryCode": "302",
 "voipEnabled": true,
 "isoCountryCode": "ca",
 "mobileNetworkCode": "220",
 "carrierName": "TELUS"
 },
 "network": {
 "connected": true
 },
 "location": {
 "latitute": 37.7873589,
 "longitude": -122.408227
 }
}

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 573

Modify the default collectors

You can collect the device profile using default collectors. You can also modify the default collectors.

The following code collects the device profile using the default collectors:

FRDeviceCollector.shared.collect { (result) in
 // Result is returned as [String: Any]
}

The collectors array in the FRDeviceCollector class is a public property. You can add, remove, or change any of the collectors:

@objc
 public var collectors: [DeviceCollector]

Create a custom collector

class CustomCollector: DeviceCollector {
 var name: String = "custom"

 func collect(completion: @escaping DeviceCollectorCallback) {
 var result: [String: Any] = [:]

 // Perform logic to collect any device profile
 result["key"] = "value"

 completion(result)
 }
 }
}

Device profile attributes

By default, the Ping SDK collects the following device attributes:

Attribute Value

identifier A unique ID for the device.
To learn more about the device identifier, refer to Uniquely identifying devices.

location The location of a device (longitude and latitude values).
This is configured in the node and requires user permissions.

Implement your use cases with the Ping SDKs Ping SDKs

574 Copyright © 2025 Ping Identity Corporation

Obtain user permission for the device location

Your app requires the user’s authorization to access the device location.

For information about how to request the authorization, refer to Requesting Authorization for Location Services.

Implement default jailbreak/rooted device detection

The FRJailbreakDetector class is responsible for analyzing whether the device is tampered.

The class analyzes the device by using multiple device tamper detectors and returns the highest score in the range between 0.0
to 1.0 from all the detectors.

Sample using default tamper detection:

// Check if device is jailbroken
let jailbrokenScore = FRJailbreakDetector.shared.analyze()

// Evaluate the result
if jailbrokenScore == -1.0 {
 // no detectors found
}
else if jailbrokenScore == 0.0 {
 // Means that the detectors score result is 0.0
}
else {
 // Some detectors returned a possible positive result that indicates the device might be jailbroken
}

Attribute Value

metadata Metadata for the device, including:

platform
The device OS, such as Android or iOS.

deviceName
The name of the device.

locale
The locale of the device, such as en .

timeZone
The time zone of the device, such as Africa/Johannesburg .

brand
The brand of the device, such as Apple .

jailBreakScore
A value between 0 and 1 that denotes the tampering level for a device.

warning
On iOS, a device simulator always returns 1.0.

Warning

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 575

https://developer.apple.com/documentation/corelocation/requesting_authorization_for_location_services
https://developer.apple.com/documentation/corelocation/requesting_authorization_for_location_services

Customize jailbreak/rooted detection

The SDKs provide a set of well-known detectors. You can choose the detectors to use.

Sample custom tamper detection code:

// Remove everything and only add your selected detectors
FRJailbreakDetector.shared.detectors.removeAll()
FRJailbreakDetector.shared.detectors.append(BashDetector())
FRJailbreakDetector.shared.detectors.append(SSHDetector())

// Or loop through detectors and remove specific detector from default
for detector in FRJailbreakDetector.shared.detectors {
 // Remove specific detector if required
}

// Get result
let jailbrokenScore = FRJailbreakDetector.shared.analyze()

Implement custom detectors

Developers can implement their own detectors by extending the JailbreakDetector protocol on iOS. This protocol represents
the definition of a individual analyzer for detecting if a device is rooted or jailbroken.

Each detector should analyze its logic to determine whether the device is rooted or jailbroken. Each detector returns the result
score as a Double , within the range of 0.0 to 1.0 .

Sample custom detector code:

// Custom detector
class CustomDetector: JailbreakDetector {
 public func analyze() -Double {
 var result = 0.0
 // do the custom logic
 return result
 }
}

// Add custom detector to JailbreakDetector
FRJailbreakDetector.shared.detectors.append(CustomDetector())

// Get the result
let jailbrokenScore = FRJailbreakDetector.shared.analyze()

Known limitations

For ForgeRock SDK for iOS v2.2.0 and earlier, the iOS SDK has discrepancies in attribute names inside the JSON payload.
ForgeRock SDK for iOS v3.0.0 and later correct the attribute names to align with PingAM’s expectation and other platforms. The
following attribute names were changed as of 3.0.0:

Implement your use cases with the Ping SDKs Ping SDKs

576 Copyright © 2025 Ping Identity Corporation

More information

FRDevice class

Set up device profiling in JavaScript apps

This page shows how to detect the DeviceProfileCallback , how to collect the device profile, and how to send the profile to
your server.

Handle a device profile callback

Get the callback and any messages to display to the user:

const deviceCollectorCb = step.getCallbackOfType('DeviceProfileCallback');
const message = deviceCollectorCb.getMessage();

From the callback, determine if the intention is to collect the device location, the device metadata, or both:

const isLocationRequired = deviceCollectorCb.isLocationRequired();
const isMetadataRequired = deviceCollectorCb.isMetadataRequired();

Create a new instance of the FRDevice class.

const device = new FRDevice();

Attribute Names for 2.2.0 and earlier Attribute Names for 3.0.0 and later

timezone timeZone

jailbreakScore jailBreakScore

info
If your application still uses iOS SDK 2.2.0 or older, an adjustment in the Custom Matching Script is required in the
Device Match Node to collect and analyze correct attribute values from the SDK.

Note

•

emergency_home
The server includes collected device information in its audit logs by default.
To configure PingAM to filter out this information and ensure no personally identifiable information (PII) is written to
the audit logs, refer to Prevent auditing of device data.

Important

1.

2.

3.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 577

https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuth/Classes/FRDevice.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuth/Classes/FRDevice.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuth/Classes/FRDevice.html

Manually collect device profile information

Instead of responding to a device callback, your app can get the device profile using default collectors.

Call the getProfile() method of the FRDevice class, passing the boolean values from the callback that indicate if device
location and/or device metadata is required:

const profile = await device.getProfile({
 location: isLocationRequired,
 metadata: isMetadataRequired,
});

Set the device profile information for the step:

step.getCallbackOfType('DeviceProfileCallback').setProfile(profile);

Default collectors

lightbulb_2
To return specific device data, pass in configuration options to the FRDevice constructor. For example, you
can return device platform, display, browser, and hardware data.

Tip

1.

info
To return specific device data, override the FRDevice class methods for getting the device metadata, device
browser plugins, device name, device hardware, and so on.

Note

2.

Collector name Description

fontNames Collect font information.

displayProps Collect display information of the device.

browserProps Collect browser information of the device.

hardwareProps Collect hardware related information.

platformProps Collect platform related information

Implement your use cases with the Ping SDKs Ping SDKs

578 Copyright © 2025 Ping Identity Corporation

Sample device profile

{
 "identifier": "714524572-2799534390-3707617532",
 "metadata": {
 "hardware": {
 "cpuClass": null,
 "deviceMemory": 8,
 "hardwareConcurrency": 16,
 "maxTouchPoints": 0,
 "oscpu": null,
 "display": {
 "width": 1080,
 "height": 1920,
 "pixelDepth": 24,
 "angle": 270
 }
 },
 "browser": {
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/
80.0.3987.163 Safari/537.36 Edg/80.0.361.111",
 "appName": "Netscape",
 "appCodeName": "Mozilla",
 "appVersion": "5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/
80.0.3987.163 Safari/537.36 Edg/80.0.361.111",
 "appMinorVersion": null,
 "buildID": null,
 "product": "Gecko",
 "productSub": "20030107",
 "vendor": "Google Inc.",
 "vendorSub": "",
 "browserLanguage": null,
 "plugins": "internal-pdf-viewer;mhjfbmdgcfjbbpaeojofohoefgiehjai;internal-nacl-plugin;"
 },
 "platform": {
 "deviceName": "Mac (Browser)"
 "language": "en-US",
 "platform": "MacIntel",
 "userLanguage": null,
 "systemLanguage": null,
 "fonts": "cursive;monospace;sans-serif;fantasy;Arial;Arial Black;Arial Narrow;Arial Rounded MT Bold;Comic Sans
MS;Courier;Courier New;Georgia;Impact;Papyrus;Tahoma;Trebuchet MS;Verdana;",
 "timezone": 300
 }
 },
 "location": {
 "latitude": 30.49843,
 "longitude": -97.639371
 }
}

Create a custom collector

Create an instance of FRDevice and customize the profile:1.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 579

const device = new FRDevice({
 // Example customization:
 // Collect just the presence of Arial and Helvetica
 fontNames: ['Arial', 'Helvetica'],
 // Do not collect any display properties
 displayProps: [],
 // Just collect User Agent
 browserProps: ['userAgent']
});

Replace the methods for further customization:

device.getHardwareMeta = function () {
 let obj;
 // Custom logic to collect hardware profile obj
 return obj;
}

Run the getProfile() method using the custom configuration and collector methods:

const profile = await device.getProfile({
 location: isLocationRequired,
 metadata: isMetadataRequired,
});

Device profile attributes

By default, the Ping SDK collects the following device attributes:

2.

3.

Attribute Value

identifier A unique ID for the device.
To learn more about the device identifier, refer to Uniquely identifying devices.

location The location of a device (longitude and latitude values).
This is configured in the node and requires user permissions.

Implement your use cases with the Ping SDKs Ping SDKs

580 Copyright © 2025 Ping Identity Corporation

Obtain user permission for the device location

Your app requires the user’s authorization to access the device location.

If the user denies location access, the SDK still collects the device profile data; however, the collected data will not include any
location coordinates.

If the user provides the permission, the SDK collects the location coordinates.

Known limitations

Location access requires user permissions. If the user denies permission or doesn’t respond to the browser’s request in
time, geolocation coordinates are not collected and the profile is generated without it.

Generating the profile can take time, especially when the location is requested. If this is a step all to itself, showing a
spinner with message is recommended.

To reduce authentication round-trips/latency, you can collect the device profile at the same time you collect other
information.

The device profile ID is generated if one doesn’t exist, and stored in the browser’s localStorage . If this is done within a
browser’s "private" or "incognito" mode, the ID does not persist once that window is closed. This creates a new ID, and
therefore a new profile, when the profile is generated again.

As JavaScript runs within a browser, it is more a browser profile than a device profile. A different browser on the same
device produces a substantially different profile.

Some profile attributes are more volatile than others. Plugging an external display into a laptop, for example, alters the
generated profile.

Attribute Value

metadata Metadata for the device, including:

platform
The device OS, such as Android or iOS.

deviceName
The name of the device.

locale
The locale of the device, such as en .

timeZone
The time zone of the device, such as Africa/Johannesburg .

brand
The brand of the device, such as Apple .

jailBreakScore
A value between 0.0 and 1.0 that denotes the tampering level for a
device.

•

•

•

•

•

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 581

More information

API Reference: FRDevice 

Prevent device data from appearing in audit logs

When using device profiling as part of your authentication journeys, the captured information is included in the audit logs by
default.

You can configure PingAM to filter out this information to ensure no personally identifiable information (PII) is written to the audit
logs.

The following JSON is a sample audit log entry, from the authentication topic:

{
 "_id": "c12f6ef2-262e-4263-b924-ed2236365d1a-1276",
 "timestamp": "2020-07-01T16:57:43.565Z",
 "eventName": "{am_name}-NODE-LOGIN-COMPLETED",
 "transactionId": "c12f6ef2-262e-4263-b924-ed2236365d1a-1274",
 "trackingIds": [
 "c12f6ef2-262e-4263-b924-ed2236365d1a-1259"
],
 "principal": [
 "bjensen"
],
 "entries": [
 {
 "info": {
 "nodeOutcome": "outcome",
 "treeName": "Test",
 "displayName": "Device Profile Collector",
 "nodeType": "DeviceProfileCollectorNode",
 "nodeId": "b9c49dc6-e557-4f98-bb05-504cd715e8d9",
 "authLevel": "0",
 "nodeExtraLogging": {
 "forgeRock.device.profile": {
 "identifier": "f505e455f33004c9-01ab094b8797382b1fab71cc8b3753ffb2bd774b",
 "version": "1.0",
 "metadata": {
 "platform": {
 "platform": "Android",
 ...

In the sample above, you can see the start of the device profile data, under the nodeExtraLogging entry.

You can filter this out of the audit logs, by using JSON pointer-like syntax:

Log in to the PingAM console as an administrator, for example amAdmin .

Navigate to Configure > Global Services > Audit Logging.

In the Field blacklist filters list, add an entry that starts with the relevant topic, and then a JSON-pointer like syntax to
specify the data to exclude.

For example, to exclude the device data from audit logs, enter:

•

1.

2.

3.

Implement your use cases with the Ping SDKs Ping SDKs

582 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/fr-device.FRDevice.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/fr-device.FRDevice.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/fr-device.FRDevice.html
https://docs.pingidentity.com/pingoneaic/latest/solution-configure-device-profiling.html
https://docs.pingidentity.com/pingoneaic/latest/solution-configure-device-profiling.html

/authentication/entries/0/info/nodeExtraLogging/forgeRock.device.profile

Save your changes.

Device profile data will no longer appear in the authentication audit logs.

More information

Set up audit logging

Set up social login

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

What is social login?

We provide the capability within authentication journeys/trees to support trusted Identity Providers (IdP), like Apple, Facebook,
Google, and many others, for authentication and identity verification on behalf of ForgeRock. This is often referred to as social
login or social authentication. These IdPs return the necessary user information to your server.

Depending on the device platform—Android, iOS, or web—the user is either redirected from the current web application, or the
login page to the IdP’s authorization server, or, if on a native mobile app, the user is directed to the IdP’s authentication SDK, if
available. Once on the IdP through a web page or the SDK, the user authenticates, and provides the necessary consent required
for sharing the information with ForgeRock. When complete, the user is redirected back to your app or to the server to complete
the authentication journey.

It’s common to offer these social login options in addition to traditional authentication with username and password, but they can
be used alone.

A screen capture of a login page with a common combination of methods:

4.

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 583

https://docs.pingidentity.com/pingam/8/security-guide/audit-logging.html
https://docs.pingidentity.com/pingam/8/security-guide/audit-logging.html

Limitations

Before implementing social login, read Limitations.

Support matrices

Platform matrix

Ping SDK for JavaScript Ping SDK for Android Ping SDK for iOS

SDK Version 3.0.0 and above 3.0.0 and above 3.0.0 and above

PingAM Version 6.5.2 and above 7.1.0 and above 7.1.0 and above

Platform Setup Not required Required Required

Implement your use cases with the Ping SDKs Ping SDKs

584 Copyright © 2025 Ping Identity Corporation

Callback matrix

Supported providers matrix

The Ping SDK social login feature supports the following providers:

Sign in with Apple is only supported on iOS 12+ devices.

Instructions

This how-to covers setting up an PingOne Advanced Identity Cloud tenant with the IdPs that the SDKs support: Apple, Facebook,
and Google.

PingOne Advanced Identity Cloud supports additional IdPs.

Configure social login identity providers

In this section, you set your identity providers (IdP) to work with your apps through PingOne Advanced Identity Cloud.

Ping SDK for JavaScript Ping SDK for Android Ping SDK for iOS

SelectIdPCallback Yes Yes Yes

IdPCallback No Yes Yes

RedirectCallback Yes No No

Ping SDK for JavaScript Ping SDK for Android Ping SDK for iOS

Google Yes Yes Yes

Facebook Yes Yes Yes

Apple Yes Yes Yes

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 585

Create an Apple client

Sign up for an Apple developer account

You must enroll in the Apple Developer program.

Set up application redirection

After Apple processes the initial authorization request and the user is successfully authenticated, Sign in with Apple sends an
HTTP POST request to PingOne Advanced Identity Cloud or PingAM containing the authorization results.

For a web application (SPA) or an Android device, the POST request is sent to a dynamically created endpoint, specified in the
Apple Sign In configuration as the redirect URL.



Apple

Configure a Sign in with Apple client.



Facebook

Configure Facebook for use as a social identity
provider.



Google

Configure Google for use as a social identity
provider.

info
Apple Developer Enterprise Program accounts are not able to configure Sign in with Apple.

Note

Implement your use cases with the Ping SDKs Ping SDKs

586 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/programs/
https://developer.apple.com/programs/

The redirect URL

To complete Apple client set up, you need the full redirect URL. This URL is not made available until you fully set up the provider
in PingAM. If you have already set up your Apple provider, the redirect URL resembles the following:

https://<tenant-env-fqdn>/am/oauth2/<realm>/client/form_post/<secondary-configuration-name>

Set up Apple sign in

Create an app ID

Log in to your Apple developer account.

In the Program resources category, under Certificates, Identifiers & Profiles, click Identifiers.

Click the plus button (+) next to the Identifiers header.

Select App IDs, and click Continue.

Select App type, and click Continue.

Type a description of your app, and provide a Bundle ID using reverse-domain name style .

For example com.forgerock.ios.sdk.example .

Select Sign in with Apple , and click Continue.

Review your entry, and click Register.

Create a service ID

On the Identifiers page, click the plus button (+) next to the Identifier header.

Select Service IDs, and click Continue.

Enter a description of your service.

Enter an Identifier that is similar to your app ID.

For example, <app-id>.service .

Click Continue.

Review your entry, and click Register.

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

6.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 587

https://developer.apple.com/account
https://developer.apple.com/account

Configure the Apple sign in service

On the Identifiers page, click the dropdown next to the magnifying glass icon, and then select Services IDs.

Select the service ID you created.

Next to Sign in with Apple , click Configure.

Click the plus button next to the Website URLs header.

In Domains and Subdomains:

For JavaScript apps, enter the domains that host your app.

For example, sdkapp.example.org

For native Android and iOS apps, enter the domain of your PingOne Advanced Identity Cloud or PingAM instance.

For example, openam-forgerock-sdks.forgeblocks.com

In Return URLs, enter the URL that Apple redirects users to after authentication.

Users must be redirected back to PingOne Advanced Identity Cloud or PingAM to continue their authentication journey.

The URL to use is dynamically created by PingOne Advanced Identity Cloud or PingAM when you configure identity
providers, and uses the following syntax:

Advanced Identity Cloud

https://<tenant-env-fqdn>/am/oauth2/<realm>/client/form_post/<secondary-configuration-name>

PingAM

https://<am-fqdn>/openam/oauth2/client/form_post/<secondary-configuration-name>

Click Next.

Review, and click Done.

Create a key

Store your key in a safe location. You cannot download keys more than once.

On the developer account page, in the left navigation panel, click Keys.

Click the plus button next to the Keys header.

Enter your key name, and select Sign in with Apple.

1.

2.

3.

4.

5.

◦

lightbulb_2
During testing, do not use the example.com domain to host your application. Apple treats this domain
differently than other domains, which can cause unexpected issues.
Using example.org or any other domain does not present these same difficulties.

Tip

◦

6.

7.

8.

1.

2.

3.

Implement your use cases with the Ping SDKs Ping SDKs

588 Copyright © 2025 Ping Identity Corporation

Click Configure, select your primary app ID, and click Save.

Click Continue.

Review, and click Register.

Generate a client secret

The client secret for Apple sign is a JSON Web token (JWT). The JWT is more complex than a simple string. A common way of
generating the JWT is to use the jwt/ruby-jwt library.

Before you create the JWT, you need to understand certain requirements. To learn about these requirements, see Apple’s
documentation about generating and validating tokens.

Configure the client ID

For Native iOS: The client_id should be the AppID (bundle identifier) from the Apple Development portal.

For Web or Android: The client_id should be the ServiceID from the Apple Development portal.

Example signing script:

require "jwt"

key_file = [Key file name]
team_id = [Team ID]
client_id = [AppID or Service ID]
key_id = [Key ID]
validity_period = 180 # In days. Max 180 (6 months) according to Apple docs.

private_key = OpenSSL::PKey::EC.new IO.read key_file

token = JWT.encode(
 {
 iss: team_id,
 iat: Time.now.to_i,
 exp: Time.now.to_i + 86400 * validity_period,
 aud: "https://appleid.apple.com",
 sub: client_id
 },
 private_key,
 "ES256",
 header_fields=
 {
 kid: key_id
 }
)
puts token

Create a Facebook client

To use Facebook as an Identity Provider, visit the Facebook for Developers page, and follow these steps:

Click the Create App button.

Select Consumer for app type, and click Next.

4.

5.

6.

•

•

1.

2.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 589

https://github.com/jwt/ruby-jwt
https://github.com/jwt/ruby-jwt
https://developer.apple.com/documentation/sign_in_with_apple/generate_and_validate_tokens#3262048
https://developer.apple.com/documentation/sign_in_with_apple/generate_and_validate_tokens#3262048
https://developers.facebook.com/apps
https://developers.facebook.com/apps

Enter your app’s display name and contact email.

Click the Create app button.

On the Add products to your app page, under Facebook Login, click Set up.

In the left navigation panel, click Settings > Basic.

Take note of the App ID and App secret values.

Generate a key hash

The default password for Android Studio is android .

To generate a key hash value, in a terminal window, enter the following command:

keytool -exportcert -alias androiddebugkey -keystore ~/.android/debug.keystore | openssl sha1 -binary |
openssl base64

Note the key hash value for later use.

Configure an Android app

On the developer apps page, double-click an Android app.

In the left navigation panel, select Settings > Basic.

At the bottom of the page, click Add platform, select Android, and click Next.

In the Select Android Store dialog, select a store.

For example, Google Play.

Click Next.

Scroll down to the Android section.

In the Key hashes field, enter the key hash value you generated earlier.

In the Package Names field, enter your app’s Google Play Package Name.

The name is often a reverse domain name, such as com.example.app .

In the Class Name field, enter your app’s class name.

Click Save changes.

Configure an iOS app

On the developer apps page, select iOS.

Click Next.

Enter your Bundle ID.

The name is often a reverse domain name, such as com.example.app .

Click Save changes.

3.

4.

5.

6.

7.

1.

2.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

Implement your use cases with the Ping SDKs Ping SDKs

590 Copyright © 2025 Ping Identity Corporation

https://developers.facebook.com/apps
https://developers.facebook.com/apps
https://developers.facebook.com/apps
https://developers.facebook.com/apps

In the left navigation panel, under Facebook Login, select Quickstart.

Click iOS.

Read the information, and select your package manager.

Click Next.

Enter your Bundle ID.

Click Save.

Click Continue.

Select your single sign-on settings.

When you get to Configure Your info.plist, configure your info.plist file with the XML snippet that contains data for
your app.

Create a Google client

To use Google as an IdP, visit Google’s API Dashboard, and follow these steps:

In the left navigation, click Credentials.

Click CREATE CREDENTIALS > OAuth client ID.

For an Android app

Select Android as the value for Application Type.

In the Name field, type a name for this application.

Enter the package name from the AndroidManifest.xml file.

Enter the SHA-1 certificate fingerprint.

Use the following command to get the fingerprint:

keytool -keystore path-to-debug-or-production-keystore -list -v

Click Create.

For an iOS app

Select iOS as the value for Application Type.

In the Name field, type a name for this application.

Enter the bundle id as listed in the app’s Info.plist file.

If the app is listed in the Apple App Store, enter the Apple ID of the app.

Enter the Team ID that Apple assigned to your team.

Click Create.

5.

6.

7.

8.

9.

10.

11.

12.

13.

1.

2.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 591

https://console.cloud.google.com/apis/dashboard
https://console.cloud.google.com/apis/dashboard

For a JavaScript app

Select Web application as the value for Application Type.

In the Name field, type a name for this application.

Under Authorized JavaScript Origins, add the origins of the apps that use Google as an IdP.

Origins include scheme, domain, and port.

Under Authorized redirect URIs, add the full redirect URLs of your apps that handle the redirection from
Google after user login.

Click Create.

Native Android social authentication

To enable native Android social authentication, you must create two OAuth 2.0 clients in the Google API console:

Create an OAuth 2.0 client for the Android application.

See the step for an Android app above.

Create an OAuth 2.0 client for PingAM to communicate with the Google APIs.

See the step for a JavaScript app above.

Set up PingOne Advanced Identity Cloud for social login

This page explains how to configure your PingOne Advanced Identity Cloud tenant to work with your social IdP.

Enable IdPs

To access the configuration, log in to the PingOne Advanced Identity Cloud tenant as an administrator.

Click Native Consoles.

Click Access Management.

Click Services.

Click Social Identity Providers Service, or create it by clicking Add a Service.

Once in the service, ensure it is enabled.

To manage your IdPs, click the Secondary Configurations tab.

Setting up your configuration for providers is mostly the same, but there are a few differences with Apple that are described
below.

You will likely need a configuration for each platform that you develop. Use a naming scheme that’s easy to remember, such as
google_web , google_ios , google_android .

1.

2.

3.

4.

5.

1.

2.

1.

2.

3.

4.

5.

6.

Implement your use cases with the Ping SDKs Ping SDKs

592 Copyright © 2025 Ping Identity Corporation

Configure Google and Facebook

Under Secondary Configuration, click Add a Secondary Configuration, and choose the provider to configure.

The following fields are required:

Client ID

This is the ID for the client registered with the IdP. For native Android, set up the client with the second OAuth set
of credentials generated using the web configuration. For details, see Set up social login in Android apps.

Client Secret

This is the secret for the client registered with the IdP.

Facebook

Facebook provides a client secret.

Android

You must set up the secret with the second OAuth set of credentials generated using the Web configuration.
For details, see Set up social login in Android apps.

iOS

The Google Credentials do not provide a client secret.

Redirect URL

The redirect URL/URI for your application after the user authenticates with the provider.

Scope Delimiter

" " (a literal space character)

For native iOS and Android apps, set Enable Native Nonce to OFF .

The option is ON by default.

Click Create.

Ensure that the configuration is enabled, and the Transform Script is set to Google Profile Normalization , or
Facebook Profile Normalization .

Configure Apple

Under Secondary Configuration, click Add a Secondary Configuration, and choose the Apple Provider Configuration.

The following fields are required:

Client ID

For native iOS, use the app ID created in the Apple developer page.

1.

2.

3.

4.

1.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 593

For Android or Web, use the service ID.

Client Secret

The JWT client secret you generated.

Redirect URL
Native iOS

Use the <application-uri> of your app.

The <application-uri> can vary as it does not impact the flow.

Android or Web

For PingAM, use <forgerock-url>/am/oauth2/client/form_post/<configuration-name> . For example,
the configuration name here is apple_web . You can also add the redirect URI from the OAuth2.0 client
settings.

For IDC, use <forgerock-url>/am/oauth2/<realmName>/client/form_post/<configuration-name> .

(Optional) Redirect after form post URL

This is only needed for configurations that use an PingOne Advanced Identity Cloud or PingAM endpoint for
handling the POST redirection from Apple. The value of this field is the URL/URI of the Android or web app handling
the remainder of the login flow.

Scope Delimiter

" " (a literal space character)

OAuth Scopes

Include the value email in this field to include the user’s Apple ID email in the JWT response and the identity token.

If you add the email scope after a user agrees to provide scopes, the JWT response and the identity token will not
include the user’s Apple ID email.

Well Known Endpoint

https://appleid.apple.com/.well-known/openid-configuration

lightbulb_2
To troubleshoot when the JWT response does not include the user’s Apple ID email.

Sign in with your Apple ID used for authentication at the Apple ID page.
Under Security > Sign in with Apple, click Manage apps & websites > Apps & websites using
Apple ID.
Select the application you are developing using Sign in with Apple.
Click Stop using Apple ID.
Attempt to re-authenticate in your app.

For more information, read Sign in with Apple - Updated Scope Not Reflected in JWT Claims.

Tip

1.
2.

3.
4.
5.

Implement your use cases with the Ping SDKs Ping SDKs

594 Copyright © 2025 Ping Identity Corporation

https://appleid.apple.com
https://appleid.apple.com
https://developer.apple.com/forums/thread/678930
https://developer.apple.com/forums/thread/678930

Issuer

https://appleid.apple.com

Click Create to save your configuration.

Add these values to complete the configuration:

Response Mode
Native iOS

Use Default .

Android or Web

Use FORM_POST .

Transform Script

Ensure Apple Profile Normalization is selected.

Create your authentication journey

After configuring the provider services, the next step is to build your authentication journey. There are nearly unlimited number
of ways to compose authentication journeys. This page covers the basics.

We have two different sets of authentication nodes that provide social login capabilities. This page focuses on the node sets
supported by the Ping SDKs:

The Select Identity Provider node

The Select Identity Provider node has the following important settings.

Include local authentication

When enabled, this includes an additional "provider" in the SelectIdPCallback called localAuthentication .
This also enables a different outcome of the node that you can connect to a local authentication path. The node will
now have two outcomes: Social Authentication , and Local Authentication .

Filter enabled providers

This setting further reduces the number of providers passed to your application. This is often used when you have
providers configured for different platforms, and you only want the platform specific providers sent to the
application.

For more information, see the Select Identity Provider node reference.

Social Provider Handler node

The Social Provider Handler node has the following important settings:

Transformation Script

Set Normalized Profile to Managed User .

2.

3.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 595

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html#auth-node-select-identity-provider
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html#auth-node-select-identity-provider

Client Type

If the browser is used for IdP authentication (always the case for JavaScript), BROWSER is the correct value. If you are
using the IdP’s SDK with native mobile for authentication, then NATIVE is the correct choice.

For more information, see the Social Provider Handler node reference.

Create users for a specific realm

To create users from a specific realm, link the Create node and the Patch node to the IDM users and their realm.

For example, for users in the alpha realm, set the Create node and the Patch node as follows:

Create Object node

Set Identity Resource to managed/alpha_user .

Patch Object node

Set Identity Resource to managed/alpha_user .

For more information, see the Create Object node, and Patch Object node references.

A simple social authentication journey

Start with the simplest journey. A user is presented with a choice of providers, the choice is made, and the user is taken to the IdP
to authenticate. Upon the user’s return, the user management capabilities read the identity information from the provider to
verify, allow, or deny access to the system.

To add a choice of local authentication, enable the feature in the Select Identity Provider node, mentioned above, to create an
alternative path for local credentials.

Implement your use cases with the Ping SDKs Ping SDKs

596 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html#auth-node-social-provider-handler
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html#auth-node-social-provider-handler
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html#auth-node-create-object
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html#auth-node-create-object
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html#auth-node-patch-object
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html#auth-node-patch-object

Social authentication and local username-password journey

This is one of the more common authentication journeys seen across the web. This is a choice between using a third-party
identity provider, or using first-party credentials with username and password directly. The UI for this combination looks like this:

To compose this type of journey, use a Page node to combine the following nodes:

Password Collector/Platform Password•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 597

Select Identity Provider (enable Include local authentication)

Set up social login in Android apps

This page shows how to use the Ping SDK for Android with authentication journeys that provide social login and registration.

The first callback your app encounters is the SelectIdPCallback , which lets the user choose their IdP. You use the
getProviders() method to display the available providers, and setValue when the user makes a choice:

List<SelectIdPCallback.IdPValue> providers = callback.getProviders();
callback.setValue(chosenProvider);

The next callback is the IdPCallback . You call the signIn() method on the IdPCallback class:

callback.signIn(null, new FRListener<Void>() {
 @Override
 public void onSuccess(Void result) {
 //proceed to next node
 node.next();
 }

 @Override
 public void onException(Exception e) {
 //handle error
 }
});

This method directs the user to authenticate with the IdP. When the user authenticates with that provider, the result is
automatically added to the IdPCallback with the following methods:

idPCallback.setTokenType(String tokenType)
idPCallback.setToken(String token)

•

Implement your use cases with the Ping SDKs Ping SDKs

598 Copyright © 2025 Ping Identity Corporation

SDK configuration

Google

For Google Sign-In, add the following dependency to the build.gradle file:

implementation 'com.google.android.gms:play-services-auth:20.5.0'

Facebook

For Facebook Login:

Add the Facebook dependency to the build.gradle file:

implementation 'com.facebook.android:facebook-login:16.0.0'

Add the following to the AndroidManifest.xml file:

info
In order to override the automatic provider detection, and identify the returned provider manually, you must check
the IdPClient provider value in the IdPCallback returned:

IdPHandler idPHandler = null;
 switch (callback.getProvider()) {
 case "facebook-android":
 idPHandler = new FacebookSignInHandler();
 break;
 case "google-android":
 idPHandler = new GoogleSignInHandler();
 break;
 case "apple-android":
 idPHandler = new AppleSignInHandler();
 break;
 default:
 //error
 }

// If the handler has been found and initialised, call the following to perform login
callback.signIn(idPHandler, new FRListener<Void>() {
 ...
 // Social Login flow is completed
}

Note

1.

2.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 599

<meta-data android:name="com.facebook.sdk.ApplicationId"
 android:value="@string/facebook_app_id"/>

<meta-data android:name="com.facebook.sdk.ClientToken"
 android:value="@string/facebook_client_token"/>

<activity android:name="com.facebook.FacebookActivity"
 android:configChanges=
 "keyboard|keyboardHidden|screenLayout|screenSize|orientation"
 android:label="@string/app_name" />
<activity
 android:name="com.facebook.CustomTabActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="@string/fb_login_protocol_scheme" />
 </intent-filter>
</activity>

Add the following attributes to the string.xml file:

<string name="facebook_app_id">Your Facebook App ID</string>
<string name="fb_login_protocol_scheme">"fb" + Your Facebook App ID</string>
<string name="facebook_client_token">Your Facebook client token</string>

To find the values for facebook_app_id and fb_login_protocol_scheme , go to the Facebook Developer Console, and
copy the App ID value:

3.

Implement your use cases with the Ping SDKs Ping SDKs

600 Copyright © 2025 Ping Identity Corporation

https://developers.facebook.com/apps
https://developers.facebook.com/apps

To find the value for facebook_client_token , go to the Facebook Developer Console, select your app, then navigate to
Settings > Advanced > Security. Copy the Client token value:

For example:

<string name="facebook_app_id">123456781234567</string>
<string name="fb_login_protocol_scheme">fb123456781234567</string>
<string name="facebook_client_token">ab12cd34ef56ab78ab12cd34ef56ab78</string>

Apple

For Sign in with Apple:

Add the AppAuth dependency to the build.gradle file:

implementation 'net.openid:appauth:0.7.1'

Add the following to the AndroidManifest.xml file:

lightbulb_2
Prefix your App ID value with fb to get the fb_login_protocol_scheme value.
For example, if your App ID is 123456781234567 , your fb_login_protocol_scheme is fb123456781234567 .

Tip

1.

2.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 601

https://developers.facebook.com/apps
https://developers.facebook.com/apps

<activity
 android:name="net.openid.appauth.RedirectUriReceiverActivity"
 tools:node="replace"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="@string/apple_scheme" />
 </intent-filter>
</activity>

Add the following attribute to the string.xml file:

<string name="apple_scheme">Your Redirect after form post URL Scheme</string>

To find the value of apple_sheme , go to Services > Social Identity Provider Service > Secondary Configurations > Apple:

In this example, the scheme would be org.forgerock.demo .

Set up social login in iOS apps

This page shows how to use the Ping SDK for iOS with authentication journeys that provide social login and registration.

3.

Implement your use cases with the Ping SDKs Ping SDKs

602 Copyright © 2025 Ping Identity Corporation

Setup the social providers

Configure Facebook

Create a Facebook client for iOS.

For details, see Configure social login identity providers.

Facebook provides you with the .plist configuration.

Follow the instructions on the page and copy the values in your app’s Info.plist in Xcode.

The final Info.plist file in your project, containing the Facebook generated Custom URL Scheme , and the
LSApplicationQueriesSchemes , should look something like this:

Include the FRFacebookSignIn module in your project.

The FRFacebookSignIn is a new module that is distributed separately of FRAuth .

Assuming you are using CocoaPods, add the following lines in your projects Podfile :

pod 'FRAuth'
pod 'FRFacebookSignIn'
...
... Other Pods
...

Run the following command to install pods:

1.

2.

3.

4.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 603

pod install

Initialize the Facebook sign-in handler in your app’s AppDelegate file:

Locate the following method:

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[UIApplication.LaunchOptionsKey: Any]?)

Add a call to the FacebookSignInHandler.application(_:didFinishLaunchingWithOptions:) method, before
the return true line:

FacebookSignInHandler.application(application, didFinishLaunchingWithOptions: launchOptions)

The result might resemble the following:

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[UIApplication.LaunchOptionsKey: Any]?) -> Bool {

 // Enable logs for all levels
 FRLog.setLogLevel([.all])

 // Initialize the Facebook sign-in handler
 FacebookSignInHandler.application(application, didFinishLaunchingWithOptions: launchOptions)

 return true
}

Configure Google

Create a Google client for iOS.

For details, refer to Create a Google client.

Access the client in the Google Console, and make a note of the generated custom iOS URL scheme:

info
Alternatively, you can add the FRFacebookSignIn module to your project using the Swift Package Manager in
Xcode.

Note

5.

1.

2.

1.

2.

Implement your use cases with the Ping SDKs Ping SDKs

604 Copyright © 2025 Ping Identity Corporation

Configure your Xcode project with the Google generated custom iOS URL scheme:

Select your project file, select the app target, and in the Info pane, expand the URL Types option.

Click on the + icon to add a new custom URL scheme, and paste the generated URL scheme in the URL Scheme
field.

The configuration should look something like this:

Include the FRGoogleSignIn module in your project.

The FRGoogleSignIn is a new module that is distributed separately of FRAuth .

Assuming you are using CocoaPods, add the following lines in your projects Podfile :

3.

1.

2.

4.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 605

pod 'FRAuth'
pod 'FRGoogleSignIn'
...
... Other Pods
...

Run the following command to install pods:

pod install

Configure Apple

Create an Apple Client for iOS.

For details, refer to Create an Apple client.

Configure your Xcode project with the Google generated custom iOS URL scheme.

Select your project file, select the app target and go to the Signing & Capabilities tab in Xcode.

Click the + Capability button, and search for Sign In with Apple .

After enabling the capability the Xcode page should look something like this.

5.

info
The FRGoogleSignIn module is not available through the Swift Package Manager.

Note

1.

2.

3.

4.

Implement your use cases with the Ping SDKs Ping SDKs

606 Copyright © 2025 Ping Identity Corporation

Handle social login with the Ping SDK for iOS

After configuring social providers in PingOne Advanced Identity Cloud, and configuring your Xcode project to work with Facebook,
Google, and Apple IdPs, you are ready to use the Ping SDK for iOS to authenticate.

The first callback your app encounters is the SelectIdPCallback , which lets the user choose their IdP. Use the providers array
to display the available providers, and setProvider() method when the user makes a choice:

// Within your login flow
let selectIdPCallback = callback as? SelectIdPCallback
let providersArray = selectIdPCallback.providers

// display providers
// user makes choice

// Sets provider on the callback within `selectIdPCallback`
selectIdPCallback.setProvider(provider: providersArray[self.selectedIndex])
node.next { (user: FRUser?, node, error) in

 // Handle node

}

The next callback returned is the IdPCallback .

The SDK automatically identifies the correct IdP for authentication as long as the IdPClient , derived from the Social Identity
Provider Service configuration in PingAM, contains facebook , google or apple . Detection is case-insensitive.

// Node is returned with IdPCallback
let idpCallback = node.callbacks.first as! IdPCallback

// Call the following to perform login
idpCallback.signIn(handler: nill, presentingViewController: self) {
 (token: String?, tokenType: String?, error: Error?) in

 // Social Login flow is completed
 node.next { (user: FRUser?, node, error) in
 // Handle node
 }
}

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 607

Set up social login in JavaScript apps

This page shows how to use the Ping SDK for JavaScript with authentication journeys that provide social login and registration.

The first callback your app encounters is the SelectIdPCallback , which lets the user choose their IdP. Use the getProviders()
method to display the available providers, and setProvider() when the user makes a choice:

// Within your login flow
const cb = step.getCallbackOfType(‘SelectIdPCallback’)
const providers = cb.getProviders();

// display providers
// user makes choice

// Sets provider on the callback within `step`
cb.setProvider(chosenProvider);

FRAuth.next(step);

The next callback is the RedirectCallback . Detect the presence of the callback, and call a special redirect() method on the
FRAuth class, passing the whole step object as the argument:

info
To override the automatic provider detection and identify the returned provider manually, check the IdPClient
provider value in the returned IdPCallback as shown in the example below:

// Node is returned with IdPCallback
let idpCallback = node.callbacks.first as! IdPCallback
// Based on IdPClient in IdPCallback, choose the correct handler
var handler: IdPHandler?
if idpCallback.idpClient.provider == "facebook-ios" {
 handler = FacebookSignInHandler()
} else if idpCallback.idpClient.provider == "google-ios" {
 handler = GoogleSignInHandler()
} else if idpCallback.idpClient.provider == "apple-ios" {
 handler = AppleSignInHandler()
} else {
 throw error
}

// If the handler has been found and initialized, call the following to perform login
idpCallback.signIn(handler: handler, presentingViewController: self) {
 (token: String?, tokenType: String?, error: Error?) in

 // Social Login flow is completed
 node.next { (user: FRUser?, node, error) in
 // Handle node
 }
}

Note

Implement your use cases with the Ping SDKs Ping SDKs

608 Copyright © 2025 Ping Identity Corporation

// Within your login flow
if (step.getCallbackOfType('RedirectCallback')) {
 FRAuth.redirect(step);
}

This triggers a full browser redirect to the IdP. When the user authenticates with the IdP, they are redirected back to the app.
When your application handles this redirect, check for the query parameters code and state for Facebook and Google, or
form_post_entry for Apple. If they are present, call the resume() method on the FRAuth class:

// Application route handler for redirection from provider
// `code`, `state` and `form_post_entry` are "variablized" from URL
if ((code && state) || form_post_entry) {
 step = FRAuth.resume(window.location.href);
}

The resume() method gathers the appropriate URL information, and information from the previous step saved to browser
storage prior to the redirect in order to properly resume the authentication journey.

Suspend and resume authentication with magic links

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

The Ping SDKs support the Suspended Authentication feature provided by PingAM.

Suspended authentication lets you pause a user’s progress through an authentication tree, and later resume from the same
point.

Any input provided during authentication is saved when the authentication tree is suspended, and restored when the
authentication tree is resumed. This lets the authentication tree continue after closing the browser, using a different browser, or
even on a different device.

When suspending an authentication tree, you provide the user with a URL that contains a unique ID that lets them resume their
authentication. The unique identifier for retrieving the saved progress can only be used once. These URLs are sometimes referred
to as "magic links".

Note that the "magic link" represents a users' authentication journey up to the point it was paused. Ensure appropriate additional
authentication is used in the remainder of a suspended authentication journey.

Typical use cases include password-less authentication, and email verification during progressive profile completion.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 609

Prepare for suspended authentication

To use suspended authentication within your application, configure your server as follows:

Enable outgoing email.

Configure PingIDM to be able to send outbound email.

For more information, see Configure outbound email in the IDM documentation.

Add an "Email Suspend Node" into an authentication tree.

Enable suspended authentication by adding the node to a tree.

For more information, see Suspended authentication in the PingAM documentation.

Handle the suspended authentication callback

The Ping SDKs receive a SuspendedTextOutputCallback when a "Email Suspend Node" is reached:

{
 "type": "SuspendedTextOutputCallback",
 "output": [{
 "name": "message",
 "value": "An email has been sent to the address you entered. Click the link in that email to proceed."
 }, {
 "name": "messageType",
 "value": "0"
 }]
}

Your application should display the message field, which instructs the user on how to proceed.

Authentication is now suspended. The Ping SDKs can resume authentication by using the suspendedId parameter that was
emailed to the user.

Capture the resume URI

Your application must be able to capture the URI that the user is emailed. That URI contains the suspendedId parameter that is
used to resume the user’s authentication or registration journey.

Exact details on how to capture or intercept the URI from the email are beyond the scope of this documentation. However, the
following resources may prove useful:

•

lightbulb_2
When targeting applications that use the Ping SDK for JavaScript, alter the email template to include a URI that
points to the application, rather than an instance of PingAM.

Your app can then handle the URI the user clicks, and route it appropriately to resume the authentication.

Tip

•

Implement your use cases with the Ping SDKs Ping SDKs

610 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingidm/8/external-services-guide/email.html
https://docs.pingidentity.com/pingidm/8/external-services-guide/email.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-suspended.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-suspended.html

Android:

Create Deep Links to App Content

Verify Android App Links

iOS:

Universal Links for Developers

Ensure your application is able to intercept the resume URI, and obtain the value of the suspendedId parameter it contains,
before continuing to the next section.

Resume a suspended authentication

After obtaining the value of the suspendedId parameter, use it in you application to continue the user’s authentication or
registration journey, as follows:

Resume authentication in an Android app

The FRSession interface accepts the resume URI, including the suspendedId parameter:

FRSession.authenticate(Context, Uri, NodeListener<FRSession>)

For example, you could retrieve the resume URI from the 'intent', and pass it into the SDK as follows:

Uri resumeURI = getIntent().getData();
//Note that SuspendedAuthSessionException (401) is returned if suspendedId is invalid or expired
FRSession.authenticate(Context context, Uri resumeUri, NodeListener<FRSession>)

Resume authentication in an iOS app

The FRSession interface accepts the resume URI, including the suspendedId parameter:

@objc public class FRSession: NSObject {
 public static func authenticate<T>(resumeURI: URL, completion:@escaping NodeCompletion<T>)
}

Examples:

•

•

•

info
If the specified URI scheme, host, or port does not match with those of the PingAM instance configured for the app,
the SDK throws an exception.

Note

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 611

https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/verify-site-associations
https://developer.android.com/training/app-links/verify-site-associations
https://developer.apple.com/ios/universal-links/
https://developer.apple.com/ios/universal-links/

AppDelegate.swift

class AppDelegate: UIResponder, UIApplicationDelegate {

 // This method is one of AppDelegate protocol that is invoked when
 // iOS tries to open the app using the app's dedicated URL
 func application(_ app: UIApplication, open url: URL, options: [UIApplication.OpenURLOptionsKey: Any] = [:]) ->
Bool {

 // validate the resumeURI contains 'suspendedId' parameter
 let resumeURL = url

 // With given resumeURI, use FRSession to resume authenticate flow
 FRSession.authenticate(resumeURI: resumeURL) { (token: Token?, node, error) in
 // Handle Node, or the result of continuing the the authentication flow
 }
 }
}

SceneDelegate.swift

class SceneDelegate: UIResponder, UIWindowSceneDelegate {

 func scene(_ scene: UIScene, openURLContexts URLContexts: Set<UIOpenURLContext>) {
 if let url = URLContexts.first?.url {
 let resumeURL = url // validate the resumeURI contains 'suspendedId' parameter

 // With given resumeURI, use FRSession to resume authenticate flow
 FRSession.authenticate(resumeURI: resumeURL) { (token: Token?, node, error) in
 // Handle Node, or the result of continuing the the authentication flow
 }
 }
 }
}

Resume authentication in a JavaScript app

The method next() in the FRAuth class has been updated to accept the suspendedID value:

Implement your use cases with the Ping SDKs Ping SDKs

612 Copyright © 2025 Ping Identity Corporation

interface StepOptions extends ConfigOptions {
 query: {
 suspendedId: string; // you must have captured the suspendedId from the users' resumeURI
 };
}

abstract class FRAuth {
 public static async next(
 previousStep?: FRStep,
 options?: StepOptions,
): Promise<FRStep | FRLoginSuccess | FRLoginFailure> {
 const nextPayload = await Auth.next(previousStep ? previousStep.payload : undefined, options);

 // ... continue as normal
 }
}

For example, your app code may resemble the following:

const step = await FRAuth.next(null, {query: {suspendedId: 'i1PUHHWq6bTi3HxNjFGIqEask4g'}});

More information

Suspended authentication

Configure outbound email

Email suspend node

Set up transactional authorization

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

The Ping SDKs have builtin support for transactional authorization.

Transactional authorization requires a user to authorize every access to a resource. It is part of an PingAM policy that grants
single-use or one-shot access.

For example, a user might approve a financial transaction with a one-time password (OTP) sent to their device, or respond to a
push notification to confirm that they have indeed signed on from an unexpected location.

•

•

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 613

https://docs.pingidentity.com/pingam/8/authentication-guide/authn-suspended.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-suspended.html
https://docs.pingidentity.com/pingidm/8/external-services-guide/email.html
https://docs.pingidentity.com/pingidm/8/external-services-guide/email.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html#auth-node-email-suspend
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html#auth-node-email-suspend

Performing the additional action successfully grants access to the protected resource but only once. Additional attempts to access
the resource require the user to perform the configured actions again.

How does transactional authorization work?

The following diagram shows the flow used during transactional authorization:

When the Ping SDKs attempt to access a resource protected with transactional authorization, PingAM returns JSON that has an
empty actions attribute. A unique transaction ID (TxId) is also included under /advices/TransactionConditionAdvice .

For example:

{
 "resource": "https://app-backend.example.com:8000/protected/feature/",
 "actions": {},
 "attributes": {},
 "advices": {
 "TransactionConditionAdvice": [
 "7b8bfd4c-60fe-4271-928d-d09b94496f84"
]
 },
 "ttl": 0
}

Authenticated User

Authenticated User

App that uses
ForgeRock SDK

App that uses
ForgeRock SDK

Protected Web Server
(REST App)

Protected Web Server
(REST App)

ForgeRock Access Management

ForgeRock Access Management

Access feature

Access attempt

Evaluate policies Policy has transaction condition

Return transaction ID in advices

Detect TransactionConditionAdvice response

Fulfil Transactional Authentication Requirements

Initiate authentication, include transaction ID

loop [Loop callbacks until success...]

Return callbacks for authentication

Render callbacks

Perform requested authentication

Return completed callbacks

Return existing SSO token ID

Reevaluate policies, include transaction ID

Transaction state isCOMPLETED
and transaction was authorized

Allow single access

Allow single access

Allow single access to the feature

Implement your use cases with the Ping SDKs Ping SDKs

614 Copyright © 2025 Ping Identity Corporation

The Ping SDKs detect that transactional authorization is required, and make a call to the /authenticate endpoint to begin to
fulfil the requirements specified in the policy protecting the resource. The call must include the TxId value originally received
from PingAM.

PingAM responds to the request with a series of required callbacks to fulfil the policy.

Each callback is handled by the SDK; for example, by rendering UI for the user to complete, or responding to a push notification.

When all the callbacks have been completed, the SDK attempts to access the protected resource again, using the same session or
OAuth 2.0 token as before. The SDK adds the transaction ID into the policy evaluation as an environment property:

{
 "resources" : ["https://app-backend.example.com:8000/protected/feature/"],
 "application" : "iPlanetAMWebAgentService",
 "subject" : {
 "ssoToken" : "AQIC5w....*AJTMQAA*"
 },
 "environment": {
 "TxId": ["77b8bfd4c-60fe-4271-928d-d09b94496f84"]
 }
}

As the transaction ID matches an entry in PingAM’s completed transaction list, PingAM returns a new policy evaluation result,
including the actions the SDK-based application can now perform:

{
 "resource": "https://app-backend.example.com:8000/protected/feature/",
 "actions": {
 "POST": true,
 "GET": true
 },
 "attributes": {},
 "advices": {},
 "ttl": 0
}

For more information on transactional authorization, and how to set up PingAM to use it, see Transactional authorization in
the PingAM documentation.

Handle transactions in an Android app

In this example, an API is protected by PingGateway and PingAM.

The example adds a x-authenticate-response header to the access request. This header causes IG to return the advice as JSON
in a header named Www-Authenticate .

The SDK provides interceptors for handling the returned advice:

AdviceHandler

IdentityGatewayAdviceInterceptor

After obtaining the advice, pass it to the authenticate() method of the FRSession class.

•

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 615

https://docs.pingidentity.com/pingam/8/authorization-guide/transactional-authorization.html
https://docs.pingidentity.com/pingam/8/authorization-guide/transactional-authorization.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.interceptor/-advice-handler/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.interceptor/-advice-handler/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.interceptor/-identity-gateway-advice-interceptor/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.interceptor/-identity-gateway-advice-interceptor/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth/-f-r-session/authenticate.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth/-f-r-session/authenticate.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth/-f-r-session/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth/-f-r-session/index.html

The following example shows how to use the interceptors to handle the advice using OKHttpClient :

val builder: OkHttpClient.Builder = OkHttpClient.Builder()

builder.addInterceptor(object: IdentityGatewayAdviceInterceptor() {
 override fun getAdviceHandler(advice: PolicyAdvice): AdviceHandler {
 return object: AdviceHandler {
 override suspend fun onAdviceReceived(
 context: Context,
 advice: PolicyAdvice) {
 // Authenticate the advice with
 // FRSession.getCurrentSession().authenticate(context, advice, ...)
 }
 }
 }
})

builder.cookieJar(SecureCookieJar.builder().context(context).build())

val client: OkHttpClient = builder.build()
val requestBuilder: Request.Builder = Request.Builder().url(api)

requestBuilder.addHeader("x-authenticate-response", "header");

val request = requestBuilder.build()

client.newCall(request).enqueue(object: Callback {
 override fun onFailure(call: Call, e: IOException) {
 // Handle Failure
 }

 override fun onResponse(call: Call, response: Response) {
 // Handle Response
 }
})

Handle transactions in an iOS app

The following steps demonstrate how to handle transactional authorization in the Ping SDK for iOS.

This example assumes interaction directly with PingAM.

If the resource server is protected by IG, and routes are configured for protected resources, the optional steps are not required,
as the SDK is able to deal directly with the responses from IG.

Create an AuthorizationPolicy with the URL to evaluate policies against, and a delegate of
AuthorizationPolicyDelegate :

let authPolicy = AuthorizationPolicy(
 validatingURL: ["https://protectedendpoint"],
 delegate: self
)

Add AuthorizationPolicy to FRURLProtocol

1.

2.

Implement your use cases with the Ping SDKs Ping SDKs

616 Copyright © 2025 Ping Identity Corporation

FRURLProtocol.authorizationPolicy = authPolicy

Register the FRURLProtocol class:

URLProtocol.registerClass(FRURLProtocol.self)

Create a URLSessionConfiguration with FRURLProtocol , and create a URLSession with the configuration.

(Optional) If using IG, add the x-authenticate-response header so that IG returns the advice response as JSON in a
header named Www-Authenticate , rather than as a redirect with query parameters:

// Configure FRURLProtocol for HTTP client
let config = URLSessionConfiguration.default
config.protocolClasses = [FRURLProtocol.self]

var request = URLRequest(url: "https://protectedendpoint")
request.setValue("header", forHTTPHeaderField: "x-authenticate-response")

self.urlSession = URLSession(configuration: config)
self.urlSession.dataTask(with: request) { (data, response, error) in }.resume()

(Optional) If the SDK is unable to parse the response into policyAdvice , construct it with the given response by
implementing the AuthorizationPolicyDelegate.evaluateAuthorizationPolicy() method:

extension YourClass: AuthorizationPolicyDelegate {
 func evaluateAuthorizationPolicy(
 responseData: Data?,
 response: URLResponse?,
 error: Error?
) -> PolicyAdvice? {
 if let httpResponse = response as? HTTPURLResponse,
 httpResponse.statusCode == 401,
 let json = httpResponse.allHeaderFields["Www-Authenticate"] as? String,
 let policyAdvice = PolicyAdviceCreator().parseAsBase64(advice: json)
 {
 return policyAdvice
 } else {
 // If PolicyAdvice cannot be constructed, return 'nil' to stop authZ
 return nil
 }
 }
}

Initiate authentication tree flow, including policyAdvice , by implementing the
AuthorizationPolicyDelegate.onPolicyAdviseReceived() method:

3.

4.

5.

6.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 617

extension YourClass: AuthorizationPolicyDelegate {
 func onPolicyAdviseReceived(
 policyAdvice: PolicyAdvice, completion: @escaping FRCompletionResultCallback
) {
 FRSession.authenticate(policyAdvice: policyAdvice) { (token: Token?, node, error) in
 if error != nil {
 //Authentication failed
 completion(false)
 return
 }
 if let _ = token {
 completion(true)
 } else {
 // Handle node.
 // At the end of the authentication, you should get back a Token.
 // In this case you will need to call the completion handler
 }
 }
 }
}

(Optional) Decorate the original URLRequest object with updated information, by implementing the
AuthorizationPolicyDelegate.updateRequest() method:

extension YourClass: AuthorizationPolicyDelegate {
 func updateRequest(originalRequest: URLRequest, txId: String?) -> URLRequest {
 // append txId into the request
 return request
 }
}

If a delegation method is not defined, the SDK appends the _txid query parameter automatically to the URL.

Handle transactions in a JavaScript app

Transactional authorization is built into the HttpClient module of the Ping SDK for JavaScript.

The HttpClient module detects when transactional authorization is enabled, and depending on your setup, initiates interaction
with either PingAM or IG.

Ensure you specify credentials: 'include' , so that the request includes the necessary cookies.

When transactional authorization is enabled and callbacks are returned, your client app must implement the necessary user
interaction. Ensure that you iterate through returned callbacks until you receive a success or failure response.

When you do receive a success response, make a new request to the initial resource endpoint, which will now be authorized.

The following code shows a sample JavaScript implementation. The included authorization middleware handles the callbacks
that the configured transactional authorization returns:

7.

Implement your use cases with the Ping SDKs Ping SDKs

618 Copyright © 2025 Ping Identity Corporation

console.log('Make a $200 withdrawal from account');
return HttpClient.request({
 init: {
 method: 'POST',
 body: JSON.stringify({ amount: '200' }),
 credentials: 'include',
 },
 authorization: {
 handleStep: async (step) => {
 console.log('Withdrawal endpoint is set up for transational authorization...');
 step.getCallbackOfType('ValidatedCreateUsernameCallback').setName(un);
 step.getCallbackOfType('ValidatedCreatePasswordCallback').setPassword(pw);
 return Promise.resolve(step);
 },
 },
 timeout: 0,
 url: `${resourceUrl}/withdraw`,
});

More information

Transactional authorization

MFA: Push authentication

PingGateway

Web agents

Java agents

Set up QR code handling

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

The Ping SDK for JavaScript has the following methods for handling QR codes:

FRQRCode.isQRCodeStep(step)

For determining if a step requires a QR code.

FRQRCode.getQRCodeData(step)

For extracting the QR code data from the step, such as the URI.

•

•

•

•

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 619

https://docs.pingidentity.com/pingam/8/authorization-guide/transactional-authorization.html
https://docs.pingidentity.com/pingam/8/authorization-guide/transactional-authorization.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-mfa-about-push.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-mfa-about-push.html
https://docs.pingidentity.com/pinggateway/latest
https://docs.pingidentity.com/pinggateway/latest
https://docs.pingidentity.com/web-agents/latest
https://docs.pingidentity.com/web-agents/latest
https://docs.pingidentity.com/java-agents/latest
https://docs.pingidentity.com/java-agents/latest

Example:

// Import the module
import { FRQRCode } from ‘@forgerock/javascript-sdk’;

// Determine if a step is a QR code step
const isQRCode: boolean = FRQRCode.isQRCodeStep(step);

if (isQRCode) {
 // Extract QR code data
 const data: {
 message: string,
 use: string,
 uri: string
 } = FRQRCode.getQRCodeData(step);

 // Render a QR code using the `data` from the step

}

Integrate with Google reCAPTCHA Enterprise

Applies to:

 ForgeRock SDK for Android

 ForgeRock SDK for iOS

 ForgeRock SDK for JavaScript

Google ReCAPTCHA Enterprise uses advanced risk analysis techniques to distinguish between humans and bots. reCAPTCHA
Enterprise is useful when you want to detect automated attacks or threats against your website or mobile apps.

These threats typically originate from scripts, mobile emulators, bot software, or humans.

Google reCAPTCHA Enterprise offers enhanced detection compared to earlier versions, with more granular scores, reason codes
for risky events, mobile app SDKs, password breach and leak detection, multi-factor authentication (MFA), and the ability to tune
your site-specific model to protect enterprise businesses.

Understand how the SDKs work with Google reCAPTCHA Enterprise

The following diagram outlines the flow of information between the client that is using the Ping SDKs, the reCAPTCHA Enterprise
node in your journey, and the Google reCAPTCHA servers:

Implement your use cases with the Ping SDKs Ping SDKs

620 Copyright © 2025 Ping Identity Corporation

The SDKs start or continue an authentication journey by visiting the /authorize endpoint

The next step in the journey is the reCAPTCHA Enterprise node, so the journey returns the a
ReCaptchaEnterpriseCallback to the client.

The client uses the values in the callback to request a token from the reCAPTCHA server.

The reCAPTCHA server returns a unique token for the transaction to the client.

The client adds the token to the callback and returns it to the node.

You can also add custom data to the payload that forms the assessment. See Customizing the assessment payload.

The node submits the data collected on the client to the reCAPTCHA server for assessment.

The reCAPTCHA server returns the response to the request to the node.

The node verifies the response against the Score threshold you configure in the node, and continues the journey along
the relevant outcome, true or false .

The client handles the next node as the journey continues.

reCAPTCHA Enterprise flow

SDK on Client reCAPTCHA Enterprise node reCAPTCHA Enterprise server

1) Continue an auth journey

2) Return ReCaptchaEnterpriseCallback

3) Request reCAPTCHA token from server

4) Return token

5)
Complete callback, include
reCAPTCHA token

6) Submit an assessment

7) Return the JSON response

Verify the response
against threshold score

8)
Continue to the next node
in the auth journey

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
You can enable to the Store reCAPTCHA assessment JSON option in the node to save this data in the state for
additional processing later in the journey.
The node stores the JSON in a variable named CaptchaEnterpriseNode.ASSESSMENT_RESULT .

Tip

8.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 621

Set up a journey for reCAPTCHA Enterprise

To enable reCAPTCHA Enterprise, add the reCAPTCHA Enterprise node to a journey.

This node returns a ReCaptchaEnterpriseCallback callback that the SDKs can handle to perform the reCAPTCHA Enterprise
assessment.

Prepare your app for reCAPTCHA Enterprise

To add support for reCAPTCHA Enterprise to your apps, complete the following prerequisite tasks.

Add the following to your build.gradle configuration file:

implementation("com.google.android.recaptcha:recaptcha:18.x.x")

Android

Implement your use cases with the Ping SDKs Ping SDKs

622 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recaptcha-enterprise.html

You can add the dependencies using Cocoapods or Swift Package Manager (SPM).

If you do not already have CocoaPods, install the latest version.

If you do not already have a Podfile, in a terminal window, run the following command to create a new Podfile:

pod init

Add the following lines to your Podfile:

pod 'FRCaptchaEnterprise'

Run the following command to install pods:

pod install

With your project open in Xcode, select File > Add Package Dependencies.

In the search bar, enter the ForgeRock SDK for iOS repository URL: https://github.com/ForgeRock/forgerock-
ios-sdk .

Select the forgerock-ios-sdk package, and then click Add Package.

In the Choose Package Products dialog, set the Add to Target field for the FRCaptchaEnterprise library top be
the name of your project.

Click Add Package.

In your project, import the library:

// Import the reCAPTCHA Enterprise library
import FRCaptchaEnterprise

iOS

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 623

https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/syntax/podfile.html
https://guides.cocoapods.org/syntax/podfile.html

In a JavaScript app you must complete the following steps before using reCAPTCHA Enterprise:

Load the reCAPTCHA Enterprise JavaScript.

To learn more, refer to Install score-based keys on websites in the Google Cloud documentation.

Obtain a reCAPTCHA Enterprise token.

To learn more, refer to Retrieve a token in the Google Cloud documentation.

Handling the callback with the SDK

Use code similar to the following to handle the ReCaptchaEnterpriseCallback in your client-side code using the Ping SDKs:

ReCaptchaEnterpriseCallback callback;
try {
 callback.execute(application = application)
}
catch (e: Exception) {
 if(e is RecaptchaException) {
 Logger.error(
 "RecaptchaException",
 "${e.errorCode}:${e.message}"
)
 }
 Logger.error("RecaptchaException", e.message)
}

var captcha: ReCaptchaEnterpriseCallback?
if #available(iOS 13.0, *) {
 Task {
 do {
 try await captcha.execute(action: "login")
 }
 catch let error as RecaptchaError {
 // Handle errors
 }
 }
}

JavaScript

1.

2.

Android

iOS

Implement your use cases with the Ping SDKs Ping SDKs

624 Copyright © 2025 Ping Identity Corporation

https://cloud.google.com/recaptcha/docs/instrument-web-pages
https://cloud.google.com/recaptcha/docs/instrument-web-pages
https://cloud.google.com/recaptcha/docs/create-assessment-website#retrieve-token
https://cloud.google.com/recaptcha/docs/create-assessment-website#retrieve-token

Return the reCAPTCHA_Enterprise_Token you obtained earlier in the callback as follows:

const callback = step.getCallbackOfType<forgerock.ReCaptchaEnterpriseCallback>(
 forgerock.CallbackType.ReCaptchaEnterpriseCallback,
) as forgerock.ReCaptchaEnterpriseCallback;

callback.setResult(reCAPTCHA_Enterprise_Token);

return forgerock.FRAuth.next(step);

Customizing the assessment payload

You can add additional data to customize the payload that the server sends to the Google reCAPTCHA Enterprise for assessment.

Add data to the payload to leverage additional functionality provided by reCAPTCHA Enterprise.

The JSON format the payload expects is as follows:

{
 "token": string,
 "siteKey": string,
 "userAgent": string,
 "userIpAddress": string,
 "expectedAction": string,
 "hashedAccountId": string,
 "express": boolean,
 "requestedUri": string,
 "wafTokenAssessment": boolean,
 "ja3": string,
 "headers": [
 string
],
 "firewallPolicyEvaluation": boolean,
 "transactionData": {
 object (TransactionData)
 },
 "userInfo": {
 object (UserInfo)
 },
 "fraudPrevention": enum (FraudPrevention)
}

By default, the SDK or the node itself populates the following fields:

token

siteKey

userAgent

JavaScript

•

•

•

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 625

userIpAddress

expectedAction

You can however also override these values if it suits your use case.

To learn more about the payload, refer to Project Assessments - Event in the Google Developer documentation.

To add custom data for an assessment, use the setPayload() method:

// Optional payload values for customization
callback.setPayload(
 JSONObject().put("firewallPolicyEvaluation",false)
)

// Optional payload values for customization
callback.setPayload([
 "firewallPolicyEvaluation", false
])

// Optional payload values for customization
callback.setPayload({
 "firewallPolicyEvaluation": false
});

Returning custom error codes

You can return a custom error code to the node, which can then continue the journey based on the values:

•

•

info
You can add custom payload data as part of an authentication journey that includes the reCAPTCHA Enterprise node
. Custom data in the journey overrides any custom data added by the client.

Note

Android

iOS

JavaScript

Implement your use cases with the Ping SDKs Ping SDKs

626 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recaptcha-enterprise.html
https://cloud.google.com/recaptcha/docs/reference/rest/v1/projects.assessments#event
https://cloud.google.com/recaptcha/docs/reference/rest/v1/projects.assessments#event

// Optional custom error code
callback.setClientError("custom_client_error")

// Optional custom error code
callback.setClientError("custom_client_error")

// Optional custom error code
callback.setClientError('custom_client_error');

Android

iOS

JavaScript

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 627

Ping SDKs API reference

View API references for the different modules provided in the Ping SDKs.

Ping SDK for Android

forgerock-auth

forgerock-auth-ui

forgerock-authenticator

forgerock-core

ping-protect

Ping SDK for iOS

FRAuth

FRAuthenticator

FRCore

FRDeviceBinding

FRFacebookSignIn

FRProximity

FRUI

PingOne Protect

Ping SDK for JavaScript

FR Core

FR Core with UI

PingOne Protect module

More resources

Ping (ForgeRock) Authenticator module API reference

Ping (ForgeRock) Login Widget API reference

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Ping SDKs Ping SDKs API reference

Copyright © 2025 Ping Identity Corporation 629

https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth-ui/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth-ui/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/ping-protect/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/ping-protect/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuth/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuth/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRCore/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRCore/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRDeviceBinding/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRDeviceBinding/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRFacebookSignIn/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRFacebookSignIn/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRProximity/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRProximity/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRUI/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRUI/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/PingProtect/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/PingProtect/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-ui/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-ui/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/ping-protect-api/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/ping-protect-api/index.html

SDK troubleshooting

Troubleshooting your JavaScript app

This section contains information on how to diagnose issues within the application, or with communication to the server.

How to fix cross-domain, authenticated-request failures?

As browsers continue to implement stricter privacy and security configurations, third-party cookies are commonly being disabled
by default. Third-party cookies are defined by a web app and corresponding server sharing cookies with mismatched domains:
example.app and server.com .

This is common when the PingOne Advanced Identity Cloud is running on the provided domain forgeblocks.com , and a web app
is running on a separately hosted domain, company.com . When third-party cookies are disabled by the browser, the set cookie
instruction sent by PingOne Advanced Identity Cloud on forgeblocks.com , such as the session cookie, to the web app on
company.com will be ignored by the browser. Hence, the cookie will not be written. This will lead to subsequent requests
requiring authentication to fail due to the missing cookie.

The Authorization Code Flow (OAuth 2.0) is one such request and the resulting error will resemble this:



Ping SDK for JavaScript

Troubleshoot your JavaScript apps

Knowledge base

Browse our extensive list of articles regarding
diagnosing and fixing issues you might
encounter when using the Ping SDKs.



Getting support

Discover how to contact our support team for
specific assistance not covered in the
documentation or knowledge base.



Ping SDKs SDK troubleshooting

Copyright © 2025 Ping Identity Corporation 631

SecurityError: Blocked a frame with origin "http://example.com" from accessing a cross-origin frame.

Use a shared parent domain

The best action to take is to ensure all entities of your system are on the same parent domain. This can be done by the use of
subdomains with a shared parent domain often using a reverse proxy that routes a request to the appropriate application server.
An example would be store.example.com , the web app, and accounts.example.com , the IAM server.

If a shared domain is not possible, the browser configuration will have to be changed.

macOS and iOS Safari workaround

In Apple’s Safari, third-party cookies are disabled by default. Disabling Prevent Cross-site Tracking in Safari’s privacy settings lets
Safari use third-party cookies.

Google Chrome and Incognito Mode workaround

Currently, in Google Chrome, third-party cookies are disabled when in Incognito mode by default. This can be fixed by changing
the cookie setting from Block third-party cookies in Incognito to Allow all cookies in Chrome settings under Privacy and
security > Cookies and other site data.

info
This isn’t a CORS configuration issue, even though this mentions "cross-origin". In most cases, this is due to a request
to the /authorize endpoint resulting in a redirection within the iframe to the login page, due to the missing session
cookie, which is not allowed to be rendered in an iframe for security reasons.

Note

SDK troubleshooting Ping SDKs

632 Copyright © 2025 Ping Identity Corporation

How do I enable "platform authenticators" in Safari (iOS and macOS)?

Apple’s latest operating systems (iOS 14 and macOS 11 as of this writing) place a strict requirement for the use of their Face ID
and Touch ID (platform authenticators) on the web. The requirement is that a "user gesture" needs to be the trigger prior to, and
directly associated with, accessing navigator.credentials , the Web Authentication (aka WebAuthn) API. If there’s not a clear
connection between a "user activated event" and the access of the API, Apple will log a warning similar to the following:

User gesture is not detected.
To use the platform authenticator, call ‘navigator.credentials.get’ within user activated events.

This is essentially communicating that the call site of the credentials API needs to happen within the callback function of a user-
activated event, like click, touch, keydown, and so on, as opposed to events like DOM load or routing-related events. If there’s too
much elapsed time between the event and the API access, or the connection, scope or context of the event is cleared from the
DOM or runtime, Apple will not allow the use of its platform authenticators.

Solution

First, make sure the "user activated event," such as click, touch, keydown, and so on, precedes the calling of the credentials API,
and the call site of the API happens within the event handler’s callback function. Calling the API after a routing event or a DOM
load event will not work.

If the issue persists, ensure the DOM element with which the user interacts (button or link), the associated DOM event’s callback
function, and its relationship with the credentials API call site is all preserved. Once the API has successfully been triggered, the
DOM and event handler-related code can be cleared.

For more information, see this Webkit blog article: Meet Face ID and Touch ID for the Web.

info
Access to non-platform authenticators like roaming (USB) keys will still be available regardless of user activated
events.

Note

Ping SDKs SDK troubleshooting

Copyright © 2025 Ping Identity Corporation 633

https://webkit.org/blog/11312/meet-face-id-and-touch-id-for-the-web/
https://webkit.org/blog/11312/meet-face-id-and-touch-id-for-the-web/

How do I fix "a mutation operation was attempted on a database that did not allow mutations"?

This error message can occur if you are using Firefox’s Private Window mode, which prevents write operations to IndexedDB. For
more information, see IndexedDB does not function in private browsing mode.

Solution

Because IndexedDB is not writable within Firefox’s private mode, we recommend using either localStorage or
sessionStorage . You can configure the use of either by setting the tokenStore value on the config object to your preferred
option.

Here’s an example:

Config.set({
 // standard config settings ...
 tokenStore: 'localStorage', // Or, 'sessionStorage'
});

Knowledge base

The Knowledge Base contains information on how to diagnose issues within your application, or with communication to the
authorization server.

For troubleshooting information, see the following articles in the Knowledge Base:

Ping SDK for Android Troubleshooting

Ping SDK for iOS Troubleshooting

Ping SDK for JavaScript Troubleshooting

Additional Articles

How do I troubleshoot issues with the CORS filter in PingAM/OpenAM (All versions)?

Getting support

Ping Identity provides support services, professional services, training, and partner services to assist you in setting up and
maintaining your deployments. For a general overview of these services, see https://www.pingidentity.com.

info
In Ping SDK for JavaScript 2.2 and earlier, indexedDB is the default storage mechanism for OAuth/OIDC tokens.

Note

info
The indexedDB option was removed in the ForgeRock SDK for JavaScript v4.0.0. Use sessionStorage or
localStorage instead.

Note

•

•

•

•

SDK troubleshooting Ping SDKs

634 Copyright © 2025 Ping Identity Corporation

https://bugzilla.mozilla.org/show_bug.cgi?id=781982
https://bugzilla.mozilla.org/show_bug.cgi?id=781982
https://backstage.forgerock.com/knowledge/kb/home
https://backstage.forgerock.com/knowledge/kb/home
https://backstage.forgerock.com/knowledge/kb/article/a68547609
https://backstage.forgerock.com/knowledge/kb/article/a68547609
https://backstage.forgerock.com/knowledge/kb/article/a79362752
https://backstage.forgerock.com/knowledge/kb/article/a79362752
https://backstage.forgerock.com/knowledge/kb/article/a83789945
https://backstage.forgerock.com/knowledge/kb/article/a83789945
https://backstage.forgerock.com/knowledge/kb/article/a43149209
https://backstage.forgerock.com/knowledge/kb/article/a43149209
https://www.pingidentity.com
https://www.pingidentity.com

Ping Identity has staff members around the globe who support our international customers and partners. For details on Ping
Identity’s support offering, visit https://www.pingidentity.com/support.

Ping Identity publishes comprehensive documentation online:

The Ping Identity Knowledge Base offers a large and increasing number of up-to-date, practical articles that help you
deploy and manage Ping Identity Platform software.

While many articles are visible to everyone, Ping Identity customers have access to much more, including advanced
information for customers using Ping Identity Platform software in a mission-critical capacity.

Ping Identity product documentation, such as this document, aims to be technically accurate and complete with respect to
the software documented. It is visible to everyone and covers all product features and examples of how to use them.

•

•

Ping SDKs SDK troubleshooting

Copyright © 2025 Ping Identity Corporation 635

https://www.pingidentity.com/support
https://www.pingidentity.com/support
https://support.pingidentity.com/s/knowledge-base
https://support.pingidentity.com/s/knowledge-base

Introducing the DaVinci client for DaVinci
flows

The DaVinci clients provide powerful orchestration capabilities with PingOne DaVinci. They enable you to consume DaVinci flows
to meet your use cases, all while providing a native Android or iOS, or a single-page app JavaScript experience.

You have complete control of your UI, so you can create the tailored experience you desire for your end users, all while leaving
the DaVinci client to do the heavy lifting of communication between your app and your DaVinci flows.

UI Development

You are in charge of the experience your end users have in your Android, iOS, or JavaScript (SPA) applications.

Theme and brand your app the way you want to, focusing on your application logic and letting the DaVinci client
communicate with PingOne DaVinci.

Server support:

 PingOne
 PingOne Advanced Identity Cloud
 PingAM
 PingFederate

SDK support:

 Ping SDK for Android
 Ping SDK for iOS
 Ping SDK for JavaScript

devices

Ping SDKs Introducing the DaVinci client for DaVinci flows

Copyright © 2025 Ping Identity Corporation 637

Dynamically Updating of DaVinci Flows

The DaVinci client works with PingOne DaVinci server-driven orchestration. This means that as long as you don’t hardcode
UI elements in your application, and you appropriately handle the collector types, then you can update your DaVinci flow
without needing to update your app or redeploy to the app stores.

Figure 1. Your app responds to changes in your DaVinci flows, without redeploying.

This saves time and enables you to control your application orchestration experience without unnecessary burden.

widgets

Introducing the DaVinci client for DaVinci flows Ping SDKs

638 Copyright © 2025 Ping Identity Corporation

Flow collectors

DaVinci sends requests to the DaVinci client from UI-related connectors. This enables you to step through each piece of
information, and gather information from your end users appropriately.

Figure 2. Step through flows and and collect input from your users.

For example, if you created a DaVinci flow to register a user, and you used the HTTP Connector - Custom HTML Template
capability:

First name, last name, and email address would be sent as the TextCollector type to your app, and you would
determine the way in which you represented this field in your UI.

The password field would be sent as the PasswordCollector type.

Once the flow completes, PingOne sends back the necessary tokens, and the DaVinci client automatically stores,
retrieves, and refreshes tokens as needed.

quiz

•

•

•

Ping SDKs Introducing the DaVinci client for DaVinci flows

Copyright © 2025 Ping Identity Corporation 639

Token Management

The DaVinci client uses the OAuth 2.0 auth code flow, and support PKCE.

This method is the best practice for first-party applications. The SDK automatically handles token exchange for you, and
also securely stores the tokens.

The DaVinci client handles token refresh automatically, so you don’t have to think about it.

key

Introducing the DaVinci client for DaVinci flows Ping SDKs

640 Copyright © 2025 Ping Identity Corporation

Compatibility

Supported operating systems and browsers

Select a platform below to view the supported operating systems and browsers.

The Ping SDK for Android supports the following versions of the Android operating system:

Supported browsers on Android

Chrome - Two most recent major versions.

Android

Supported Android versions and original release dates

Release API Levels Released

Android 15 35 September, 2024

Android 14 34 October, 2023

Android 13 33 March, 2022

Android 12 31, 32 October, 2021

Android 11 30 September, 2020

Android 10 29 September, 2019

Android 9 (Pie) 28 August, 2018

emergency_home
We are updating how we determine which Android versions form our support policy for the Ping SDK for
Android.
From March 1st, 2025, the support policy is as follows:

Every public major release of Android within the last 6 years.
For example, this would mean support for Android 9 (API level 28) and later versions.

Important

•

•

Compatibility Ping SDKs

642 Copyright © 2025 Ping Identity Corporation

The Ping SDK for iOS supports the following versions of the iOS operating system:

Supported browsers on iOS

Safari - Two most recent major versions.

The Ping SDK for JavaScript, and the Ping (ForgeRock) Login Widget support the desktop and mobile browsers listed
below.

Minimum supported Desktop browser versions

Chrome 83

Firefox 77

Safari 13

Microsoft Edge 83 (Chromium)

Supported Mobile browsers

iOS (Safari) - Two most recent major versions of the operating system.

Android (Chrome) - Two most recent major versions of the operating system.

iOS

Supported iOS versions and original release dates

Release Released

iOS 18 September, 2024

iOS 17 September, 2023

iOS 16 September, 2022

emergency_home
We are updating how we determine which iOS versions form our support policy for the Ping SDK for iOS.
From March 1st, 2025, the support policy is as follows:

Every public major release of iOS within the last 3 years.
For example, this would mean support for iOS 16 and later versions.

Important

•

•

JavaScript / Login Widget

•

•

•

•

•

•

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 643

JavaScript Compatibility with WebViews

A WebView allows you to embed a web browser into your native Android or iOS application to display HTML pages, and run
JavaScript apps.

For example, the Android system WebView is based on the Google Chrome engine, and the iOS WebView is based on the Safari
browser engine.

However, it is important to note that WebViews do not implement the full feature set of their respective browsers. For example,
some of the browser-provided APIs that the Ping SDK for JavaScript requires are not available in a WebView, such as the
WebAuthn APIs.

In addition, there are concerns that a WebView does not provide the same level of security as their full browser counterparts.

As the SDK requires full, spec-compliant, browser-supplied APIs for full functionality we do not support usage within a WebView.

We also do not support or test usage with any wrappers around WebViews.

Whilst you might be able to implement simple use-cases using the Ping SDK for JavaScript within a WebView, we recommend that
you use an alternative such as opening a full browser, or using an in-app instance of a full browser such as Custom Tabs for
Android or SFSafariViewController for iOS.

Supported PingOne fields and collectors

The DaVinci clients support the following connectors and capabilities:

PingOne Forms Connector

Show Form capability

HTTP Connector

Custom HTML capability

•

◦

•

◦

Compatibility Ping SDKs

644 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

Custom Fields support

Toolbox support

PingOne Form Connector fields

•

•

Custom Fields support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Text Input
(TextCollector)

Collects a single text string. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Password
(PasswordCollector)

Collects a single text string that cannot be
read from the screen.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Dropdown
(SingleSelectCollector)

Collects a value from a dropdown
containing one or more text strings.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Combobox
(MultiSelectCollector)

Collects a value from a dropdown
containing one or more text strings, the
user can enter their own text string.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Radio Button List
(SingleSelectCollector)

Collects a value from one or radio
buttons.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Checkbox List
(MultiSelectCollector)

Collects the value of one or more
checkboxes.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Toolbox support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Flow Button
(FlowCollector)

Presents a customized button. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Flow Link
(FlowCollector)

Presents a customized link. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 645

Translatable Rich Text
(TextCollector)

Presents rich text that you can translate
into multiple languages.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Social Login
(IdpCollector)

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Compatibility Ping SDKs

646 Copyright © 2025 Ping Identity Corporation

HTTP Connector field and collector support

HTTP Connector SK-Component support

Unsupported features:

HTTP Connector fields

•

•

HTTP Connector field and collector support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Text field
(TextCollector)

Collects a single text string. ✅

1.0.0

✅

1.0.0

✅

1.0.0

Password field
(PasswordCollector)

Collects a single text string that cannot be
read from the screen.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Submit Button
(SubmitCollector)

Sends the collected data to PingOne to
continue the DaVinci flow.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Flow Button
(FlowCollector)

Triggers an alternative flow without
sending the data collected so far to
PingOne.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Label
(LabelCollector)

Display a read-only text label. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Radio / Dropdown
(SingleSelectCollector)

Collects a single value from a choice of
multiple options.

✅

1.1.0

✅

1.1.0

✅

1.1.0

HTTP Connector SK-Component support

SK-Component
(Collector)

Description DaVinci module

Android iOS JavaScript

skIDP
(IdpCollector)

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 647

Verify that your flow does not depend on any unsupported elements:

SKPolling components

The SKPolling component cannot be processed by the DaVinci Client and should not be included in flows.

Features such as Magic Link authentication require the SKPolling component and therefore cannot be used with
the DaVinci Client.

Images

Images included in the flow cannot be passed to the SDK.

Default DaVinci client headers

Applies to:

 DaVinci client for Android

 DaVinci client for iOS

 DaVinci client for JavaScript

The DaVinci clients send a number of header values to the server with every outgoing request.

These headers can help you identify the client in your flows and help you correlate actions to a transaction in DaVinci audit logs.
You can also use these values to alter the course of a DaVinci flow.

The default headers the DaVinci client always include are as follows:

x-requested-with

Identifies that the request comes from an app built with the Ping DaVinci client.

Default value: ping-sdk

x-requested-platform

Identifies the platform the DaVinci client is running on.

Default values:

Platform Value

Android android

iOS ios

Compatibility Ping SDKs

648 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling
https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling

interactionId

Returns the interactionId value provided by the server to help trace the transaction in server audit logs and
dashboards.

Example value: 18484499-c551-4d99-c415-b01c79bedb47

interactionToken

Returns the interactionToken value provided by the server to help trace the transaction in server audit logs and
dashboards.

Example value:
437783552aa3a5a8f0041028d5b8dac2d72f7e7ebd7f88a966fb690402f6571b964c3df8897cbe542e62721070b3f6fcc946f4dd2

bc80b9df332d39657fcaaad4651884093a786910d6f1337bd8dda17b4fca48e8fa481469ce0df1f676e46d1a6fc30577d910010d4

a2530f2d02e69f436d610992c79fcb0ca87131d0df3f9a

Platform Value

JavaScript javascript

Ping SDKs Compatibility

Copyright © 2025 Ping Identity Corporation 649

Getting started with the DaVinci client

Applies to:

 DaVinci client for Android

 DaVinci client for iOS

 DaVinci client for JavaScript

The DaVinci client is designed to be flexible and can be customized to suit many different situations.

Learn more about installing, configuring, and customizing the DaVinci client in the sections below:

Install the DaVinci client

Learn how to install the DaVinci client into your applications.

Learn more 

Configure DaVinci client properties

Learn how to configure properties in the DaVinci clients so they can connect to your authorization server to authenticate
your users and obtain tokens.

Learn more 

Localize DaVinci client UI

Learn how you can leverage the languages feature in PingOne to localize your client applications for different audiences.

Learn more 

api

widgets

forum

Ping SDKs Getting started with the DaVinci client

Copyright © 2025 Ping Identity Corporation 651

https://docs.pingidentity.com/pingone/user_experience/p1_languages.html
https://docs.pingidentity.com/pingone/user_experience/p1_languages.html

Installing the DaVinci client

Applies to:

 DaVinci client for Android

 DaVinci client for iOS

 DaVinci client for JavaScript

You need to install the DaVinci client module into your application to use its functionality.

The method you use to install the module depends on which platform you are using.

Installing the DaVinci client for Android

To install the DaVinci client into your Android app:

In the Project tree view of your Android Studio project, open the build.gradle.kts file.

In the dependencies section, add the following:



Android

Installing the DaVinci client for Android



iOS

Installing the DaVinci client for iOS



JavaScript

Installing the DaVinci client for JavaScript

1.

2.

Getting started with the DaVinci client Ping SDKs

652 Copyright © 2025 Ping Identity Corporation

// Ping SDK social sign-on dependencies
implementation("com.pingidentity.sdks:davinci:1.1.0")

Installing the DaVinci client for iOS

You can use Swift Package Manager (SPM) or CocoaPods to add the DaVinci client to your iOS project.

With your project open in Xcode, select File > Add Package Dependencies.

In the search bar, enter the Ping SDK for iOS repository URL: https://github.com/ForgeRock/ping-ios-sdk .

Select the ping-ios-sdk package, and then click Add Package.

In the Choose Package Products dialog, ensure that the PingDavinci and PingExternalIdp libraries are added
to your target project.

Click Add Package.

In your project, import the library:

import PingDavinci

If you do not already have CocoaPods, install the latest version.

If you do not already have a Podfile, in a terminal window, run the following command to create a new Podfile:

pod init

Add the following lines to your Podfile:

pod 'PingDavinci'

Run the following command to install pods:

pod install

Swift Package Manager

1.

2.

3.

4.

5.

6.

CocoaPods

1.

2.

3.

4.

Ping SDKs Getting started with the DaVinci client

Copyright © 2025 Ping Identity Corporation 653

https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/syntax/podfile.html
https://guides.cocoapods.org/syntax/podfile.html

Installing the DaVinci client for JavaScript

The DaVinci client for JavaScript as available as an npm module at @forgerock/davinci-client.

To install the module into your JavaScript project, run the following npm command:

npm install @forgerock/davinci-client@1.1.0

After installation, import the module into your app as follows:

import { davinci } from '@forgerock/davinci-client';

Next Steps

After installing the DaVinci client, you should configure it to connect to your server.

Lear more in Getting started with the DaVinci client.

Configure DaVinci client properties

Applies to:

 DaVinci client for Android

 DaVinci client for iOS

 DaVinci client for JavaScript

You need to configure certain settings so that the DaVinci client can connect to your PingOne instance to step through your
DaVinci flows and authenticate your users.

The method you use to configure these settings depends on which platform you are using.

Getting started with the DaVinci client Ping SDKs

654 Copyright © 2025 Ping Identity Corporation

https://www.npmjs.com/package/@forgerock/davinci-client?activeTab=readme
https://www.npmjs.com/package/@forgerock/davinci-client?activeTab=readme

Configure DaVinci client for Android properties

Applies to:

 DaVinci client for Android

 DaVinci client for iOS

 DaVinci client for JavaScript

Configure DaVinci client for Android properties to connect to PingOne and step through an associated DaVinci flow.

Create an instance of the DaVinci object and use the underlying Oidc module to set configuration properties.

The following properties are available for configuring the DaVinci client for Android:



Android

Configure DaVinci client for Android properties



iOS

Configure DaVinci client for iOS properties



JavaScript

Configure DaVinci client for JavaScript properties

Ping SDKs Getting started with the DaVinci client

Copyright © 2025 Ping Identity Corporation 655

Example

The following shows an example DaVinci client configuration, using the underlying Oidc module:

Properties

Property Description Required?

discoveryEndpoint Your PingOne server’s .well-known/openid-configuration endpoint.
Example:
https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-

f87e972c7cc3/as/.well-known/openid-configuration

Yes

clientId The client_id of the OAuth 2.0 client profile to use.
For example, 6c7eb89a-66e9-ab12-cd34-eeaf795650b2

Yes

scopes A set of scopes to request when performing an OAuth 2.0
authorization flow.
For example,
"openid", "profile", "email", "address", "revoke" .

Yes

redirectUri The redirect_uri as configured in the OAuth 2.0 client profile.

For example, org.forgerock.demo://oauth2redirect .

Yes

timeout A timeout, in seconds, for each request that communicates with the
server.
Default is 30 seconds.

No

acrValues Request which flow the PingOne server uses by adding an
Authentication Context Class Reference (ACR) parameter.
Enter a single DaVinci policy by using its flow policy ID.
Example:
"d1210a6b0b2665dbaa5b652221badba2"

No

additionalParameters Add additional key-pair parameters as query strings to the initial
OAuth 2.0 call to the /authorize endpoint.
For example, additionalParameters = mapOf("customKey" to
"customValue")

No

info
This value must match a value configured in your OAuth 2.0
client.

Note

lightbulb_2
You can access these additional OAuth 2.0 parameters in your
DaVinci flows by using the
authorizationRequest.<customParameter> property.
Learn more in Referencing PingOne data in the flow.

Tip

Getting started with the DaVinci client Ping SDKs

656 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_launch_flow_redirect.html#referencing-pingone-data-in-the-flow
https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_launch_flow_redirect.html#referencing-pingone-data-in-the-flow

Configure DaVinci client connection properties

import com.pingidentity.davinci.DaVinci
import com.pingidentity.davinci.module.Oidc

val daVinci = DaVinci {
 module(Oidc) {
 clientId = "6c7eb89a-66e9-ab12-cd34-eeaf795650b2"
 discoveryEndpoint = "https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/" +
 "as/.well-known/openid-configuration"
 scopes = mutableSetOf("openid", "profile", "email", "address", "revoke")
 redirectUri = "org.forgerock.demo://oauth2redirect"
 additionalParameters = mapOf("customKey" to "customValue")
 }
}

Configure DaVinci client for iOS properties

Applies to:

 DaVinci client for Android

 DaVinci client for iOS

 DaVinci client for JavaScript

Configure DaVinci client module for iOS properties to connect to PingOne and step through an associated DaVinci flow.

Create an instance of the DaVinci class by passing configuration to the createDaVinci method. This uses the underlying Oidc
module to set configuration properties.

The following properties are available for configuring the DaVinci client for iOS:

Properties

Property Description Required?

discoveryEndpoint Your PingOne server’s .well-known/openid-configuration endpoint.
Example:
https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-

f87e972c7cc3/as/.well-known/openid-configuration

Yes

clientId The client_id of the OAuth 2.0 client profile to use.
For example, 6c7eb89a-66e9-ab12-cd34-eeaf795650b2

Yes

Ping SDKs Getting started with the DaVinci client

Copyright © 2025 Ping Identity Corporation 657

Example

The following shows an example DaVinci client configuration, using the underlying Oidc module:

Property Description Required?

scopes A set of scopes to request when performing an OAuth 2.0
authorization flow.
For example,
"openid", "profile", "email", "address", "revoke" .

Yes

redirectUri The redirect_uri as configured in the OAuth 2.0 client profile.

For example, org.forgerock.demo://oauth2redirect .

Yes

timeout A timeout, in seconds, for each request that communicates with the
server.
Default is 30 seconds.

No

acrValues Request which flow the PingOne server uses by adding an
Authentication Context Class Reference (ACR) parameter.
Enter a single DaVinci policy by using its flow policy ID.
Example:
"d1210a6b0b2665dbaa5b652221badba2"

No

additionalParameters Add additional key-pair parameters as query strings to the initial
OAuth 2.0 call to the /authorize endpoint.
For example, myConfig.additionalParameters =
["customKey":"customValue"]

No

info
This value must match a value configured in your OAuth 2.0
client.

Note

lightbulb_2
You can access these additional OAuth 2.0 parameters in your
DaVinci flows by using the
authorizationRequest.<customParameter> property.
Learn more in Referencing PingOne data in the flow.

Tip

Getting started with the DaVinci client Ping SDKs

658 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_launch_flow_redirect.html#referencing-pingone-data-in-the-flow
https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_launch_flow_redirect.html#referencing-pingone-data-in-the-flow

Configure DaVinci client connection properties

let daVinci = DaVinci.createDaVinci { config in
 // Oidc as module
 config.module(OidcModule.config) { oidcValue in
 oidcValue.clientId = "6c7eb89a-66e9-ab12-cd34-eeaf795650b2"
 oidcValue.discoveryEndpoint = "https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/
openid-configuration"
 oidcValue.scopes = ["openid", "profile", "email", "address", "revoke"]
 oidcValue.redirectUri = "org.forgerock.demo://oauth2redirect"
 oidcValue.additionalParameters = ["customKey":"customValue"]
 }
}

Configure DaVinci client for JavaScript properties

Applies to:

 DaVinci client for Android

 DaVinci client for iOS

 DaVinci client for JavaScript

Configure DaVinci client properties to connect to PingOne and step through an associated DaVinci flow.

Pass a config object into davinci to initialize a client with the required connection properties.

The following properties are available for configuring the DaVinci client for JavaScript:

Properties

Property Description Required?

serverConfig An interface for configuring how the SDK contacts the PingAM
instance.
Contains wellknown and timeout .

Yes

serverConfig: {wellknown} Your PingOne server’s .well-known/openid-configuration endpoint.
Example:
https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-

f87e972c7cc3/as/.well-known/openid-configuration

Yes

serverConfig: {timeout} A timeout, in milliseconds, for each request that communicates with
your server.
For example, for 30 seconds specify 30000 .
Defaults to 5000 (5 seconds).

No

Ping SDKs Getting started with the DaVinci client

Copyright © 2025 Ping Identity Corporation 659

Example

The following shows a full DaVinci client configuration:

Configure DaVinci client connection properties

import { davinci } from '@forgerock/davinci';

const davinciClient = await davinci({
 config: {
 clientId: '6c7eb89a-66e9-ab12-cd34-eeaf795650b2',
 serverConfig: {
 wellknown: 'https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/openid-configuration',
 timeout: 3000,
 },
 scope: 'openid profile email phone',
 responseType: 'code',
 },
});

Localizing the user interface

Applies to:

 DaVinci client for Android

 DaVinci client for iOS

 DaVinci client for JavaScript

You can leverage the languages feature in PingOne to localize your client applications for different audiences.

The DaVinci clients automatically send the preferred languages configured in the browser or mobile device to PingOne so that it
can return the appropriate language.

Property Description Required?

clientId The client_id of the OAuth 2.0 client profile to use.
For example, 6c7eb89a-66e9-ab12-cd34-eeaf795650b2

Yes

scope A list of scopes to request when performing an OAuth 2.0
authorization flow, separated by spaces.
For example, openid profile email phone .

No

responseType The type of OAuth 2.0 flow to use, either code or token .
Defaults to code .

No

Getting started with the DaVinci client Ping SDKs

660 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingone/user_experience/p1_languages.html
https://docs.pingidentity.com/pingone/user_experience/p1_languages.html

Console output from an iOS client showing Accept-Language header

[Ping SDK 1.1.0] ⬆

Request URL: https://auth.pingone.com/c2a6...1602/as/authorize?response_mode=pi.flow&client_id=85ff...
6791&response_type=code&scope=openid&redirect_uri=http://localhost:
5829&code_challenge=m8BD...rhPM&code_challenge_method=S256
Request Method: GET
Request Headers: [
 "x-requested-platform": "ios",
 "Content-Type": "application/json",
 "x-requested-with": "ping-sdk",

"Accept-Language": "en-GB, en;q=0.9"
]
Request Timeout: 15.0

You can also override the configured settings directly in your code if required.

Before you begin

You must configure PingOne to support multiple languages that your client apps can use:

In PingOne, enable the built-in languages you want to support.

Learn more in Enabling or disabling a language.

Ensure your language has the required localized strings for your clients to use.

Learn more in Modifying translatable keys.

Add your localized strings to your chosen implementation:

PingOne forms

Update the fields in your PingOne forms to use translatable keys.

1.

lightbulb_2
You can also add your own languages and regions.
Learn more in Adding a language.

Tip

2.

lightbulb_2
You can also add your own keys to a language for use in your client applications.
Learn more in Adding a custom key for DaVinci.

Tip

3.

Ping SDKs Getting started with the DaVinci client

Copyright © 2025 Ping Identity Corporation 661

https://docs.pingidentity.com/pingone/user_experience/p1_enable_a_language.html
https://docs.pingidentity.com/pingone/user_experience/p1_enable_a_language.html
https://docs.pingidentity.com/pingone/user_experience/p1_add_a_language.html
https://docs.pingidentity.com/pingone/user_experience/p1_add_a_language.html
https://docs.pingidentity.com/pingone/user_experience/p1_modifying_translatable_keys.html
https://docs.pingidentity.com/pingone/user_experience/p1_modifying_translatable_keys.html
https://docs.pingidentity.com/pingone/user_experience/p1_adding_custom_key_davinci.html
https://docs.pingidentity.com/pingone/user_experience/p1_adding_custom_key_davinci.html

Figure 1. Adding localized strings to a PingOne form

Learn more in Using translatable keys.

Custom HTTP Connector

Update the Output Fields in your custom HTML to use your localized strings.

Adding localized strings to a custom HTTP connector

Getting started with the DaVinci client Ping SDKs

662 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingone/user_experience/p1_using_translatable_keys.html
https://docs.pingidentity.com/pingone/user_experience/p1_using_translatable_keys.html

Learn more in HTTP Connector.

Configuring a DaVinci client to send the language header

The DaVinci clients automatically send the Accept-Language header when making requests to the PingOne server. This header
includes each of the languages configured on the client device or in the browser, and maintains the order of preference.

The DaVinci client for Android and iOS also add generic versions of sub-dialects configured on the device, to make it more likely
that PingOne can fall back to a similar language if the specific sub-dialect is unavailable.

For example, configuring English (British) (en-GB) as a preferred languages causes the DaVinci client to also send English (en) as
a fallback option:

"Accept-Language": "en-GB, en;q=0.9"

Overriding the automatically-added languages

You can override the default behavior of automatically sending configured languages.

Ping SDKs Getting started with the DaVinci client

Copyright © 2025 Ping Identity Corporation 663

https://docs.pingidentity.com/connectors/http_connector.html
https://docs.pingidentity.com/connectors/http_connector.html

To provide your own values for the Accept-Language header, use the CustomHeader module.

Add the module to your DaVinci configuration as follows:

Using the CustomHeader module to override default language behavior

import com.pingidentity.davinci.DaVinci
import com.pingidentity.davinci.module.Oidc
import com.pingidentity.davinci.module.CustomHeader

val daVinci = DaVinci {
 module(Oidc) {
 clientId = "6c7eb89a-66e9-ab12-cd34-eeaf795650b2"
 discoveryEndpoint = "https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/
openid-configuration"
 scopes = mutableSetOf("openid", "profile", "email", "address", "revoke")
 redirectUri = "org.forgerock.demo://oauth2redirect"
 additionalParameters = mapOf("customKey" to "customValue")
 }

 // Add French as the preferred language, before default options
module(CustomHeader, priority = 5, mode = OverrideMode.APPEND) {

 header(name = "Accept-Language", value = "fr")
 }
}

priority

Default behavior of the DaVinci client is provided by a number of built-in modules. These modules all run with a
priority value of 10 .

To run your module before the default modules ensure your module has a priority value less than the
default of 10 .

To run your module after the default modules, set the prioriy value to greater than 10 .

mode

You can choose how the CustomHeader module applies the modification by using the mode parameter:

OverrideMode.APPEND

The DaVinci client combines any additional parameters you provide with any parameters the default
behavior adds.

The order is determined by the priority order of the modules.

OverrideMode.OVERRIDE

Any additional parameters you provide replace any parameters the default behavior would have added.

DaVinci client for Android

•

•

Getting started with the DaVinci client Ping SDKs

664 Copyright © 2025 Ping Identity Corporation

To provide your own values for the Accept-Language header, use the CustomHeader module.

Add the module to your DaVinci configuration as follows:

Using the CustomHeader module to override default language behavior

import PingDavinci

public let davinci = DaVinci.createDaVinci { config in
 let currentConfig = ConfigurationManager.shared.currentConfigurationViewModel
 config.module(OidcModule.config) { oidcValue in
 oidcValue.clientId = "6c7eb89a-66e9-ab12-cd34-eeaf795650b2"
 oidcValue.scopes = ["openid", "profile", "email", "address", "revoke"]
 oidcValue.redirectUri = "org.forgerock.demo://oauth2redirect"
 oidcValue.discoveryEndpoint = "https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/
as/.well-known/openid-configuration"
 }

 // Add French as the preferred language, before default options
 config.module(CustomHeader.config, priority: 5, mode: .append) { customHeaderValue in
 customHeaderValue.header(name: "Accept-Language", value: "fr")
 }
}

priority

Default behavior of the DaVinci client is provided by a number of built-in modules. These modules all run with a
priority value of 10 .

To run your module before the default modules ensure your module has a priority value less than the
default of 10 .

To run your module after the default modules, set the prioriy value to greater than 10 .

mode

You can choose how the CustomHeader module applies the modification by using the mode parameter:

.append

The DaVinci client combines any additional parameters you provide with any parameters the default
behavior adds.

The order is determined by the priority order of the modules.

.override

Any additional parameters you provide replace any parameters the default behavior would have added.

DaVinci client for iOS

•

•

Ping SDKs Getting started with the DaVinci client

Copyright © 2025 Ping Identity Corporation 665

To override the default browser behavior and provide your own values for the Accept-Language header, use the
RequestMiddleware type.

Call your request middleware when creating the DaVinci client as follows:

Using the CustomHeader module to override default language behavior

import { davinci } from '@forgerock/davinci';
import type { RequestMiddleware } from '@forgerock/davinci-client/types';

const requestMiddleware: RequestMiddleware[] = [
 (fetchArgs, action, next) => {
 fetchArgs.headers?.set('Accept-Language', 'fr-FR, fr;q=0.9');
 next();
 },
];

const davinciClient = await davinci({
 config: {
 clientId: '6c7eb89a-66e9-ab12-cd34-eeaf795650b2',
 serverConfig: {
 wellknown: 'https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/openid-
configuration',
 timeout: 3000,
 },
 scope: 'openid profile email phone',
 responseType: 'code',
 },

requestMiddleware
});

DaVinci client for JavaScript

Getting started with the DaVinci client Ping SDKs

666 Copyright © 2025 Ping Identity Corporation

Ping SDK for PingOne DaVinci tutorials

These tutorials teach you how to connect your apps to a PingOne tenant to authenticate a user using a DaVinci flow, such as
the PingOne sign-on with sessions flow.

This flow allows users to register, authenticate, and verify their email address with PingOne. It combines the PingOne Sign On and
Password Reset flow, which allows users to reset or recover their passwords, with the PingOne Registration and Email
Verification flow, which allows users to register and verify their email. In addition, this flow checks for an active user session
before prompting for authentication.

Figure 1. Overview of the PingOne sign-on with sessions flow

The tutorials also support DaVinci flows that use the PingOne Forms connector.

The tutorials cover topics such as:

Configuring an app with the connection settings for your PingOne instance.

Starting a DaVinci flow

Rendering UI depending on the type of node encountered in the flow

lightbulb_2
Each tutorial provides a list of the supported capabilities and fields.
Check that your flows use only supported fields before attempting to use them with the Ping SDKs.

Tip

•

•

•

Ping SDK for PingOne DaVinci tutorials Ping SDKs

668 Copyright © 2025 Ping Identity Corporation

https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions
https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions
https://support.pingidentity.com/s/marketplace-integration/a7i8Z000000bsa3QAA/pingone-sign-on-and-password-reset
https://support.pingidentity.com/s/marketplace-integration/a7i8Z000000bsa3QAA/pingone-sign-on-and-password-reset
https://support.pingidentity.com/s/marketplace-integration/a7i8Z000000bsa3QAA/pingone-sign-on-and-password-reset
https://support.pingidentity.com/s/marketplace-integration/a7i8Z000000bsfyQAA/pingone-registration-with-email-verification
https://support.pingidentity.com/s/marketplace-integration/a7i8Z000000bsfyQAA/pingone-registration-with-email-verification
https://support.pingidentity.com/s/marketplace-integration/a7i8Z000000bsfyQAA/pingone-registration-with-email-verification

Returning responses to the server for different nodes encountered

Getting an access token for the user on completion of the flow

Getting the user’s details from PingOne, such as their full name and email address

Signing the user out of PingOne

To start, choose the platform to host your app:

DaVinci Client for Android tutorials

Follow these tutorials integrate your Android apps with DaVinci flows in your PingOne instance.

•

•

•

•



Android

Android DaVinci flow login tutorials



iOS

iOS DaVinci flow login tutorials



JavaScript

JavaScript DaVinci flow login tutorials

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 669

DaVinci Client for Android Tutorials

DaVinci client quick start for Android

This tutorial walks you through updating a provided sample app so that it connects to a PingOne tenant to authenticate a
user using the PingOne sign-on with sessions DaVinci flow.

This flow allows users to register, authenticate, and verify their email address with PingOne.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne server with the required configuration.

For example, you will need to have an OAuth 2.0 client application set up.

Complete prerequisites 

Quick start

In this quick start tutorial you update one
of our sample applications.

The app steps through a DaVinci flow and
displays a basic prototype UI to gather user

credentials.



Deep dive

This deep dive tutorial covers the steps to
take to integrate an Android app with a

DaVinci flow in PingOne.

You’ll learn about installing and importing the
DaVinci Client, stepping through DaVinci flows,
and how to leverage Jetpack Compose to help
you integrate DaVinci flows into your Android

apps.



Prepare › Download › Configure › Run

Ping SDK for PingOne DaVinci tutorials Ping SDKs

670 Copyright © 2025 Ping Identity Corporation

https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions
https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure the sample app

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in DaVinci.

Start step 2 

Step 3. Test the app

To test the app, run the sample that you configured in the previous step.

The sample connects to your PingOne server to obtain the correct URIs to authenticate the user, and redirects the browser
to your PingOne server.

After authentication, PingOne redirects the browser back to your application, which then obtains an OAuth 2.0 access
token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured PingOne instance.

Compatibility

PingOne

Your PingOne instance must have DaVinci enabled.

Prepare › Download › Configure › Run

•

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 671

DaVinci flows

Ensure your flows only use supported connectors, capabilities and fields for user interactions:

HTTP Connector

Custom HTML capability

HTTP Connector field and collector support

HTTP Connector SK-Component support

•

◦

▪

▪

HTTP Connector field and collector support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Text field
(TextCollector)

Collects a single text string. ✅

1.0.0

✅

1.0.0

✅

1.0.0

Password field
(PasswordCollector)

Collects a single text string that cannot
be read from the screen.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Submit Button
(SubmitCollector)

Sends the collected data to PingOne to
continue the DaVinci flow.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Flow Button
(FlowCollector)

Triggers an alternative flow without
sending the data collected so far to
PingOne.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Label
(LabelCollector)

Display a read-only text label. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Radio / Dropdown
(SingleSelectCollector)

Collects a single value from a choice of
multiple options.

✅

1.1.0

✅

1.1.0

✅

1.1.0

HTTP Connector SK-Component support

SK-Component
(Collector)

Description DaVinci module

Android iOS JavaScript

Ping SDK for PingOne DaVinci tutorials Ping SDKs

672 Copyright © 2025 Ping Identity Corporation

Verify that your flow does not depend on any unsupported elements:

SKPolling components

The SKPolling component cannot be processed by the DaVinci Client and should not be included in flows.

Features such as Magic Link authentication require the SKPolling component and therefore cannot be used
with the DaVinci Client.

Images

Images included in the flow cannot be passed to the SDK.

For example, the PingOne sign-on with sessions DaVinci flow.

PingOne Form Connector

Show Form capability

Custom Fields support

Toolbox support

skIDP
(IdpCollector)

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

✅

1.1.0

✅

1.1.0

✅

1.1.0

•

◦

▪

▪

Custom Fields support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Text Input
(TextCollector)

Collects a single text string. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Password
(PasswordCollector)

Collects a single text string that cannot
be read from the screen.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Dropdown
(SingleSelectCollector)

Collects a value from a dropdown
containing one or more text strings.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Combobox
(MultiSelectCollector)

Collects a value from a dropdown
containing one or more text strings,
the user can enter their own text
string.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 673

https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling
https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling
https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions
https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions

Android

This sample requires at least Android API 23 (Android 6.0)

Java

This sample requires at least Java 8 (v1.8).

Prerequisites

Android Studio

Download and install Android Studio, which is available for many popular operating systems.

An Android emulator or physical device

To try the quick start application as you develop it, you need an Android device. To add a virtual, emulated Android device
to Android Studio, refer to Create and manage virtual devices, on the Android Developers website.

Radio Button List
(SingleSelectCollector)

Collects a value from one or radio
buttons.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Checkbox List
(MultiSelectCollector)

Collects the value of one or more
checkboxes.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Toolbox support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Flow Button
(FlowCollector)

Presents a customized button. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Flow Link
(FlowCollector)

Presents a customized link. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Translatable Rich Text
(TextCollector)

Presents rich text that you can translate
into multiple languages.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Social Login
(IdpCollector)

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Ping SDK for PingOne DaVinci tutorials Ping SDKs

674 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

Server configuration

You must configure your PingOne instance for use with the DaVinci client.

Ask your PingOne administrator to complete the following tasks:

Configure a DaVinci flow

Create a DaVinci application

Configure PingOne for DaVinci flow invocation

To learn how to complete these steps, refer to Launching a flow with a Ping SDK in the PingOne DaVinci documentation.

Step 1. Download the samples

To start this tutorial, you need to download the ForgeRock SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure the sample app

In this section you open the sample project in Android Studio, and view the integration points in the TODO pane.

•

•

•

Prepare › Download › Configure › Run

1.

2.

1.

2.

1.

2.

Prepare › Download › Configure › Run

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 675

https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_sdk_launching_a_flow_with_the_sdk.html
https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_sdk_launching_a_flow_with_the_sdk.html
https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git.git
https://github.com/ForgeRock/sdk-sample-apps.git.git

You’ll visit each integration point in the sample app to understand how to complete a DaVinci flow, including handling the
different nodes and their collectors, obtaining an access token and user information, and finally signing out of the session.

In Android Studio, click Open, navigate to the sdk-sample-apps/android/kotlin-davinci folder that has the downloaded
sample source code in, and then click Open.

Android Studio opens and loads the DaVinci tutorial project.

In the Project pane, navigate to samples > app.

On the View menu, select Tool Windows, and then click TODO.

The sample code is annotated with TODO comments to help you locate the integration points, where code changes are
required.

Figure 1. Integration points annotated with TODO comments

In the TODO pane, double-click the STEP 1 line.

Android Studio opens DaVinciViewModel.kt :

DaVinciViewModel.kt

//TODO: Integration Point. STEP 1
val daVinci = DaVinci {
 logger = Logger.STANDARD

 // Oidc as module
 module(Oidc) {
 clientId = "<Client ID>"
 discoveryEndpoint = "<Discovery Endpoint>"
 scopes = mutableSetOf("<scope1>", "<scope2>", "…")
 redirectUri = "<Redirect URI>"
 }
}

1.

2.

3.

4.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

676 Copyright © 2025 Ping Identity Corporation

This snippet initializes the DaVinci module, and leverages the OpenID Connect (OIDC) module to configure the settings to
connect to your PingOne instance.

Replace <Client ID> with the ID of the client you are connecting to in PingOne.

Example:

clientId = "6c7eb89a-66e9-ab12-cd34-eeaf795650b2"

Refer to Get configuration values from PingOne for instructions of where to find this value.

Replace <Discovery Endpoint> with the OIDC Discovery Endpoint value from the client you are connecting to in
PingOne.

Example:

discoveryEndpoint = "https://auth.pingone.ca/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/

openid-configuration"

Refer to Get configuration values from PingOne for instructions of where to find this value.

In the scopes property, add the scopes you want to assign users who complete authentication using the client.

Example:

scopes = mutableSetOf("openid", "email", "profile")

Replace <Redirect URI> with the application ID of your sample app, followed by ://oauth2redirect .

Example:

redirectUri = "org.forgerock.demo://oauth2redirect"

Optionally, delete the TODO comment to remove it from the list.

The result resembles the following:

1.

2.

3.

4.

emergency_home
The redirectUri value you use must exactly match one of the Redirect URIs value you enter in the
native OAuth 2.0 application you created earlier.

Important

5.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 677

DaVinciViewModel.kt

val daVinci = DaVinci {
 logger = Logger.STANDARD

 // Oidc as module
 module(Oidc) {
 clientId = "6c7eb89a-66e9-ab12-cd34-eeaf795650b2"
 discoveryEndpoint = "https://auth.pingone.ca/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/
openid-configuration"
 scopes = mutableSetOf("openid", "email", "profile")
 redirectUri = "org.forgerock.demo://oauth2redirect"
 }
}

In the TODO pane, double-click the STEP 2 line.

Android Studio opens DaVinciViewModel.kt :

DaVinciViewModel.kt

//TODO: Integration Point. STEP 2
// Start the DaVinci flow, next node from the flow will be returned
// Update the state with the next node

/*
val next = daVinci.start()

state.update {
 it.copy(prev = next, node = next)
}
*/

This snippet calls start() to start the DaVinci flow, and assigns the returned node to the variable next .

It also updates the app’s state to store the response as both prev and node .

Uncomment the highlighted text.

Optionally, delete the TODO comment to remove it from the list.

In the TODO pane, double-click the STEP 3 line.

Android Studio opens DaVinciViewModel.kt :

5.

1.

2.

6.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

678 Copyright © 2025 Ping Identity Corporation

DaVinciViewModel.kt

//TODO: Integration Point. STEP 3
// Continue the DaVinci flow, next node from the flow will be returned
// Update the state with the next node

/*
val next = current.next()

state.update {
 it.copy(prev = current, node = next)
}
*/

This snippet calls next() to continue the DaVinci flow, by proceeding to the next available node. It assigns the newly
returned node to the variable next .

It also updates the app’s state to store the new response as node , and the current node as prev .

Uncomment the highlighted text.

Optionally, delete the TODO comment to remove it from the list.

In the TODO pane, double-click the STEP 4 line.

Android Studio opens DaVinci.kt :

1.

2.

7.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 679

DaVinci.kt

//TODO: Integration Point. STEP 4
// Render the current node depending on its type

/*
when (val node = state.node) {
 is ContinueNode → {
 Render(node = node, onNodeUpdated, onStart) { onNext(node) }
 }
 is FailureNode → {
 Log.e("DaVinci", node.cause.message, node.cause)
 Render(node = node)
 }
 is ErrorNode → {
 Render(node)
 // Render the previous node
 if (state.prev is ContinueNode) {
 Render(node = state.prev, onNodeUpdated, onStart) { onNext(state.prev) }
 }
 }
 is SuccessNode → {
 LaunchedEffect(true) { onSuccess?.let { onSuccess() } }
 }
 else → {}
}
*/

This snippet watches for a change in state, and takes an action based on the ode type returned by DaVinci.

For example, if it is a FailureNode log an error message. If the node is a ContinueNode that continues the flow, call the
render function to display the necessary fields on the screen.

Uncomment the highlighted text.

Optionally, delete the TODO comment to remove it from the list.

In the TODO pane, double-click the STEP 5 line.

Android Studio opens ContinueNode.kt :

1.

2.

8.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

680 Copyright © 2025 Ping Identity Corporation

ContinueNode.kt

//TODO: Integration Point. STEP 5
// Intermediate step in the Davinci Flow. The ContinueNode is a node that is used to
// continue the flow. It can have multiple collectors that are used to collect user input.
// Render the UI for each collector that are part of the ContinueNode.

/*
continueNode.collectors.forEach {
 when (it) {
 is FlowCollector → {
 hasAction = true
 FlowButton(it, onNext)
 }

 is PasswordCollector → {
 Password(it, onNodeUpdated)
 }
 is SubmitCollector → {
 hasAction = true
 SubmitButton(it, onNext)
 }

 is TextCollector → Text(it, onNodeUpdated)
 }
}
*/

This snippet handles the various collectors that are returned by the current node.

Loop through all of the collectors in the node and render an appropriate field in your app.

For example, this snippet handles text and password fields, and two types of button, a submit and a flow type.

Uncomment the highlighted text.

Optionally, delete the TODO comment to remove it from the list.

In the TODO pane, double-click the STEP 6 line.

Android Studio opens TokenViewModel.kt :

1.

2.

9.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 681

TokenViewModel.kt

//TODO: Integration Point. STEP 6
// Retrieve the access token

/*
User.user()?.let {
 when (val result = it.token()) {
 is Failure → {
 state.update {
 it.copy(token = null, error = result.value)
 }
 }

 is Success → {
 state.update {
 it.copy(token = result.value, error = null)
 }
 }
 }
} ?: run {
 state.update {
 it.copy(token = null, error = null)
 }
}
*/

This snippet gets called when the flow reaches a SuccessNode and gets an access token on behalf of the authenticated
user.

Uncomment the highlighted text.

Optionally, delete the TODO comment to remove it from the list.

In the TODO pane, double-click the STEP 7 line.

Android Studio opens UserProfileViewModel.kt :

1.

2.

10.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

682 Copyright © 2025 Ping Identity Corporation

UserProfileViewModel.kt

//TODO: Integration Point. STEP 7
// Retrieve the user info

/*
User.user()?.let { user →

 when (val result = user.userinfo(false)) {
 is Result.Failure →

 state.update { s →

 s.copy(user = null, error = result.value)
 }

 is Result.Success →

 state.update { s →

 s.copy(user = result.value, error = null)
 }
 }
}
*/

This snippet gets the user’s info from DaVinci, for example their preferred name for display within the sample app.

Uncomment the highlighted text.

Optionally, delete the TODO comment to remove it from the list.

In the TODO pane, double-click the STEP 8 line.

Android Studio opens LogoutViewModel.kt :

LogoutViewModel.kt

//TODO: Integration Point. STEP 8
// logout the user

/*
User.user()?.logout()
*/

This snippet calls the logout() function on the User object to sign the user out of the app, and end their session in
DaVinci.

Uncomment the highlighted text.

Optionally, delete the TODO comment to remove it from the list.

1.

2.

11.

1.

2.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 683

Step 3. Test the app

In the following procedure, you run the sample app that you configured in the previous step.

Add or connect a device to Android Studio.

Learn more about devices in Android Studio in the Android Developer documentation:

Create and manage virtual devices

Run apps on a hardware device

On the Run menu, click Run 'samples.app'.

Android Studio starts the sample application on the simulated or connected device.

The app automatically starts the DaVinci flow:

Figure 1. The DaVinci sample app first screen with fields and buttons.

Optionally, to register a new identity in PingOne, tap the No Account? Register now! link.

Prepare › Download › Configure › Run

1.

◦

◦

2.

3.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

684 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/studio/run/managing-avds?_gl=1*1q3w4b8*_up*MQ..*_ga*MTQ5NTk5Njc4My4xNzMwMTE4ODIx*_ga_6HH9YJMN9M*MTczMDExODgyMS4xLjAuMTczMDExODgyMS4wLjAuMTM0NjM1MTk2OA..
https://developer.android.com/studio/run/managing-avds?_gl=1*1q3w4b8*_up*MQ..*_ga*MTQ5NTk5Njc4My4xNzMwMTE4ODIx*_ga_6HH9YJMN9M*MTczMDExODgyMS4xLjAuMTczMDExODgyMS4wLjAuMTM0NjM1MTk2OA..
https://developer.android.com/studio/run/device?_gl=1*17hr6hh*_up*MQ..*_ga*MTQ5NTk5Njc4My4xNzMwMTE4ODIx*_ga_6HH9YJMN9M*MTczMDExODgyMS4xLjAuMTczMDExODgyMS4wLjAuMTM0NjM1MTk2OA..
https://developer.android.com/studio/run/device?_gl=1*17hr6hh*_up*MQ..*_ga*MTQ5NTk5Njc4My4xNzMwMTE4ODIx*_ga_6HH9YJMN9M*MTczMDExODgyMS4xLjAuMTczMDExODgyMS4wLjAuMTM0NjM1MTk2OA..

The app displays the registration screen:

Figure 2. The DaVinci sample app registration screen.

Enter the details of the new identity, and then click Save.

The app creates the new identity in PingOne and returns to the sign on screen.

Enter the username and password of a PingOne identity, and then click Sign On.

The app sends the credentials to PingOne for validation, and on success displays the user’s info:

lightbulb_2
This link is an example of a FlowButton.

Tip

1.

4.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 685

Figure 3. The DaVinci sample app displaying user info

Tap the menu () icon, and then tap generating_tokens Show Token.

The app shows the access token obtained on behalf of the user.

5.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

686 Copyright © 2025 Ping Identity Corporation

Figure 4. The DaVinci sample app displaying a user’s access token

Tap the menu () icon, and then tap logout Logout.

The app revokes the existing tokens and ends the session in PingOne.

Troubleshooting

This section contains help if you encounter an issue running the sample code.

What can cause validation errors in the request?

When starting the app you might see an error message as follows:

The request could not be completed. One or more validation errors were in the request.

6.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 687

Figure 5. Validation error when starting the app

The Logcat pane in Android Studio often contains additional information about the error:

{
 "id" : "2a72bf00-5f20-4b78-a7d0-ad8d95e9b11b",
 "code" : "INVALID_DATA",
 "message" : "The request could not be completed. One or more validation errors were in the request.",
 "details" : [
 {
 "code" : "INVALID_VALUE",
 "target" : "redirect_uri",
 "message" : "Redirect URI mismatch"
 }
]
}

In this case the cause is Redirect URI mismatch .

Ensure that your redirectUri value in com/pingidentity/samples/app/davinci/DaVinciViewModel.kt exactly matches one of
the values you entered in the Redirect URIs field in your OAuth 2.0 application in PingOne:

Ping SDK for PingOne DaVinci tutorials Ping SDKs

688 Copyright © 2025 Ping Identity Corporation

Figure 6. Match the redirect URIs in the sample app and PingOne configuration

DaVinci client deep dive for Android

Applies to:

 DaVinci client for Android

 DaVinci client for iOS

 DaVinci client for JavaScript

Configure DaVinci client for Android properties to connect to PingOne and step through an associated DaVinci flow.

Installing and importing the DaVinci client

To use the DaVinci client for Android, add the relevant dependencies to your project:

In the Project tree view of your Android Studio project, open the Gradle Scripts/build.gradle.kts file for the DaVinci
module.

In the dependencies section, add the following:

implementation("com.pingidentity.sdks:davinci:1.1.0")

Example of the dependencies section after editing:

dependencies {

 val composeBom = platform(libs.androidx.compose.bom)
 implementation(composeBom)

 // DaVinci client
implementation("com.pingidentity.sdks:davinci:1.1.0")

 ...

 implementation(libs.androidx.core.ktx)
 implementation(libs.androidx.appcompat)
 implementation(libs.material)
}

1.

2.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 689

Configuring the DaVinci client

Configure DaVinci client for Android properties to connect to PingOne and step through an associated DaVinci flow.

The following shows an example DaVinci client configuration, using the underlying Oidc module:

Configure DaVinci client connection properties

import com.pingidentity.davinci.DaVinci
import com.pingidentity.davinci.module.Oidc

val daVinci = DaVinci {
 module(Oidc) {
 clientId = "6c7eb89a-66e9-ab12-cd34-eeaf795650b2"
 discoveryEndpoint = "https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/" +
 "as/.well-known/openid-configuration"
 scopes = mutableSetOf("openid", "profile", "email", "address", "revoke")
 redirectUri = "org.forgerock.demo://oauth2redirect"
 additionalParameters = mapOf("customKey" to "customValue")
 }
}

For information on the properties available, refer to Configure DaVinci client for Android properties.

Stepping through DaVinci flows

To authenticate your users the DaVinci client for Android must start the flow, and step through each node.

Starting a DaVinci flow

To start a DaVinci flow, call the start() method:

Start a DaVinci flow

val node = daVinci.start()

Determining DaVinci flow node type

Each step of the flow returns one of four node types:

ContinueNode

This type indicates there is input required from the client. The node object for this type contains a collector object,
which describes the information it requires from the client.

Learn more in Handling DaVinci flow collectors in continue nodes.

lightbulb_2
For information on which connectors and fields the DaVinci client supports, refer to Compatibility.

Tip

Ping SDK for PingOne DaVinci tutorials Ping SDKs

690 Copyright © 2025 Ping Identity Corporation

SuccessNode

This type indicates the flow is complete, and authentication was successful.

Learn more in Handling DaVinci flow success nodes.

ErrorNode

This type indicates an error in the data sent to the server. For example, an email address in an incorrect format, or a
password that does not meet complexity requirements.

You can correct the error and resubmit to continue the flow.

Learn more in Handling DaVinci flow error nodes.

FailureNode

This type indicates that the flow could not be completed and must be restarted. This can be caused by a server error, or a
timeout.

Learn more in Handling DaVinci flow failure nodes.

You can use the helper functions to determine which node type the server has returned:

Determine node type.

when (node) {
 is ContinueNode -> {}
 is ErrorNode -> {}
 is FailureNode -> {}
 is SuccessNode -> {}
}

Handling DaVinci flow collectors in continue nodes

The ContinueNode type contains collectors . These collectors define what information or action to request from the user, or
client device.

There are specific collector types. For example there are TextCollector and PasswordCollector types.

To complete a DaVinci flow we recommend that you implement a component for each connector type you will encounter in the
flow. Then you can iterate through the flow and handle each collector as you encounter it.

lightbulb_2
For a list of supported collectors, refer to Supported PingOne fields and collectors.

Tip

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 691

Access collectors in a ContinueNode

node.collectors.forEach {
 when(it) {
 is TextCollector → it.value = "My First Name"
 is PasswordCollector → it.value = "My Password"
 is SubmitCollector → it.value = "click me"
 is FlowCollector → it.value = "Forgot Password"
 }
}

Continuing a DaVinci flow

After collecting the data for a node you can proceed to the next node in the flow by calling the next() method on your current
node object.

Continue a DaVinci flow using next()

val next = node.next()

The server responds with a new node object, just like when starting a flow initially.

Loop again through conditional checks on the new node’s type to render the appropriate UI or take the appropriate action.

Handling DaVinci flow error nodes

DaVinci flows return the ErrorNode type when it receives data that is incorrect, but you can fix the data and resubmit. For
example, an email value submitted in an invalid format or a new password that is too short.

You can retrieve the error message by using node.message() , and the raw JSON response with node.input .

info
You do not need to pass any parameters into the next method as the DaVinci client internally stores the updated
object, ready to return to the PingOne server.

Note

Ping SDK for PingOne DaVinci tutorials Ping SDKs

692 Copyright © 2025 Ping Identity Corporation

Displaying the reason for an error

val node = daVinci.start() // Start the flow

//Determine the Node Type
when (node) {
 is ContinueNode -> {}

is ErrorNode -> {
 node.message() // Retrieve the cause of the error
 }
 is FailureNode -> {}
 is SuccessNode -> {}
}

You can retain a reference to the node you submit in case the next node you receive is an ErrorNode type. If so, you can re-
render the previous form, and inject the error information from the new ErrorNode node.

After the user revises the data call next() as you did before.

Handling DaVinci flow failure nodes

DaVinci flows return the FailureNode type if there has been an issue that prevents the flow from continuing. For example, the
flow times out or suffers a server error.

You can retrieve the cause of the failure by using node.cause() , which is a Throwable object.

Handling receipt of a FailureNode type

val node = daVinci.start() // Start the flow

//Determine the Node Type
when (node) {
 is ContinueNode -> {}
 is ErrorNode -> {}

is FailureNode -> {
 node.cause() // Retrieve the error message
 }
 is SuccessNode -> {}
}

You should offer to restart the flow on receipt of a FailureNode type.

Handling DaVinci flow success nodes

DaVinci flows return the SuccessNode type when the user completes the flow and PingOne issues them a session.

To retrieve the existing session, you can use the following code:

info
This is different than a FailureNode type, which you cannot resubmit and must restart the entire flow.

Note

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 693

Handling receipt of a SuccessNode type

val user: User? = daVinci.user()

user?.let {
 it.accessToken()
 it.revoke()
 it.userinfo()
 it.logout()
}

Leverage Jetpack Compose

The following shows how you could use the DaVinci client with Jetpack Compose:

ViewModel

// Define State that listen by the View
var state = MutableStateFlow<Node>(Empty)

//Start the DaVinci flow
val next = daVinci.start()

// Update the state
state.update {
 next
}

fun next(node: ContinueNode) {
 viewModelScope.launch {
 val next = node.next()
 state.update {
 next
 }
 }
}

View

when (val node = state.node) {
 is ContinueNode -> {}
 is ErrorNode -> {}
 is FailureNode -> {}
 is SuccessNode -> {}
}

DaVinci Client for iOS tutorials

Follow these tutorials integrate your iOS apps with DaVinci flows in your PingOne instance.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

694 Copyright © 2025 Ping Identity Corporation

DaVinci Client for iOS Tutorials

DaVinci client quick start for iOS

This tutorial walks you through updating a provided sample app so that it connects to a PingOne tenant to authenticate a
user using the PingOne sign-on with sessions DaVinci flow.

This flow allows users to register, authenticate, and verify their email address with PingOne.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne server with the required configuration.

For example, you will need to have an OAuth 2.0 client application set up.

Complete prerequisites 

Quick start

In this quick start tutorial you update one
of our sample applications.

The app steps through a DaVinci flow and
displays a basic prototype UI to gather user

credentials.



Deep dive

This deep dive tutorial covers the steps to
take to integrate an iOS app with a DaVinci

flow in PingOne.

You’ll learn about installing and importing the
DaVinci Client, stepping through DaVinci flows,

and how to leverage SwiftUI to help you
integrate DaVinci flows into your iOS apps.



Prepare › Download › Configure › Run

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 695

https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions
https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure the sample app

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in DaVinci.

Start step 2 

Step 3. Test the app

To test the app, run the sample that you configured in the previous step.

The sample connects to your PingOne server to obtain the correct URIs to authenticate the user, and redirects the browser
to your PingOne server.

After authentication, PingOne redirects the browser back to your application, which then obtains an OAuth 2.0 access
token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured PingOne instance.

Compatibility

PingOne

Your PingOne instance must have DaVinci enabled.

Prepare › Download › Configure › Run

•

Ping SDK for PingOne DaVinci tutorials Ping SDKs

696 Copyright © 2025 Ping Identity Corporation

DaVinci flows

Ensure your flows only use supported connectors, capabilities and fields for user interactions:

HTTP Connector

Custom HTML capability

HTTP Connector field and collector support

HTTP Connector SK-Component support

•

◦

▪

▪

HTTP Connector field and collector support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Text field
(TextCollector)

Collects a single text string. ✅

1.0.0

✅

1.0.0

✅

1.0.0

Password field
(PasswordCollector)

Collects a single text string that cannot
be read from the screen.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Submit Button
(SubmitCollector)

Sends the collected data to PingOne to
continue the DaVinci flow.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Flow Button
(FlowCollector)

Triggers an alternative flow without
sending the data collected so far to
PingOne.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Label
(LabelCollector)

Display a read-only text label. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Radio / Dropdown
(SingleSelectCollector)

Collects a single value from a choice of
multiple options.

✅

1.1.0

✅

1.1.0

✅

1.1.0

HTTP Connector SK-Component support

SK-Component
(Collector)

Description DaVinci module

Android iOS JavaScript

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 697

Verify that your flow does not depend on any unsupported elements:

SKPolling components

The SKPolling component cannot be processed by the DaVinci Client and should not be included in flows.

Features such as Magic Link authentication require the SKPolling component and therefore cannot be used
with the DaVinci Client.

Images

Images included in the flow cannot be passed to the SDK.

For example, the PingOne sign-on with sessions DaVinci flow.

PingOne Form Connector

Show Form capability

Custom Fields support

Toolbox support

skIDP
(IdpCollector)

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

✅

1.1.0

✅

1.1.0

✅

1.1.0

•

◦

▪

▪

Custom Fields support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Text Input
(TextCollector)

Collects a single text string. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Password
(PasswordCollector)

Collects a single text string that cannot
be read from the screen.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Dropdown
(SingleSelectCollector)

Collects a value from a dropdown
containing one or more text strings.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Combobox
(MultiSelectCollector)

Collects a value from a dropdown
containing one or more text strings,
the user can enter their own text
string.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Ping SDK for PingOne DaVinci tutorials Ping SDKs

698 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling
https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling
https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions
https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions

iOS

This sample app is compatible with iOS 12 and later.

Prerequisites

Xcode

You can download the latest version for free from https://developer.apple.com/xcode/.

Server configuration

You must configure your PingOne instance for use with the DaVinci client.

Ask your PingOne administrator to complete the following tasks:

Configure a DaVinci flow

Create a DaVinci application

Configure PingOne for DaVinci flow invocation

Radio Button List
(SingleSelectCollector)

Collects a value from one or radio
buttons.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Checkbox List
(MultiSelectCollector)

Collects the value of one or more
checkboxes.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Toolbox support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Flow Button
(FlowCollector)

Presents a customized button. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Flow Link
(FlowCollector)

Presents a customized link. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Translatable Rich Text
(TextCollector)

Presents rich text that you can translate
into multiple languages.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Social Login
(IdpCollector)

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

✅

1.1.0

✅

1.1.0

✅

1.1.0

•

•

•

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 699

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

To learn how to complete these steps, refer to Launching a flow with a Ping SDK in the PingOne DaVinci documentation.

Step 1. Download the samples

To start this tutorial, you need to download the ForgeRock SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure the sample app

In this section you open the sample project in Xcode, and view the integration points in the TODO pane.

You’ll visit each integration point in the sample app to understand how to complete a DaVinci flow, including handling the
different nodes and their collectors, obtaining an access token and user information, and finally signing out of the session.

In Xcode, on the File menu, click Open.

Navigate to the sdk-sample-apps folder you cloned in the previous step, navigate to iOS > swiftui-davinci >
Davinci.xcworkspace , and then click Open.

Xcode opens and loads the DaVinci tutorial project.

Open DavinciViewModel and locate the DaVinci.createDaVinci call:

Prepare › Download › Configure › Run

1.

2.

1.

2.

1.

2.

Prepare › Download › Configure › Run

1.

2.

3.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

700 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_sdk_launching_a_flow_with_the_sdk.html
https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_sdk_launching_a_flow_with_the_sdk.html
https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git.git
https://github.com/ForgeRock/sdk-sample-apps.git.git

The DaVinci.createDaVinci call in DavinciViewModel

public let davinci = DaVinci.createDaVinci { config in
 //TODO: Provide here the Server configuration. Add the PingOne server Discovery Endpoint and the OAuth 2.0
client details
 config.module(OidcModule.config) { oidcValue in

oidcValue.clientId = "Client ID"
oidcValue.scopes = ["scope1", "scope2", "scope3"]
oidcValue.redirectUri = "Redirect URI"
oidcValue.discoveryEndpoint = "Discovery Endpoint"

 }
}

This snippet initializes the DaVinci module, and leverages the OpenID Connect (OIDC) module to configure the settings to
connect to your PingOne instance.

In the oidcValue.clientId property, enter the ID of the client you are connecting to in PingOne.

Example:

clientId = "6c7eb89a-66e9-ab12-cd34-eeaf795650b2"

Refer to Get configuration values from PingOne for instructions of where to find this value.

In the oidcValue.scopes property, add the scopes you want to assign users who complete authentication using
the client.

Example:

scopes = mutableSetOf("openid", "email", "profile")

In the oidcValue.redirectUri property, enter the application ID of your sample app, followed by ://
oauth2redirect .

Example:

redirectUri = "org.forgerock.demo://oauth2redirect"

In the oidcValue.discoveryEndpoint property, enter the OIDC Discovery Endpoint value from the client you are
connecting to in PingOne.

Example:

discoveryEndpoint = "https://auth.pingone.ca/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/

openid-configuration"

Refer to Get configuration values from PingOne for instructions of where to find this value.

Optionally, delete the TODO comment to remove it from the list.

1.

2.

3.

emergency_home
The redirectUri value you use must exactly match one of the Redirect URIs value you enter in the
native OAuth 2.0 application you created earlier.

Important

4.

5.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 701

The result resembles the following:

DavinciViewModel

public let davinci = DaVinci.createDaVinci { config in
 //TODO: Provide here the Server configuration. Add the PingOne server Discovery Endpoint and the OAuth2.0
client details
 config.module(OidcModule.config) { oidcValue in
 oidcValue.clientId = "6c7eb89a-66e9-ab12-cd34-eeaf795650b2"
 oidcValue.scopes = ["openid", "email", "profile"]
 oidcValue.redirectUri = "org.forgerock.demo://oauth2redirect"
 oidcValue.discoveryEndpoint = "https://auth.pingone.ca/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-
known/openid-configuration"
 }
}

Step 3. Test the app

In the following procedure, you run the sample app that you configured in the previous step. The app performs a centralized login
on your PingOne instance.

Log in as a demo user

In Xcode, select Product › Run.

Xcode launches the sample app in the iPhone simulator.

Prepare › Download › Configure › Run

1.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

702 Copyright © 2025 Ping Identity Corporation

Figure 1. The iOS DaVinci sample main menu

In the sample app on the iPhone simulator, tap Launch Davinci.

The sample app launches the DaVinci flow configured in the OAuth 2.0 profile.

2.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 703

Figure 2. The DaVinci sample app first screen with fields and buttons.

Optionally, to register a new identity in PingOne:

Tap the No Account? Register now! link.

The app displays the registration screen:

3.

1.

lightbulb_2
This link is an example of a FlowButton.

Tip

Ping SDK for PingOne DaVinci tutorials Ping SDKs

704 Copyright © 2025 Ping Identity Corporation

Figure 3. The DaVinci sample app registration screen.

Enter the details of the new identity, and then click Save.

The app creates the new identity in PingOne and returns to the sign on screen.

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

If authentication is successful, the application displays the tokens issued by PingOne.

2.

4.

◦

◦

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 705

Figure 4. The token issues by the DaVinci flow

Tap  Davinci to go back to the main menu, and then tap User Info.

The app retrieves the user’s info from the /userinfo endpoint and displays it on screen:

5.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

706 Copyright © 2025 Ping Identity Corporation

Figure 5. User info retrieved from PingOne

Tap  Davinci to go back to the main menu, and then tap Logout.

The sample app displays a logout button.

6.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 707

Figure 6. Logout button in the iOS sample app

Tap Proceed to logout

The app revokes the existing tokens and ends the session in PingOne.

7.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

708 Copyright © 2025 Ping Identity Corporation

DaVinci client deep dive for iOS

Applies to:

 DaVinci client for Android

 DaVinci client for iOS

 DaVinci client for JavaScript

Configure DaVinci client module for iOS properties to connect to PingOne and step through an associated DaVinci flow.

Installing and importing the DaVinci client

To use the DaVinci client for iOS, use Swift Package Manager (SPM) or Cocoapods to add the dependencies to your project.

lightbulb_2
To verify the user is signed out:

In the PingOne administration console, navigate to Directory > Users.
Select the user you signed in as.
From the Sevices dropdown, select Authentication:

Figure 7. Checking a user’s sessions in PingOne.
The Sessions section displays any existing sessions the user has, and whether they originate from a
mobile device.

Tip

1.
2.
3.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 709

Add dependencies using SPM (Swift Package Manager)

You can install this by using SPM (Swift Package Manager) on the generated iOS project.

In Xcode,in the Project Navigator, right-click your project, and then click Add Package Dependencies….

In the Search or Enter Package URL field, enter the URL of the repo containing the DaVinci Client for iOS, https://
github.com/ForgeRock/ping-ios-sdk.git .

In Add to Project, select the name of your project, and then click Add Package.

Xcode shows a dialog containing the libraries available in the Ping SDK for iOS.

Select the PingDavinci library, and in the Add to Target column select the name of your project.

Repeat the previous step for any other Ping SDK libraries you want to add to your project.

Click Add Package.

Xcode displays the chosen libraries and any prerequisites they might have in the Package Dependencies pane of the
Project Navigator:

Figure 1. Package dependencies in the Xcode package navigator pane.

1.

2.

3.

4.

5.

6.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

710 Copyright © 2025 Ping Identity Corporation

Add dependencies using CocoaPods

If you do not already have CocoaPods, install the latest version.

If you do not already have a Podfile, in a terminal window, run the following command to create a new Podfile:

pod init

Add the following lines to your Podfile:

pod 'PingDavinci'

Run the following command to install pods:

pod install

Configuring the DaVinci client

Configure DaVinci client for iOS properties to connect to PingOne and step through an associated DaVinci flow.

The following shows an example DaVinci client configuration, using the underlying Oidc module:

Configure DaVinci client connection properties

let daVinci = DaVinci.createDaVinci { config in
 // Oidc as module
 config.module(OidcModule.config) { oidcValue in
 oidcValue.clientId = "6c7eb89a-66e9-ab12-cd34-eeaf795650b2"
 oidcValue.discoveryEndpoint = "https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/
openid-configuration"
 oidcValue.scopes = ["openid", "profile", "email", "address", "revoke"]
 oidcValue.redirectUri = "org.forgerock.demo://oauth2redirect"
 oidcValue.additionalParameters = ["customKey":"customValue"]
 }
}

For information on the properties available, refer to Configure DaVinci client for iOS properties.

Stepping through DaVinci flows

To authenticate your users the DaVinci client for iOS must start the flow, and step through each node.

1.

2.

3.

4.

lightbulb_2
For information on which connectors and fields the DaVinci client supports, refer to Compatibility.

Tip

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 711

https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/syntax/podfile.html
https://guides.cocoapods.org/syntax/podfile.html

Starting a DaVinci flow

To start a DaVinci flow, call the start() method:

Start a DaVinci flow

var node = await daVinci.start()

Determining DaVinci flow node type

Each step of the flow returns one of four node types:

ContinueNode

This type indicates there is input required from the client. The node object for this type contains a collector object,
which describes the information it requires from the client.

Learn more in Handling DaVinci flow collectors in continue nodes.

SuccessNode

This type indicates the flow is complete, and authentication was successful.

Learn more in Handling DaVinci flow success nodes.

ErrorNode

This type indicates an error in the data sent to the server. For example, an email address in an incorrect format, or a
password that does not meet complexity requirements.

You can correct the error and resubmit to continue the flow.

Learn more in Handling DaVinci flow error nodes.

FailureNode

This type indicates that the flow could not be completed and must be restarted. This can be caused by a server error, or a
timeout.

Learn more in Handling DaVinci flow failure nodes.

You can use the helper functions to determine which node type the server has returned:

Ping SDK for PingOne DaVinci tutorials Ping SDKs

712 Copyright © 2025 Ping Identity Corporation

Determine node type.

switch (node) {
 case is ContinueNode: do {}
 case is ErrorNode: do {}
 case is FailureNode: do {}
 case is SuccessNode: do {}
}

Handling DaVinci flow collectors in continue nodes

The ContinueNode type contains collectors . These collectors define what information or action to request from the user, or
client device.

There are specific collector types. For example there are TextCollector and PasswordCollector types.

To complete a DaVinci flow we recommend that you implement a component for each connector type you will encounter in the
flow. Then you can iterate through the flow and handle each collector as you encounter it.

Access collectors in a ContinueNode

node.collectors.forEach { item in
 switch(item) {
 case is TextCollector:
 (item as! TextCollector).value = "My First Name"
 case is PasswordCollector:
 (item as! PasswordCollector).value = "My Password"
 case is SubmitCollector:
 (item as! SubmitCollector).value = "click me"
 case is FlowCollector:
 (item as! FlowCollector).value = "Forgot Password"
 }
}

Continuing a DaVinci flow

After collecting the data for a node you can proceed to the next node in the flow by calling the next() method on your current
node object.

Continue a DaVinci flow using next()

let next = node.next()

lightbulb_2
For a list of supported collectors, refer to Supported PingOne fields and collectors.

Tip

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 713

The server responds with a new node object, just like when starting a flow initially.

Loop again through conditional checks on the new node’s type to render the appropriate UI or take the appropriate action.

Handling DaVinci flow error nodes

DaVinci flows return the ErrorNode type when it receives data that is incorrect, but you can fix the data and resubmit. For
example, an email value submitted in an invalid format or a new password that is too short.

You can retrieve the error message by using node.message() , and the raw JSON response with node.input .

Displaying the reason for an error

let node = await daVinci.start() //Start the flow

//Determine the Node Type
switch (node) {
 case is ContinueNode: do {}
 case is FailureNode: do {}

case is ErrorNode:
 (node as! ErrorNode).message //Retrieve the error message
 case is SuccessNode: do {}
}

You can retain a reference to the node you submit in case the next node you receive is an ErrorNode type. If so, you can re-
render the previous form, and inject the error information from the new ErrorNode node.

After the user revises the data call next() as you did before.

Handling DaVinci flow failure nodes

DaVinci flows return the FailureNode type if there has been an issue that prevents the flow from continuing. For example, the
flow times out or suffers a server error.

You can retrieve the cause of the failure by using node.cause() , which is an Error instance.

info
You do not need to pass any parameters into the next method as the DaVinci client internally stores the updated
object, ready to return to the PingOne server.

Note

info
This is different than a FailureNode type, which you cannot resubmit and must restart the entire flow.

Note

Ping SDK for PingOne DaVinci tutorials Ping SDKs

714 Copyright © 2025 Ping Identity Corporation

Handling receipt of a FailureNode type

let node = await daVinci.start() //Start the flow

//Determine the Node Type
switch (node) {
 case is ContinueNode: do {}

case is FailureNode:
 (node as! FailureNode).cause //Retrieve the cause of the Failure
 case is ErrorNode: do {}
 case is SuccessNode: do {}
}

You should offer to restart the flow on receipt of a FailureNode type.

Handling DaVinci flow success nodes

DaVinci flows return the SuccessNode type when the user completes the flow and PingOne issues them a session.

To retrieve the existing session, you can use the following code:

Handling receipt of a SuccessNode type

let user: User? = await daVinci.user()

_ = await user?.token()
await user?.revoke()
_ = await user?.userinfo(cache: false)
await user?.logout()

Leverage SwiftUI

The following shows how you could use the DaVinci client with SwiftUI:

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 715

ViewModel

//Define State that listen by the View

@Published var state: Node = EmptyNode()

//Start the DaVinci flow
let next = await daVinci.start()

//Update the state
state = next

func next(node: ContinueNode) {
 val next = await node.next()
 state = next

}

View

if let node = state.node {
 switch node {
 case is ContinueNode:
 // Handle ContinueNode case
 break
 case is ErrorNode:
 // Handle Error case
 break
 case is FailureNode:
 // Handle Failure case
 break
 case is SuccessNode:
 // Handle Success case
 break
 default:
 break
 }
}

DaVinci Client for JavaScript tutorials

Follow these tutorials integrate your JavaScript apps with DaVinci flows in your PingOne instance.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

716 Copyright © 2025 Ping Identity Corporation

DaVinci Client for JavaScript Tutorials

DaVinci client quick start for JavaScript

This tutorial walks you through updating a provided sample app so that it connects to a PingOne tenant to authenticate a
user using the PingOne sign-on with sessions DaVinci flow.

This flow allows users to register, authenticate, and verify their email address with PingOne.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne instance with the required configuration.

For example, you will need an OAuth 2.0 client application set up.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Quick start

In this quick start tutorial you update one
of our sample applications.

The app steps through a DaVinci flow and
displays a basic prototype UI to gather user

credentials.



Deep dive

This deep dive tutorial covers the steps to
take to integrate an JavaScript app with a

DaVinci flow in PingOne.

You’ll learn about installing and importing the
DaVinci Client and stepping through DaVinci

flows.



Prepare › Download › Install › Configure › Run

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 717

https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions
https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions

Step 2. Install the dependencies

The sample projects need a number of dependencies that you can install by using the npm command.

For example, the Ping SDK for JavaScript itself is one of the dependencies.

Start step 2 

Step 3. Configure connection properties

In this step, you configure the "embedded-login" sample app to connect to the OAuth 2.0 application you created in
PingOne Advanced Identity Cloud or PingAM.

Start step 3 

Step 4. Test the app

The final step is to run the sample app. The sample connects to your server and walks through your authentication journey
or tree.

After successful authentication, the sample obtains an OAuth 2.0 access token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured server.

Compatibility

PingOne

Your PingOne instance must have DaVinci enabled.

Prepare › Download › Install › Configure › Run

•

Ping SDK for PingOne DaVinci tutorials Ping SDKs

718 Copyright © 2025 Ping Identity Corporation

DaVinci flows

Ensure your flows only use supported connectors, capabilities and fields for user interactions:

HTTP Connector

Custom HTML capability

HTTP Connector field and collector support

HTTP Connector SK-Component support

•

◦

▪

▪

HTTP Connector field and collector support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Text field
(TextCollector)

Collects a single text string. ✅

1.0.0

✅

1.0.0

✅

1.0.0

Password field
(PasswordCollector)

Collects a single text string that cannot
be read from the screen.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Submit Button
(SubmitCollector)

Sends the collected data to PingOne to
continue the DaVinci flow.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Flow Button
(FlowCollector)

Triggers an alternative flow without
sending the data collected so far to
PingOne.

✅

1.0.0

✅

1.0.0

✅

1.0.0

Label
(LabelCollector)

Display a read-only text label. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Radio / Dropdown
(SingleSelectCollector)

Collects a single value from a choice of
multiple options.

✅

1.1.0

✅

1.1.0

✅

1.1.0

HTTP Connector SK-Component support

SK-Component
(Collector)

Description DaVinci module

Android iOS JavaScript

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 719

Verify that your flow does not depend on any unsupported elements:

SKPolling components

The SKPolling component cannot be processed by the DaVinci Client and should not be included in flows.

Features such as Magic Link authentication require the SKPolling component and therefore cannot be used
with the DaVinci Client.

Images

Images included in the flow cannot be passed to the SDK.

For example, the PingOne sign-on with sessions DaVinci flow.

PingOne Form Connector

Show Form capability

Custom Fields support

Toolbox support

skIDP
(IdpCollector)

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

✅

1.1.0

✅

1.1.0

✅

1.1.0

•

◦

▪

▪

Custom Fields support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Text Input
(TextCollector)

Collects a single text string. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Password
(PasswordCollector)

Collects a single text string that cannot
be read from the screen.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Dropdown
(SingleSelectCollector)

Collects a value from a dropdown
containing one or more text strings.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Combobox
(MultiSelectCollector)

Collects a value from a dropdown
containing one or more text strings,
the user can enter their own text
string.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Ping SDK for PingOne DaVinci tutorials Ping SDKs

720 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling
https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling
https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions
https://support.pingidentity.com/s/marketplace-integration/a7iDo00000110R2IAI/pingone-sign-on-with-sessions

Prerequisites

Node and NPM

The SDK requires a minimum Node.js version of 18 , and is tested on versions 18 and 20 . To get a supported version of
Node.js, refer to the Node.js download page.

You will also need npm to build the code and run the samples.

Server configuration

You must configure your PingOne instance for use with the DaVinci client.

Ask your PingOne administrator to complete the following tasks:

Configure a DaVinci flow

Create a DaVinci application

Configure PingOne for DaVinci flow invocation

Radio Button List
(SingleSelectCollector)

Collects a value from one or radio
buttons.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Checkbox List
(MultiSelectCollector)

Collects the value of one or more
checkboxes.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Toolbox support

Field (Collector) Description DaVinci module

Android iOS JavaScript

Flow Button
(FlowCollector)

Presents a customized button. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Flow Link
(FlowCollector)

Presents a customized link. ✅

1.1.0

✅

1.1.0

✅

1.1.0

Translatable Rich Text
(TextCollector)

Presents rich text that you can translate
into multiple languages.

✅

1.1.0

✅

1.1.0

✅

1.1.0

Social Login
(IdpCollector)

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

✅

1.1.0

✅

1.1.0

✅

1.1.0

•

•

•

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 721

https://nodejs.org/en/download/
https://nodejs.org/en/download/

To learn how to complete these steps, refer to Launching a flow with a Ping SDK in the PingOne DaVinci documentation.

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Install the dependencies

In the following procedure, you install the required modules and dependencies, including the Ping SDK for JavaScript.

In a terminal window, navigate to the sdk-sample-apps/javascript/embedded-login-davinci folder.

To install the required packages, enter the following:

npm install

The npm tool downloads the required packages, and places them inside a node_modules folder.

Prepare › Download › Install › Configure › Run

1.

2.

1.

2.

1.

2.

Prepare › Download › Install › Configure › Run

1.

2.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

722 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_sdk_launching_a_flow_with_the_sdk.html
https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_sdk_launching_a_flow_with_the_sdk.html
https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the authentication tree/journey you created when setting up your server
configuration.

Copy the .env.example file in the sdk-sample-apps/javascript/embedded-login-davinci folder and save it with the
name .env within this same directory.

Open the .env file and edit the property values to match the settings you configured in previous steps:

VITE_SCOPE=$SCOPE
VITE_WEB_OAUTH_CLIENT=$WEB_OAUTH_CLIENT
VITE_WELLKNOWN_URL=$WELLKNOWN_URL

In the VITE_SCOPE property, enter the scopes you want to assign users who complete authentication using the
client, separated by spaces.

Example:

VITE_SCOPE="openid profile email address"

In VITE_WEB_OAUTH_CLIENT, property, enter the ID of the client you are connecting to in PingOne.

Example:

VITE_WEB_OAUTH_CLIENT="6c7eb89a-66e9-ab12-cd34-eeaf795650b2"

Refer to Get configuration values from PingOne for instructions of where to find this value.

In the VITE_WELLKNOWN_URL property, enter the OIDC Discovery Endpoint value from the client you are connecting
to in PingOne.

Example:

discoveryEndpoint = "https://auth.pingone.ca/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/

openid-configuration"

Refer to Get configuration values from PingOne for instructions of where to find this value.

The result resembles the following:

VITE_SCOPE="openid profile email address"
VITE_WEB_OAUTH_CLIENT="sdkPublicClient"
VITE_WELLKNOWN_URL="https://auth.pingone.ca/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/openid-
configuration"

Prepare › Download › Install › Configure › Run

1.

2.

1.

2.

3.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 723

Step 4. Test the app

In the following procedure, you run the sample app that you configured in the previous step. The sample connects to your server
and walks through the authentication journey you created in an earlier step.

After successful authentication, the sample obtains an OAuth 2.0 access token and displays the related user information.

In a terminal window, navigate to the sdk-sample-apps/javascript/embedded-login-davinci folder.

Use npm to run the sample:

npm run dev

In a web browser:

Ensure you are NOT currently logged into the PingOne instance.

Navigate to the following URL:

http://localhost:5173

A form appears with "Username" and "Password" fields:

Prepare › Download › Install › Configure › Run

1.

2.

3.

1.

info
If you are logged into the PingOne instance in the browser, the sample will not work.
Logout of the PingAM instance before you run the sample.

Note

2.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

724 Copyright © 2025 Ping Identity Corporation

Figure 1. The login page of the JavaScript DaVinci client sample.

Optionally, to register a new identity in PingOne, tap the No Account? Register now! link.

The app displays the registration screen:

4.

lightbulb_2
This link is an example of a FlowButton.

Tip

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 725

Figure 2. The DaVinci sample app registration screen.

Enter the details of the new identity, and then click Save.

The app creates the new identity in PingOne and returns to the sign on screen.

Enter the username and password of a PingOne identity, and then click Sign On.

The app sends the credentials to PingOne for validation, and on success displays the user’s session info:

1.

5.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

726 Copyright © 2025 Ping Identity Corporation

Figure 3. The DaVinci sample app displaying session info

To get an access token for the user, click Get Tokens.6.

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 727

Figure 4. The DaVinci sample app displaying tokens

To revoke the OAuth 2.0 token, click the Logout button.

The application calls the /as/revoke endpoint to revoke the OAuth 2.0 token, and returns to the sign-in form.

DaVinci client deep dive for JavaScript

Applies to:

 DaVinci client for Android

 DaVinci client for iOS

 DaVinci client for JavaScript

Configure DaVinci client properties to connect to PingOne and step through an associated DaVinci flow.

7.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

728 Copyright © 2025 Ping Identity Corporation

Installing and importing the DaVinci client

To install and import the DaVinci client:

Install the DaVinci client into your JavaScript apps using npm :

Install the DaVinci client

npm install @forgerock/davinci-client

Import the DaVinci client as a named import:

Import the DaVinci client

import { davinci } from '@forgerock/davinci-client';

Configuring the DaVinci client

Configure DaVinci client for JavaScript properties to connect to PingOne and step through an associated DaVinci flow.

The following shows a full DaVinci client configuration:

Configure DaVinci client connection properties

import { davinci } from '@forgerock/davinci';

const davinciClient = await davinci({
 config: {
 clientId: '6c7eb89a-66e9-ab12-cd34-eeaf795650b2',
 serverConfig: {
 wellknown: 'https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/openid-configuration',
 timeout: 3000,
 },
 scope: 'openid profile email phone',
 responseType: 'code',
 },
});

For information on the properties available, refer to Configure DaVinci client for JavaScript properties.

Stepping through DaVinci flows

To authenticate your users the Ping SDK for JavaScript DaVinci client must start the flow, and step through each node.

1.

2.

lightbulb_2
For information on which connectors and fields the DaVinci client supports, refer to Compatibility.

Tip

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 729

Starting a DaVinci flow

To start a DaVinci flow, call the start() method on your new client object:

Start a DaVinci flow

let node = await davinciClient.start();

Adding custom parameters

When starting a DaVinci client you can add additional key-pair parameters. The DaVinci client will append these parameters as
query strings to the initial OAuth 2.0 call to the /authorize endpoint.

To add parameters when starting the client, create an object of the key-value pairs and pass it as a query parameter to the
start() function:

const query = {
 customKey: 'customValue'
}

let node = await davinciClient.start(query);

Determining DaVinci flow node type

Each step of the flow returns one of four node types:

continue

This type indicates there is input required from the client. The node object for this type contains a list of collector
objects, which describe the information it requires from the client.

Learn more in Handling DaVinci flow collectors in continue nodes.

lightbulb_2
You can access these additional OAuth 2.0 parameters in your DaVinci flows by using the
authorizationRequest.<customParameter> property.
Learn more in Referencing PingOne data in the flow.

Tip

lightbulb_2
You can add any parameters to the request as required. For example, you could add acr_values to the request to
the /authorize endpoint.

Tip

Ping SDK for PingOne DaVinci tutorials Ping SDKs

730 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_launch_flow_redirect.html#referencing-pingone-data-in-the-flow
https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_launch_flow_redirect.html#referencing-pingone-data-in-the-flow

success

This type indicates the flow is complete, and authentication was successful.

Learn more in Handling DaVinci flow success nodes.

error

This type indicates an error in the data sent to the server. For example, an email address in an incorrect format, or a
password that does not meet complexity requirements.

You can correct the error and resubmit to continue the flow.

Learn more in Handling DaVinci flow error nodes.

failure

This type indicates that the flow could not be completed and must be restarted. This can be caused by a server error, or a
timeout.

Learn more in Handling DaVinci flow failure nodes.

Use node.status to determine which node type the server has returned:

Determine node type using the node.status property

let node = await davinciClient.start();

switch (node.status) {
 case 'continue':
 return renderContinue();
 case 'success':
 return renderSuccess();
 case 'error':
 return renderError();
 default: // Handle 'failure' node type
 return renderFailure();
}

Handling DaVinci flow collectors in continue nodes

The continue node type contains a list of collector objects. These collectors define what information or action to request from
the user, or browser.

The Ping SDK for JavaScript groups collectors that have similar traits together into categories. For example, collectors that only
require a single primitive value to be returned to the server, such as a username or password string, or a single value from a
drop-down list are grouped together in a single value collectors category.

To complete a DaVinci flow, we recommend that you either implement a component for a category of collectors, or implement a
component for each collector type that you will encounter in the flow.

lightbulb_2
For a list of supported collectors, refer to Supported PingOne fields and collectors.

Tip

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 731

Your app iterates through the flow and handles each collector as you encounter it.

Example of iterating collectors and using components

const collectors = davinciClient.getCollectors();
collectors.forEach((collector) => {
 if (collector.type === 'TextCollector') {
 textComponent(
 collector, // Object with the collector details
 davinciClient.update(collector), // Returns an update function for this collector
 davinciClient.validate(collector), // Returns a validate function for this collector
);
 } else if (collector.type === 'PasswordCollector') {
 // eslint-disable-next-line @typescript-eslint/no-unused-expressions
 collector;
 passwordComponent(
 collector, // Object with the collector details
 davinciClient.update(collector), // Returns an update function for this collector
);
 } else if (collector.type === 'SubmitCollector') {
 submitButtonComponent(
 collector, // Object with the collector details
);
 } else if (collector.type === 'FlowCollector') {
 flowLinkComponent(
 collector, // Object with the collector details
 davinciClient.flow({
 // Returns a function to call the flow from within component
 action: collector.output.key,
 }),
 renderForm, // Enable re-rendering the form
);
 }
});

Example 1. Handling TextCollector with a component

This example shows how to update a collector with a value gathered from your user.

Pass both a collector and updater object into a component that renders the appropriate user interface, captures the user’s
input, and then updates the collector, ready to return to the server.

Ping SDK for PingOne DaVinci tutorials Ping SDKs

732 Copyright © 2025 Ping Identity Corporation

Example TextCollector mapping

const collectors = davinciClient.getCollectors();
collectors.map((collector) => {
 if (collector.type === 'TextCollector') {
 renderTextCollector(collector, davinciClient.update(collector));
 }
});

Your renderTextCollector would resemble the following:

Example TextCollector updater component

function renderTextCollector(collector, updater) {
 // ... component logic

 function onClick(event) {
 updater(event.target.value);
 }

 // render code
}

Example 2. Handling FlowCollector with a component

This example shows how change from the current flow to an alternate flow, such as a reset password or registration flow.

To switch flows, call the flow method on the davinciClient passing the key property to identify the new flow.

Example FlowCollector mapping

const collectors = davinciClient.getCollectors();
collectors.map((collector) => {
 if (collector.type === 'FlowCollector') {
 renderFlowCollector(collector, davinciClient.flow(collector));
 }
});

info
Mutating the node object, the collectors array, or any other properties does not alter the internal state of the
DaVinci client.
The internal data the client stores is immutable and can only be updated using the provided APIs, not through
property assignment.

Note

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 733

This returns a function you can call when the user interacts with it.

Example flowCollector component

function renderFlowCollector(collector, startFlow) {
 // ... component logic

 function onClick(event) {
 startFlow();
 }

 // render code
}

Example 3. Handling SubmitCollector with a component

This example shows how submit the current node and its collected values back to the server. The collection of the data is already
complete so an updater component is not required. This collector only renders the button for the user to submit the collected
data.

Example SubmitCollector mapping

const collectors = davinciClient.getCollectors();
collectors.map((collector) => {
 if (collector.type === 'SubmitCollector') {
 renderSubmitCollector(
 collector, // This is the only argument you will need to pass
);
 }
});

Continuing a DaVinci flow

After collecting the data for a node you can proceed to the next node in the flow by calling the next() method on your DaVinci
client object.

This can be the result of a user clicking on the button rendered from the SubmitCollector , from the submit event of an HTML
form, or by programmatically triggering the submission in the application layer.

Continue a DaVinci flow using next()

let nextStep = davinciClient.next();

Ping SDK for PingOne DaVinci tutorials Ping SDKs

734 Copyright © 2025 Ping Identity Corporation

The server responds with a new node object, just like when starting a flow initially.

Loop again through conditional checks on the new node’s type to render the appropriate UI or take the appropriate action.

Handling DaVinci flow error nodes

DaVinci flows return the error node type when it receives data that is incorrect, but you can fix the data and resubmit. For
example, an email value submitted in an invalid format or a new password that is too short.

This is different than a failure node type which you cannot resubmit and instead you must restart the entire flow.

You can retain a reference to the node you submit in case the next node you receive is an error type. If so, you can re-render
the previous form, and inject the error information from the new error node.

After the user revises the data call next() as you did before.

Handling DaVinci flow failure nodes

DaVinci flows return the failure node type if there has been an issue that prevents the flow from continuing. For example, the
flow times out or suffers an HTTP 500 server error.

You should offer to restart the flow on receipt of a failure node type.

Restart a DaVinci flow on receipt of a failure node type

const node = await davinciClient.next();

if (node.status === 'failure') {
 const error = davinciClient.getError();
 renderError(error);

 // ... user clicks button to restart flow
 const freshNode = davinciClient.start();
}

Handling DaVinci flow success nodes

DaVinci flows return the success node type when the user completes the flow and PingOne issues them a session.

On receipt of a success node type you should use the OAuth 2.0 authorization Code and state properties from the node and use
them to obtain an access token on behalf of the user.

To obtain an access token, leverage the Ping SDK for JavaScript.

info
You do not need to pass any parameters into the next method as the DaVinci client internally stores the updated
object, ready to return to the PingOne server.

Note

Ping SDKs Ping SDK for PingOne DaVinci tutorials

Copyright © 2025 Ping Identity Corporation 735

Example of obtaining an access token using the Ping SDK for JavaScript

// ... other imports
import { davinci } from '@forgerock/davinci-client';
import { Config, TokenManager } from '@forgerock/javascript-sdk';

// ... other config or initialization code

// This Config.set accepts the same config schema as the davinci function
Config.set(config);

const node = await davinciClient.next();

if (node.status === 'success') {
 const clientInfo = davinciClient.getClient();

 const code = clientInfo.authorization?.code || '';
 const state = clientInfo.authorization?.state || '';

 const tokens = await TokenManager.getTokens({
 query: {
 code, state
 }
 });

 // user now has session and OIDC tokens
}

Ping SDK for PingOne DaVinci tutorials Ping SDKs

736 Copyright © 2025 Ping Identity Corporation

Implement your use cases with the DaVinci
client

The DaVinci client enables you to implement many authentication, registration, and self-service use cases into your mobile and
web apps.

Visit the following pages for more information on implementing different use cases using the DaVinci client:

Set up Social Login

Applies to: Android |  iOS |  JavaScript

Add support for authenticating to your apps by using trusted Identity Providers (IdP), such as Apple, Facebook, and
Google.

Read more 

Set up social sign on with external IDPs

PingOne supports trusted Identity Providers (IdP), like Apple, Facebook, Google, and many others, providing authentication and
identity verification on behalf of Ping Identity.

This is often referred to as social sign on or social authentication. These IdPs return the necessary user information for creating or
validating accounts to your PingOne server.

The user is redirected from the client application to the IdP’s authorization server. Once on the IdP, the user authenticates, and
provides the necessary consent required for sharing the information with PingOne. When the IdP authenticates your user, they
are redirected back to your server to complete the flow. When PingOne completes the flow, it redirects the user to your app,
where they are now signed on.

It’s common to offer these social login options in addition to traditional authentication with username and password, but they can
be used alone.

Implement your use cases with the DaVinci client Ping SDKs

738 Copyright © 2025 Ping Identity Corporation

Figure 1. An Android app with a combination of authentication methods
Steps

Complete the following steps to integrate social login into your client applications:

Before you begin

Before you begin this tutorial, ensure you have set up your PingOne instance with the required configuration.

For example, you will need an OAuth 2.0 client application setup.

Complete prerequisites 

person_check

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 739

Configure client apps for social sign on

Learn how to set up your Android, iOS, and JavaScript client apps to handle social sign on.

Start step 1 

Before you begin

To complete this tutorial, refer to the prerequisites in this section.

The tutorial also requires a configured server.

Compatibility

PingOne

Your PingOne instance must have DaVinci enabled.

Only PingOne External IdPs are supported.

Identity providers configured using a DaVinci Service Connector are not supported.

Connecting external identity providers in PingOne

In this section, you configure PingOne with details about the social login identity providers you want to integrate into your client
apps.

The Ping SDKs are compatible with any OpenID Connect 1.0-compliant Identity Provider, such as those available by default in
PingOne.

Ping Identity has tested the steps in this tutorial with the Identity Providers listed below. Select a provider to view the PingOne
documentation with instructions on how to configure an external IdP in PingOne:

menu_book

•

•

◦

info
You must configure the identity provider as a PingOne External IdP. Learn more in External IdPs .
Identity providers configured by using a DaVinci Service Connector are not supported.

Note

Implement your use cases with the DaVinci client Ping SDKs

740 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingone/integrations/p1_external_idps.html
https://docs.pingidentity.com/pingone/integrations/p1_external_idps.html

Configuring DaVinci Flows for social sign on

After connecting your chosen external identity providers to PingOne, the next step is to configure a DaVinci flow to display
buttons on your login pages so that users can choose to authenticate using the external IdP.



Apple

Adding an identity provider - Apple



Facebook

Adding an identity provider - Facebook



Google

Adding an identity provider - Google

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 741

https://docs.pingidentity.com/pingone/integrations/p1_add_idp_apple_prereqs.html
https://docs.pingidentity.com/pingone/integrations/p1_add_idp_apple_prereqs.html
https://docs.pingidentity.com/pingone/integrations/p1_add_idp_apple_prereqs.html
https://docs.pingidentity.com/pingone/integrations/p1_add_idp_apple_prereqs.html
https://docs.pingidentity.com/pingone/integrations/p1_add_idp_apple_prereqs.html
https://docs.pingidentity.com/pingone/integrations/p1_add_idp_apple_prereqs.html
https://docs.pingidentity.com/pingone/integrations/p1_add_idp_apple_prereqs.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityproviderfacebook.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityproviderfacebook.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityproviderfacebook.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityproviderfacebook.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityproviderfacebook.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityproviderfacebook.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityproviderfacebook.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityprovidergoogle.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityprovidergoogle.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityprovidergoogle.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityprovidergoogle.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityprovidergoogle.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityprovidergoogle.html
https://docs.pingidentity.com/pingone/integrations/p1_addidentityprovidergoogle.html

Figure 1. An Android app with three external IdP options: Google, Apple, and Facebook.

The Ping SDKs support two options for adding social sign on to your DaVinci flows:

Option A. Configuring DaVinci Forms for social sign on

Complete the following steps to integrate external IdPs with PingOne using DaVinci Forms.



DaVinci Forms

DaVinci Forms is a drag-and-drop form builder
that allows you to create custom forms without

having to write HTML.



HTTP Connector

This powerful and versatile connector lets you
show custom HTML pages in your DaVinci

orchestration flows.

Implement your use cases with the DaVinci client Ping SDKs

742 Copyright © 2025 Ping Identity Corporation

Creating a DaVinci Form

Create a form to display your selected external identity providers.

To add external identity providers to the form:

From the Toolbox tab, drag a exit_to_app Social Login field onto the form for each external identity provider you want to
display.

In PingOne External Identity Provider, select the external IdP you created earlier. For example, Google.

1.

lightbulb_2
PingOne includes a number of prebuilt templates that you can modify as required.

Tip

2.

1.

2.

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 743

https://docs.pingidentity.com/pingone/user_experience/p1_creating_form.html
https://docs.pingidentity.com/pingone/user_experience/p1_creating_form.html

Figure 2. Configuring a Social Login field to use Google as the external IdP.

Save your changes.

Learn more in Creating a form in the PingOne documentation.

Adding a form to a DaVinci flow

When you have added your external identity providers to your form, you must now include it as part of your DaVinci flow.

Add the form you created for external IdPs to a flow by using the PingOne Forms connector.

3.

1.

Implement your use cases with the DaVinci client Ping SDKs

744 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingone/user_experience/p1_creating_form.html
https://docs.pingidentity.com/pingone/user_experience/p1_creating_form.html
https://docs.pingidentity.com/pingone/user_experience/p1_adding_form_davinci_flow.html
https://docs.pingidentity.com/pingone/user_experience/p1_adding_form_davinci_flow.html
https://docs.pingidentity.com/connectors/forms_connector.html
https://docs.pingidentity.com/connectors/forms_connector.html

Figure 3. Example of a Forms Connector in a DaVinci flow.

To ensure the server can redirect back to an Android or iOS mobile app you must add a custom URI scheme.

Select the PingOne Forms connector you just added, click the General tab, and in Application Return URL, enter a custom
URI scheme for redirecting users to your client app after social sign on.

If you are implementing Android or iOS clients for this tutorial, use myapp://example.com .

2.

info
This is not required if you are only implementing a JavaScript client

Note

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 745

Figure 4. Configuring a return URL in the PingOne Form Connector.

Apply your changes.

You can now proceed to Configuring a DaVinci flow to be launched by the Ping SDKs.

Option B: Configuring the HTTP Connector for social sign on

Complete the following steps to integrate external IdPs with PingOne by adding the HTTP Connector to a DaVinci flow.

Adding the HTTP Connector to a DaVinci flow

You must add the HTTP connector to your DaVinci flow so that it can display your custom HTML sign-on page.

3.

1.

Implement your use cases with the DaVinci client Ping SDKs

746 Copyright © 2025 Ping Identity Corporation

Figure 5. An HTTP connector added to a DaVinci flow.

To learn more, refer to Adding a connector.

Building a custom HTML sign-on page

With the HTTP Collector in place in the flow, you can now add custom HTML to display the sign-on page.

Select the HTTP Connector you added to your DaVinci flow, and add custom HTML to display a sign-on form.1.

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 747

https://docs.pingidentity.com/davinci/connectors/davinci_adding_a_connector.html
https://docs.pingidentity.com/davinci/connectors/davinci_adding_a_connector.html

Figure 6. Example custom HTML form in an HTTP connector.

To learn more about adding custom HTML, refer to Building a custom page.

Add an skIDP component to your custom HTML for each external IdP option you want to display.2.

Implement your use cases with the DaVinci client Ping SDKs

748 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/connectors/http_connector.html#building-a-custom-page
https://docs.pingidentity.com/connectors/http_connector.html#building-a-custom-page
https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skidp
https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skidp

Figure 7. An HTTP connector with custom HTML showing three skIDP components.

To learn more, refer to Adding SK-Components to a connector.

Configure the skIDP component to use an external IdP:

In the HTML Template field, select an skIDP component to view the Update Component modal.

Select the Identity Provider tab.

In Identity Provider Connector, select PingOne Authentication .

In PingOne External Identity Provider, select one of the external IdPs you configured earlier.

Enable Link with PingOne User.

Failure to enable this option causes errors when attempting to use the flow with the Ping SDKs.

To ensure the server can redirect back to an Android or iOS mobile app you must add a custom URI scheme.

In Application Return to Url, enter a custom URI scheme for redirecting users to your client app after social sign
on.

3.

1.

2.

3.

4.

5.

6.

info
This is not required if you are only implementing a JavaScript client

Note

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 749

https://docs.pingidentity.com/davinci/flows/davinci_adding_sk_components.html
https://docs.pingidentity.com/davinci/flows/davinci_adding_sk_components.html

If you are implementing Android or iOS clients for this tutorial, use myapp://example.com .

The result will resemble the following:

Figure 8. Configuring an skIDP component in an HTTP connector.

Save your changes.

You can now proceed to Configuring a DaVinci flow to be launched by the Ping SDKs.

Configuring a DaVinci flow to be launched by the Ping SDKs

Now that your DaVinci flow is configured to display your selected external IdPs you must configure PingOne so that you can
launch the flow by using the Ping SDKs.

This involves performing the following high-level steps:

Checking that your DaVinci flow uses only compatible connectors and fields.

Creating an application in DaVinci to connect PingOne to the DaVinci flow.

Creating an application in PingOne that the Ping SDKs can connect to and access the DaVinci application and its PingOne
Flow Policy.

To learn how to complete the steps, refer to Launching a flow with a Ping SDK in the DaVinci documentation.

4.

1.

2.

3.

Implement your use cases with the DaVinci client Ping SDKs

750 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_sdk_launching_a_flow_with_the_sdk.html
https://docs.pingidentity.com/davinci/integrating_flows_into_applications/davinci_sdk_launching_a_flow_with_the_sdk.html

Next Steps

Now that you have configured PingOne with external IdPs, added them to a DaVinci flow, and configured applications so that the
Ping SDKs, you are ready to connect the Ping SDKs.

Related links

Adding a connector

HTTP Connector

DaVinci Forms

Adding a form to a DaVinci flow

skIDP component

Configure client apps for social sign on

Select your platform to discover how to configure your client application to perform social sign on with an external IdP in
PingOne.

•

•

•

◦

◦



Android

Configure an Android app for social sign on



iOS

Configure an iOS app for social sign on



JavaScript

Configure a JavaScript app for social sign on

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 751

https://docs.pingidentity.com/davinci/connectors/davinci_adding_a_connector.html
https://docs.pingidentity.com/davinci/connectors/davinci_adding_a_connector.html
https://docs.pingidentity.com/connectors/http_connector.html#adding-custom-html
https://docs.pingidentity.com/connectors/http_connector.html#adding-custom-html
https://docs.pingidentity.com/pingone/user_experience/p1_forms.html
https://docs.pingidentity.com/pingone/user_experience/p1_forms.html
https://docs.pingidentity.com/pingone/user_experience/p1_adding_form_davinci_flow.html
https://docs.pingidentity.com/pingone/user_experience/p1_adding_form_davinci_flow.html
https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skidp
https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skidp

Configure an Android app for social sign on

The Ping SDK for Android supports two methods for performing social sign on:

Redirect

The SDK redirects your user to the IdP’s login user interface to authenticate. The IdP redirects them back to your app to
continue complete the flow.

This is the default option and offers the widest compatibility.

Native

The SDK uses the native Android libraries of supported IdPs to handle social sign in using an embedded experience.

Perform the following steps to configure an Android app for social sign on using PingOne.

Step 1. Add core dependencies

Whichever method you choose to perform social sign on, you must add the core Ping SDKs davinci and external-idp modules
in your project.

These dependencies provide support for redirecting users to the IdP for social sign-on. To use native libraries for supported IdPs
refer to [Optional] Step 2. Add native SDK library dependencies.

In the Project tree view of your Android Studio project, open the build.gradle.kts file.

In the dependencies section, add the following:

// Ping SDK social sign-on dependencies
implementation("com.pingidentity.sdks:davinci:1.1.0")
implementation("com.pingidentity.sdks:external-idp:1.1.0")

[Optional] Step 2. Add native SDK library dependencies

Optionally, you can use an IdP’s native SDK libraries to handle social sign on directly rather than redirecting the user in a web
browser.

This can provide a smoother, more integrated experience for your users than the redirect method.

The Ping SDK for Android supports the following native libraries:

Facebook

Google

1.

2.

info
If an IdP’s native SDK libraries are not included in your app then the Ping SDKs fall back to use a browser redirect for
social sign on.

Note

•

•

Implement your use cases with the DaVinci client Ping SDKs

752 Copyright © 2025 Ping Identity Corporation

Implementing the Facebook native sign-in SDK

To use Facebook’s native SDK in your Android app, complete the following tasks:

Add Facebook SDK for Android dependencies

In addition to the Ping SDKs dependencies, add Facebook’s SDK library to the dependencies section of your
build.gradle.kts file:

// Facebook native sign-on SDK for Android
implementation("com.facebook.android:facebook-login:18.0.3")

In Android Studio, open your /res/values/strings.xml file, and add the following to the <resources> element:

<resources>

 <!-- Other resources... -->

 <string name="facebook_app_id">app_id</string>
 <string name="fb_login_protocol_scheme">fb[app_id]</string>
 <string name="facebook_client_token">client_token</string>

</resources>

Replace the placeholders with values from the application you created in the Meta Developer site.

app_id

Click the App ID label in the header bar of the Meta Developer site for your app to copy the value.

Add your application ID to both the facebook_app_id and fb_login_protocol_scheme properties.

client_token

In the Meta Developer site for your app, navigate to App Settings > Advanced > Security, and copy the Client
token value.

The result resembles the following:

1.

2.

emergency_home
Do not use the App secret value found in App settings > Basic in your client applications.

Important

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 753

https://developers.facebook.com/
https://developers.facebook.com/

<resources>

 <!-- Other resources... -->

 <string name="facebook_app_id">1085352047332439</string>
 <string name="fb_login_protocol_scheme">fb[1085352047332439]</string>
 <string name="facebook_client_token">3399464ch1515ace3c9782ad1fbeef101</string>

</resources>

In your /app/manifests/AndroidManifest.xml file, add the following:

<activity
 android:name="com.facebook.CustomTabActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>

 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>

 <data android:scheme="@string/fb_login_protocol_scheme"/>
 </intent-filter>
</activity>

Learn more in Facebook Login for Android - Quickstart in the Meta Developers documentation.

Add key hashes to your Facebook App ID

You need to associate your Android app with your Facebook App ID. You can update your existing Facebook App ID in the Meta
Developer console by adding the key hashes of your signing certificates.

In the Meta for Developers console, select your app, and then navigate to App Settings > Basic.

In the Android section, in the Key hashes field, enter the 28-character hash of your project’s signing certificates.

You should add both debug and production hashes.

3.

1.

2.

Implement your use cases with the DaVinci client Ping SDKs

754 Copyright © 2025 Ping Identity Corporation

https://developers.facebook.com/docs/facebook-login/android
https://developers.facebook.com/docs/facebook-login/android
https://developers.facebook.com/apps/
https://developers.facebook.com/apps/

Implementing the Sign in with Google native SDK

To use the Sign in with Google native SDK in your Android app, complete the following tasks:

Add Sign in with Google dependencies

In addition to the core Ping SDK for Android dependencies, add Google’s SDK libraries to the dependencies section of
your build.gradle.kts file:

lightbulb_2
If you are self-signing your app, use the following command in a terminal window in the root of your Android
project to generate the hash:

keytool -exportcert -alias key-alias -keystore path-to-debug-or-production-keystore | openssl sha1
-binary | openssl base64

You can get the values for key-alias and path-to-debug-or-production-keystore from the signingConfigs object
in your project’s build.gradle.kts file:

signingConfigs {
 getByName("debug") {
 storeFile = file("../debug.jks")
 storePassword = "android"
 keyAlias = "androiddebugkey"
 keyPassword = "android"
 }
}

The result will resemble the following:

Learn more in Create a Development Key Hash and Create a Release Key Hash in the Facebook SDK for
Android documentation.

Tip

1.

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 755

https://developers.facebook.com/docs/android/getting-started/#create_hash
https://developers.facebook.com/docs/android/getting-started/#create_hash
https://developers.facebook.com/docs/android/getting-started/#release-key-hash
https://developers.facebook.com/docs/android/getting-started/#release-key-hash

// Google native sign-on SDK for Android
implementation("com.google.android.libraries.identity.googleid:googleid:1.1.1")

// Needed by Android 13 and earlier
implementation("androidx.credentials:credentials-play-services-auth:1.5.0")

Create client ID credentials for Android

In a browser, navigate to the Google’s API Dashboard.

In the left navigation, click Credentials.

Click CREATE CREDENTIALS, and from the drop-down list, select OAuth client ID .

In the Application Type drop-down list, select Android .

In the Name field, enter a name for your app.

In the Package name field, enter the package name of your app.

For example, com.pingidentity.samples.app .

In the SHA-1 certificate fingerprint field, enter the SHA-1 fingerprint of your project’s signing certificate.

The result will resemble the following:

info
If your application will only support Android 14 and later you can remove the credentials-play-services-
auth dependency.
Only apps running on Android 13 and earlier require that dependency to support social sign on.

Note

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
If you are self-signing your app, use the following command in a terminal window to get the fingerprint:

keytool -keystore path-to-debug-or-production-keystore -list -v

Learn more in Authenticating Your Client  in the Google Play Store documentation.

Tip

Implement your use cases with the DaVinci client Ping SDKs

756 Copyright © 2025 Ping Identity Corporation

https://console.cloud.google.com/apis/dashboard
https://console.cloud.google.com/apis/dashboard
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth

Figure 1. Configuring a client ID for Android apps in Google Cloud

Click Create.

Step 3. Handle the redirect scheme

You must configure your Android app to open when the server redirects the user to the custom URI scheme you entered when
setting up PingOne.

For this tutorial, the custom URI scheme is myapp://example.com .

To configure your app to open when using the custom URI scheme:

In the Project tree view of your Android Studio project, open the build.gradle.kts file.

In the android.defaultConfig section, add a manifest placeholder for the appRedirectUriScheme property that
specifies the protocol of the custom schema:

8.

info
You do not need to configure your Android app or the PingOne server with the details of this client ID.
The certificate fingerprint associates your app with the client ID.

Note

1.

2.

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 757

android {
 defaultConfig {

manifestPlaceholders["appRedirectUriScheme"] = "myapp"
 }
}

Step 4. Handling IdpCollector nodes

Your app must handle the IdpCollector node type that DaVinci sends when a user attempts to authenticate using an external
IdP.

When encountering an IdpCollector node type, call idpCollector.authorize() to begin authentication with the external IdP:

var node = daVinci.start()

if (node is ContinueNode) {
 node.collectors.forEach {
 when (it) {
 is IdpCollector -> {
 when (val result = idpCollector.authorize()) {
 is Success -> {
 // When success, move to next Node
 node.next()
 }
 is Failure -> {
 // Handle the failure
 }
 }
 }
 }
 }
}

The idpCollector.authorize() method returns a Success result when authentication with the external IdP completes
successfully. If not, it returns Failure and Throwable which shows the root cause of the issue.

val result = idpCollector.authorize()

result.onSuccess {
 // Move to next Node
}
result.onFailure {
 it // The Throwable
}

The result resembles the following:

Implement your use cases with the DaVinci client Ping SDKs

758 Copyright © 2025 Ping Identity Corporation

Figure 2. An Android app with three external IdP options: Google, Apple, and Facebook.

Configure an iOS app for social sign on

Perform the following steps to configure an iOS app for social sign on using PingOne.

Step 1. Add the dependencies

You must add the davinci and external-idp modules to your project. You can use either Cocoapods or Swift Package Manager
(SPM) to add the dependencies.

You can use CocoaPods or the Swift Package Manager to add the PingOne Protect dependencies to your iOS project.

Add dependencies using CocoaPods

If you do not already have CocoaPods, install the latest version.

If you do not already have a Podfile, in a terminal window, run the following command to create a new Podfile:

1.

2.

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 759

https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/syntax/podfile.html
https://guides.cocoapods.org/syntax/podfile.html

pod init

Add the following lines to your Podfile:

pod 'PingDavinci'
pod 'External-idp'

Run the following command to install pods:

pod install

Add dependencies using Swift Package Manager

With your project open in Xcode, select File > Add Package Dependencies.

In the search bar, enter the Ping SDK for iOS repository URL: https://github.com/ForgeRock/ping-ios-sdk .

Select the ping-ios-sdk package, and then click Add Package.

In the Choose Package Products dialog, ensure that the PingDavinci and PingExternalIdp libraries are added to your
target project.

Click Add Package.

In your project, import the library:

import PingDavinci
import PingExternalIdp

Step 2. Handle the redirect scheme

You must configure your iOS app to open when the server redirects the user to the custom URI scheme you entered when setting
up PingOne.

For this tutorial, the custom URI scheme is myapp://example.com .

To configure your app to open when using the custom URI scheme:

In Xcode, in the Project Navigator, double-click your application to open the Project pane.

On the Info tab, in the URL Types panel, configure your custom URL scheme:

3.

4.

1.

2.

3.

4.

5.

6.

1.

2.

Implement your use cases with the DaVinci client Ping SDKs

760 Copyright © 2025 Ping Identity Corporation

Step 3. Handling IdpCollector nodes

Your app must handle the IdpCollector node type that DaVinci sends when a user attempts to authenticate using an external
IdP.

When encountering an IdpCollector node type, call idpCollector.authorize() to launch an in-app browser and begin
authentication with the external IdP:

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 761

public class SocialButtonViewModel: ObservableObject {
 @Published public var isComplete: Bool = false
 public let idpCollector: IdpCollector

 public init(idpCollector: IdpCollector) {
 self.idpCollector = idpCollector
 }

 public func startSocialAuthentication() async → Result<Bool, IdpExceptions> {
return await idpCollector.authorize()

 }

 public func socialButtonText() → some View {
 let bgColor: Color
 switch idpCollector.idpType {
 case "APPLE":
 bgColor = Color.appleButtonBackground
 case "GOOGLE":
 bgColor = Color.googleButtonBackground
 case "FACEBOOK":
 bgColor = Color.facebookButtonBackground
 default:
 bgColor = Color.themeButtonBackground
 }
 let text = Text(idpCollector.label)
 .font(.headline)
 .foregroundColor(.white)
 .padding()
 .frame(width: 300, height: 50)
 .background(bgColor)
 .cornerRadius(15.0)

 return text
 }
}

The idpCollector.authorize() method returns a Success result when authentication with the external IdP completes
successfully. If not, it returns Failure and IdpExceptions , which shows the root cause of the issue.

Task {
 let result = await socialButtonViewModel.startSocialAuthentication()
 switch result {
 case .success(_):
 onNext(true)
 case .failure(let error): //<- Exception
 onStart()
 }
}

The result resembles the following:

Implement your use cases with the DaVinci client Ping SDKs

762 Copyright © 2025 Ping Identity Corporation

Configure a JavaScript app for social sign on

Perform the following steps to configure a JavaScript app for social sign on using PingOne.

Step 1. Add the module

You must add the davinci module to your project:

import { davinci } from '@forgerock/davinci-client';

Step 2. Handle the redirect back from the IdP

You must configure your JavaScript app to continue a flow when the server redirects the user back from the IdP.

Use the davinciClient.resume method to continue an existing flow, rather than start a new one.

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 763

const davinciClient = await davinci({ config });
const continueToken = urlParams.get('continueToken');
let resumed: any;

if (continueToken) {
 // Continue an existing flow

resumed = await davinciClient.resume({ continueToken });
} else {
 // Setup configuration for a new flow
 await Config.setAsync(config);
}

Step 3. Handling IdpCollector nodes

Your app must handle the IdpCollector node type that DaVinci sends. The node contains details of the button to render and
the URL, for example.

Use the davinciClient.externalIdp() method to obtain the details from the collector:

const collectors = davinciClient.getCollectors();

collectors.forEach((collector) => {
 if (collector.type === 'IdpCollector') {
 socialLoginButtonComponent(formEl, collector, davinciClient.externalIdp(collector));
 }
}

In this example, a socialLoginButtonComponent handles rendering the button:

Implement your use cases with the DaVinci client Ping SDKs

764 Copyright © 2025 Ping Identity Corporation

Example social-login-button.ts file to render social sign-on buttons

import type { IdpCollector } from "@forgerock/davinci-client/types";

export default function submitButtonComponent(
 formEl: HTMLFormElement,
 collector: IdpCollector,
 updater: () => void
) {
 const button = document.createElement("button");

 button.value = collector.output.label;
 button.innerHTML = collector.output.label;

 if (collector.output.label.toLowerCase().includes('google')) {
 button.style.background = 'white'
 button.style.borderColor = 'grey'
 } else if (collector.output.label.toLowerCase().includes('facebook')) {
 button.style.color = 'white'
 button.style.background = 'royalblue'
 button.style.borderColor = 'royalblue'
 } else if (collector.output.label.toLowerCase().includes('apple')) {
 button.style.color = 'white'
 button.style.background = 'black'
 button.style.borderColor = 'black'
 }

 button.onclick = () => updater();

 formEl?.appendChild(button);
}

The result resembles the following:

Ping SDKs Implement your use cases with the DaVinci client

Copyright © 2025 Ping Identity Corporation 765

Implement your use cases with the DaVinci client Ping SDKs

766 Copyright © 2025 Ping Identity Corporation

DaVinci client API reference

View API references for the different modules provided in the DaVinci client.

Android

DaVinci Client for Android API Reference

iOS

Browser module

DaVinci module

External IDP module

Logger module

OIDC module

Orchestrate module

Storage module

JavaScript

DaVinci Client for JavaScript API Reference

smartphone

•

smartphone

•

•

•

•

•

•

•

devices

•

DaVinci client API reference Ping SDKs

768 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Browser/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Browser/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Davinci/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Davinci/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/External-idp/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/External-idp/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Logger/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Logger/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Oidc/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Oidc/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Orchestrate/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Orchestrate/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Storage/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/Storage/index.html
https://forgerock.github.io/ping-javascript-sdk/modules/_forgerock_davinci-client.html
https://forgerock.github.io/ping-javascript-sdk/modules/_forgerock_davinci-client.html

Introducing the Ping SDKs for OIDC login

The Ping SDKs can help you to login to your authorization server using an OpenID Connect flow, and leveraging the server’s own
UI to authenticate your users in your apps.

We call this OIDC login, but it was previously known as centralized login.

With this option, you reuse the same, centralized UI for login requests in multiple apps and sites.

When a user attempts to log in to your app they are redirected to your server’s central login UI. After the user authenticates, they
are redirected back to your app.

Changes to authentication journeys or DaVinci flows are immediately reflected in all apps that use OIDC login without the need to
rebuild or update the client app.

Likewise, any features your server’s UI supports are also available for use in your web or mobile apps.

Server support:

 PingOne
 PingOne Advanced Identity Cloud
 PingAM
 PingFederate

SDK support:

 Ping SDK for Android
 Ping SDK for iOS
 Ping SDK for JavaScript

Introducing the Ping SDKs for OIDC login Ping SDKs

770 Copyright © 2025 Ping Identity Corporation

Figure 1. Centralized login in Android

Use cases

 If you require a consistent UI and user experience (UX) in all your apps and sites, using centralized login may be the best
option.

 Simple branding and control over your authentication UX is sufficient.

 Your mobile apps use browser-based single sign-on.

widgets

Ping SDKs Introducing the Ping SDKs for OIDC login

Copyright © 2025 Ping Identity Corporation 771

Security considerations

 Using centralized login in apps built by a third party is safer than using embedded login.

 Third parties cannot access user credentials.

 User credentials are authenticated in one domain/origin and not sent elsewhere for authentication.

 Your apps and sites can use browser-based single sign-on.

Next steps

Configure the Ping SDKs for OIDC login

Tutorials

quiz

play_circle

Introducing the Ping SDKs for OIDC login Ping SDKs

772 Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for OIDC login

The Ping SDKs are designed to be flexible and can be customized to suit many different situations.

Learn more about configuring and customizing the Ping SDKs in the sections below:

Configure OIDC login

Learn how to configure your apps to use your authorization server’s UI or your own web application for login requests.

Learn more 

Configure ACR parameters

Utilize an Authentication Context Class Reference (ACR) parameter to choose which authentication journey or DaVinci flow
the user should complete.

Learn more 

Configure OIDC login

You can configure your apps to use your authorization server’s UI or your own web application for login requests.

When a user attempts to log in to your app it redirects them to the central login UI. After the user authenticates, the authorization
server redirects them back to your application or site.

Changes to authentication journeys or flows on your authorization server are available to all your apps that use the OIDC login
method. Your app does not need to access user credentials directly, just the result of the authentication from the server - usually
an access token.

Select your platform below to learn how to configure your app to use OIDC login:

widgets

quiz

Configure the Ping SDKs for OIDC login Ping SDKs

774 Copyright © 2025 Ping Identity Corporation

Configure Android apps for OIDC login

This section describes how to configure your Ping SDK for Android application to use centralized login by leveraging the AppAuth
library:

Add the build dependency to the build.gradle file:

implementation 'net.openid:appauth:0.11.1'

Associate your application with the scheme your redirect URIs use.

To ensure that only your app is able to obtain authorization tokens during centralized login we recommend you configure
it to use Android App Links.

If you do not want to implement Android App Links, you can instead use a custom scheme for your redirect URIs.



Android

Configure Ping SDK for Android apps to perform
OIDC login.



iOS

Configure Ping SDK for iOS apps to perform
OIDC login.



JavaScript

Configure Ping SDK for JavaScript apps to
perform OIDC login.

1.

2.

Ping SDKs Configure the Ping SDKs for OIDC login

Copyright © 2025 Ping Identity Corporation 775

https://developer.android.com/studio/write/app-link-indexing
https://developer.android.com/studio/write/app-link-indexing

Complete the following steps to configure App Links:

In your application, configure the AppAuth library to use the HTTP scheme for capturing redirect URIs, by
adding an <intent-filter> for AppAuth.RedirectUriReceiverActivity to your AndroidManifest.xml :

AndroidManifest.xml

 <activity
 android:name="net.openid.appauth.RedirectUriReceiverActivity"
 android:exported="true"
 tools:node="replace">

<intent-filter android:autoVerify="true">
 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />

<data android:scheme="https" />
 <data android:host="android.example.com" />
 <data android:path="/oauth2redirect" />
 </intent-filter>
</activity>

You must set android:autoVerify to true . This instructs Android to verify the against the
assetlinks.json file you update in the next step.

Specify the scheme , hosts , and path parameters that will be used in your redirect URIs. The host
value must match the domain where you upload the assetlinks.json file.

To learn more about intents, refer to Add intent filters in the Android Developer documentation.

To learn more about redirects and the AppAuth library, refer to Capturing the authorization redirect.

For Android 11 or higher, add the following to the AndroidManfest.xml file:

<queries>
 <intent>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.BROWSABLE" />

<data android:scheme="https" />
 </intent>
 </queries>

Create or update a Digital Asset Links (assetlinks.json) file that associates your app with the domain.

You must host the file in a .well-known folder on the same host that you entered in the intent filter
earlier.

Android App Links

1.

▪

▪

2.

3.

Configure the Ping SDKs for OIDC login Ping SDKs

776 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/studio/write/app-link-indexing#intent
https://developer.android.com/studio/write/app-link-indexing#intent
https://github.com/openid/AppAuth-Android#capturing-the-authorization-redirect
https://github.com/openid/AppAuth-Android#capturing-the-authorization-redirect

The file will resemble the following:

https://android.example.com/.well-known/assetlinks.json

[
 {
 "relation": [
 "delegate_permission/common.handle_all_urls",
],
 "target": {
 "namespace": "android_app",
 "package_name": "com.example.app",
 "sha256_cert_fingerprints": [
 "c4:15:c8:f1:...:fe:ce:d7:37"
]
 }
 }
]

To learn more, refer to Associate your app with your website in the Android Developer
documentation.

Upload the completed file to the domain that matches the host value you configured in the earlier step.

For information on uploading an assetLinks.json file to an Advanced PingOne Advanced Identity Cloud
instance, refer to Upload an Android assetlinks.json file.

Add the following to the strings.xml file:

<string name="forgerock_oauth_redirect_uri" translatable="false">https://android.example.com/
oauth2redirect</string>

Add the App Link to the Redirection URIs property of your OAuth 2.0 client. For example, https://
android.example.com/oauth2redirect

▪

4.

5.

6.

Ping SDKs Configure the Ping SDKs for OIDC login

Copyright © 2025 Ping Identity Corporation 777

https://developer.android.com/studio/write/app-link-indexing#associatesite
https://developer.android.com/studio/write/app-link-indexing#associatesite
https://docs.pingidentity.com/pingoneaic/latest/end-user/upload-android-assetlinks.html
https://docs.pingidentity.com/pingoneaic/latest/end-user/upload-android-assetlinks.html

Complete the following steps to configure a custom scheme:

Configure the AppAuth library to use the custom scheme for capturing redirect URIs by using either of
these two methods:

Add the custom scheme your app will use to your build.gradle file:

android.defaultConfig.manifestPlaceholders = [
 'appAuthRedirectScheme': 'com.forgerock.android'
]

Or:

Add an <intent-filter> for AppAuth.RedirectUriReceiverActivity to your
AndroidManifest.xml :

<activity
 android:name="net.openid.appauth.RedirectUriReceiverActivity"
 tools:node="replace">
 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>

<data android:scheme="com.forgerock.android"/>
 </intent-filter>
</activity>

For more information, refer to Capturing the authorization redirect.

For Android 11 or higher, add the following to the AndroidManfest.xml file:

<queries>
 <intent>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.BROWSABLE" />

<data android:scheme="com.forgerock.android" />
 </intent>
 </queries>

Configure your application to use the redirect URI, either in the strings.xml file, or by using FROptions :

strings.xml:

<string name="forgerock_oauth_redirect_uri" translatable="false">org.forgerock.demo://
oauth2redirect</string>

Custom Scheme

1.

▪

▪

2.

3.

Configure the Ping SDKs for OIDC login Ping SDKs

778 Copyright © 2025 Ping Identity Corporation

https://github.com/openid/AppAuth-Android#capturing-the-authorization-redirect
https://github.com/openid/AppAuth-Android#capturing-the-authorization-redirect

FROptions:

let options = FROptions(
 ...,
 oauthRedirectUri: "org.forgerock.demo://oauth2redirect",
 ...,
)

Add the custom scheme to the Redirection URIs property of your OAuth 2.0 client. For example,
org.forgerock.demo://oauth2redirect

Configure your application to use browser mode:

// Use FRUser.browser() to enable browser mode:
FRUser.browser().login(context, new FRListener<FRUser>());

// Use standard SDK interface to retrieve an AccessToken:
FRUser.getCurrentUser().getAccessToken()

// Use standard SDK interface to logout a user:
FRUser.getCurrentUser().logout()

4.

3.

Ping SDKs Configure the Ping SDKs for OIDC login

Copyright © 2025 Ping Identity Corporation 779

Configure iOS apps for OIDC login

This section describes how to configure your Ping SDK for iOS application to use centralized login:

Associate your application with the scheme your redirect URIs use.

To ensure that only your app is able to obtain authorization tokens during centralized login we recommend you configure
it to use Universal Links.

If you do not want to implement Universal Links, you can instead use a custom scheme for your redirect URIs.

lightbulb_2
The SDK uses the OAuth 2.0 parameters you configured in your application.
You can amend the example code above to customize the integration with AppAuth; for example, adding
OAuth 2.0 or OpenID Connect parameters, and browser colors:

 FRUser.browser().appAuthConfigurer()
 .authorizationRequest(r -> {
 // Add a login hint parameter about the user:
 r.setLoginHint("demo@example.com");
 // Request that the user re-authenticates:
 r.setPrompt("login");
 })
 .customTabsIntent(t -> {
 // Customize the browser:
 t.setShowTitle(true);
 t.setToolbarColor(getResources().getColor(R.color.colorAccent));
 }).done()
 .login(this, new FRListener<FRUser>() {
 @Override
 public void onSuccess(FRUser result) {
 //success
 }

 @Override
 public void onException(Exception e) {
 //fail
 }
 });

Tip

1.

Configure the Ping SDKs for OIDC login Ping SDKs

780 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/xcode/supporting-universal-links-in-your-app?language=objc
https://developer.apple.com/documentation/xcode/supporting-universal-links-in-your-app?language=objc

Complete the following steps to configure Universal Links:

In Xcode, in the Project Navigator, double-click your application to open the Project pane.

On the Signing & Capabilities tab, click + Capability, type Associated Domains , and then double click the
result to add the capability.

In Domains, click the Add (+) button, and enter applinks: , followed by the hostname that will be used in
your redirect URIs.

The host value must match the domain where you upload the apple-app-site-association file.

Create or update an apple-app-site-association file that associates your app with the domain.

You must host the file in a .well-known folder on the same host that you entered in the intent filter
earlier.

Apple Universal Links

1.

2.

3.

4.

Ping SDKs Configure the Ping SDKs for OIDC login

Copyright © 2025 Ping Identity Corporation 781

The file will resemble the following:

https://ios.example.com/.well-known/apple-app-site-association

{
 "applinks": {
 "details": [
 {
 "appIDs": ["XXXXXXXXXX.com.example.AppName"],
 "components": [
 {
 "/": "/oauth2redirect",
 "comment": "Associate my app with the OAuth 2.0 redirect URI."
 }
]
 }
]
 }
}

Upload the completed file to the domain that matches the host value you configured in the earlier step.

For information on uploading an apple-app-site-association file to an Advanced PingOne Advanced
Identity Cloud instance, refer to Upload an iOS apple-app-site-association file.

For learn more information about Universal Links and associating domains, refer to the following in the
Apple Developer documentation:

Supporting universal links in your app

Supporting associated domains

Add the Universal Link to the Redirection URIs property of your OAuth 2.0 client. For example, https://
ios.example.com/oauth2redirect

5.

▪

▪

6.

Configure the Ping SDKs for OIDC login Ping SDKs

782 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingoneaic/latest/end-user/upload-ios-apple-app-site-association.html
https://docs.pingidentity.com/pingoneaic/latest/end-user/upload-ios-apple-app-site-association.html
https://developer.apple.com/documentation/xcode/supporting-universal-links-in-your-app?language=objc
https://developer.apple.com/documentation/xcode/supporting-universal-links-in-your-app?language=objc
https://developer.apple.com/documentation/xcode/supporting-associated-domains?language=objc
https://developer.apple.com/documentation/xcode/supporting-associated-domains?language=objc

Configure a custom URL type, for example frauth , so that users are redirected to your application:

In Xcode, in the Project Navigator, double-click your application to open the Project pane.

On the Info tab, in the URL Types panel, configure your custom URL scheme:

Add the custom URL scheme to the Redirection URIs property of your OAuth 2.0 client:

Custom scheme

1.

2.

3.

Ping SDKs Configure the Ping SDKs for OIDC login

Copyright © 2025 Ping Identity Corporation 783

Update your application to call the validateBrowserLogin() function:

In your AppDelegate.swift file, call the validateBrowserLogin() function:

AppDelegate.swift

class AppDelegate: UIResponder, UIApplicationDelegate {

 func application(_ app: UIApplication, open url: URL, options: [UIApplication.OpenURLOptionsKey: Any]
= [:]) -> Bool {
 // Parse and validate URL, extract authorization code, and continue the flow:
 Browser.validateBrowserLogin(url)
 }
}

If you are using Universal Links, also add code similar to the following to set the URL:

AppDelegate.swift

func application(
 _ application: UIApplication,
 continue userActivity: NSUserActivity,
 restorationHandler:
 @escaping ([UIUserActivityRestoring]?) -> Void) -> Bool
 {
 // Get URL components from the incoming user activity.
 guard userActivity.activityType == NSUserActivityTypeBrowsingWeb,
 let incomingURL = userActivity.webpageURL else {
 return false
 }
 Browser.validateBrowserLogin(url)
 }
)

If your application is using SceneDelegate , in your SceneDelegate.swift file call the validateBrowserLogin()
function:

SceneDelegate.swift

class SceneDelegate: UIResponder, UIWindowSceneDelegate {

 func scene(_ scene: UIScene, openURLContexts URLContexts: Set<UIOpenURLContext>) {
 if let url = URLContexts.first?.url {
 Browser.validateBrowserLogin(url)
 }
 }
}

To enable centralized login, add code similar to the following to your app:

2.

1.

2.

3.

3.

Configure the Ping SDKs for OIDC login Ping SDKs

784 Copyright © 2025 Ping Identity Corporation

// BrowserBuilder
let browserBuilder = FRUser.browser()
browserBuilder.set(presentingViewController: self)
browserBuilder.set(browserType: .authSession)
browserBuilder.setCustomParam(key: "custom_key", value: "custom_val")

// Browser
let browser = browserBuilder.build()

// Login
browser.login{ (user, error) in
 if let error = error {
 // Handle error
 }
 else if let user = user {
 // Handle authenticated status
 }
}

You can specify what type of browser the client iOS device opens to handle centralized login.

Each browser has slightly different characteristics, which make them suitable to different scenarios, as outlined in this
table:

Browser type Characteristics

.authSession Opens a web authentication session browser.
Designed specifically for authentication sessions, however it prompts the user
before opening the browser with a modal that asks them to confirm the
domain is allowed to authenticate them.
This is the default option in the Ping SDK for iOS.

.ephemeralAuthSession Opens a web authentication session browser, but enables the
prefersEphemeralWebBrowserSession  parameter.
This browser type does not prompt the user before opening the browser with
a modal.
The difference between this and .authSession is that the browser does not
include any existing data such as cookies in the request, and also discards any
data obtained during the browser session, including any session tokens.
When is ephemeralAuthSession suitable:

 ephemeralAuthSession is not suitable when you require single sign-
on (SSO) between your iOS apps, as the browser will not maintain
session tokens.
 ephemeralAuthSession is not suitable when you require a session
token to log a user out of the server, for example for logging out of
PingOne, as the browser will not maintain session tokens.
 Use ephemeralAuthSession when you do not want the user’s
existing sessions to affect the authentication.

◦

◦

◦

Ping SDKs Configure the Ping SDKs for OIDC login

Copyright © 2025 Ping Identity Corporation 785

https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession

Configure JavaScript apps for OIDC login

This section describes how to configure your Ping SDK for JavaScript application with centralized login:

To initiate authentication using the OIDC-based centralized login method, call the getTokens() function:

const tokens = TokenManager.getTokens({
 login: 'redirect', // Redirect to the server or the web app that handles authentication
 forceRenew: false, // Immediately return stored tokens, if they exist
 skipBackgroundRequest: true // Regardless of session status, redirect to the authorization server to
initiate the OAuth 2.0 flow
});

The parameters for getTokens() are as follows:

login

Specifies the method the Ping SDK for JavaScript uses to handle authentication.

Supported values are as follows:

If you do not specify a value, embedded is assumed, for backwards-compatibility.

Browser type Characteristics

.nativeBrowserApp Opens the installed browser that is marked as the default by the user. Often
Safari.
The browser opens without any interaction from the user. However, the
browser does display a modal when returning to your application.

.sfViewController Opens a Safari view controller browser.
Your client app is not able to interact with the pages in the sfViewController
or access the data or browsing history.
The view controller opens within your app without any interaction from the
user. As the user does not leave your app, the view controller does not need
to display a warning modal when authentication is complete and control
returns to your application.

1.

Setting Description

redirect Your app uses a redirect to your server, or another web application, to
handle authentication.
Use this option to perform centralized login.

embedded Your app handles authentication natively using SDK functionality, and
provides the user interface.

Configure the Ping SDKs for OIDC login Ping SDKs

786 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

forceRenew

When true , the Ping SDK for JavaScript revokes and deletes any existing tokens it has and contacts your
authorization server to obtain new tokens.

When false , or not specified, if existing tokens are present the Ping SDK returns these immediately for use.
Otherwise it contacts your authorization server to obtain new tokens.

skipBackgroundRequest

When true , the Ping SDK for JavaScript redirects users immediately to your authorization server.

When false , or not specified, the Ping SDK for JavaScript attempts to obtain OAuth 2.0 tokens within an iframe to
prevent unnecessary page redirects.

However requesting tokens in an iframe can cause errors with some authorization servers in certain environments.
In these cases, we recommend setting skipBackgroundRequest to true .

When the user is returned to your app, complete the OAuth 2.0 flow by passing in the code and state values that were
returned.

Use the query property to complete the flow:

const tokens = TokenManager.getTokens({
 query: {
 code: 'lFJQYdoQG1u7nUm8 ... ', // Authorization code from redirect URL
 state: 'MTY2NDkxNTQ2Nde3D ... ', // State from redirect URL
 },
});

Specifying auth journeys/flows using ACR values

The Ping SDKs for Android, iOS, and JavaScript leverage the standards-based authorization code flow with PKCE.

When using OIDC login the client app can request which journey or flow the authorization server uses by adding an
Authentication Context Class Reference (ACR) parameter during the process.

In the OpenID Connect specification the ACR parameter identifies a set of criteria that the user must satisfy when authenticating
to the OpenID provider. For example, which authentication journey or DaVinci flow the user should complete.

Adding ACR parameters

Select your platform below to learn how to add an ACR parameter to your applications.

2.

Ping SDKs Configure the Ping SDKs for OIDC login

Copyright © 2025 Ping Identity Corporation 787

In the FRUser.browser() method, use the setAdditionalParameters function to add an acr_values parameter, and
one or more ACR values:

FRUser.browser().appAuthConfigurer()
 .authorizationRequest(r → {

Map<String, String> additionalParameters = new HashMap<>();
 additionalParameters.put("acr_values", "RegistrationJourney");
 r.setAdditionalParameters(additionalParameters)
 })
 .done()
 .login(this, new FRListener<FRUser>() {
 @Override
 public void onSuccess(FRUser result) {
 userinfo();
 }

 @Override
 public void onException(Exception e) {
 System.out.println(e);
 }
 });

Replace RegistrationJourney with the ACR key that your authorization server requires.

PingOne

Enter a single DaVinci policy, by using its flow policy ID, or one or more PingOne policies by specifying the policy
names, separated by spaces or the encoded space character %20 .

Examples:

DaVinci flow policy ID

"d1210a6b0b2665dbaa5b652221badba2"

PingOne policy names

"Single_Factor%20Multi_Factor"

PingOne Advanced Identity Cloud or PingAM

Enter one or more of the ACR mapping keys as configured in the OAuth 2.0 provider service.

To learn more, refer to Configure acr claims.

Android

lightbulb_2
You can list the available keys by inspecting the acr_values_supported property in the output of your
OAuth 2.0 client’s /oauth2/.well-known/openid-configuration endpoint.

Tip

Configure the Ping SDKs for OIDC login Ping SDKs

788 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingoneaic/latest/am-oidc1/oidc-authentication-requirements.html#proc-configure-acr
https://docs.pingidentity.com/pingoneaic/latest/am-oidc1/oidc-authentication-requirements.html#proc-configure-acr

In the FRUser.browser() method, use the setCustomParam function to add an acr_values key parameter, and one or
more ACR values:

func performCentralizedLogin() {
 FRUser.browser()?
 .set(presentingViewController: self)

.set(
 browserType: .authSession)
 #.setCustomParam(
 key: "acr_values",
 value: "RegistrationJourney")
 .build().login { (user, error) in
 self.displayLog("User: \(String(describing: user)) || Error: \(String(describing: error))")
 }
 return
 }

Replace RegistrationJourney with the ACR key that your authorization server requires.

PingOne

Enter a single DaVinci policy, by using its flow policy ID, or one or more PingOne policies by specifying the policy
names, separated by spaces or the encoded space character %20 .

Examples:

DaVinci flow policy ID

"d1210a6b0b2665dbaa5b652221badba2"

PingOne policy names

"Single_Factor%20Multi_Factor"

PingOne Advanced Identity Cloud or PingAM

Enter one or more of the ACR mapping keys as configured in the OAuth 2.0 provider service.

To learn more, refer to Configure acr claims.

iOS

lightbulb_2
You can list the available keys by inspecting the acr_values_supported property in the output of your
OAuth 2.0 client’s /oauth2/.well-known/openid-configuration endpoint.

Tip

Ping SDKs Configure the Ping SDKs for OIDC login

Copyright © 2025 Ping Identity Corporation 789

https://docs.pingidentity.com/pingoneaic/latest/am-oidc1/oidc-authentication-requirements.html#proc-configure-acr
https://docs.pingidentity.com/pingoneaic/latest/am-oidc1/oidc-authentication-requirements.html#proc-configure-acr

In the TokenManager.getTokens() method, add an acr_values query parameter, and one or more ACR values:

await TokenManager.getTokens({
 login: 'redirect',

query: {
 acr_values: "RegistrationJourney"
 }
});

Replace RegistrationJourney with the ACR key that your authorization server requires.

PingOne

Enter a single DaVinci policy, by using its flow policy ID, or one or more PingOne policies by specifying the policy
names, separated by spaces or the encoded space character %20 .

Examples:

DaVinci flow policy ID

"d1210a6b0b2665dbaa5b652221badba2"

PingOne policy names

"Single_Factor%20Multi_Factor"

PingOne Advanced Identity Cloud or PingAM

Enter one or more of the ACR mapping keys as configured in the OAuth 2.0 provider service.

To learn more, refer to Configure acr claims.

JavaScript

lightbulb_2
You can list the available keys by inspecting the acr_values_supported property in the output of your
OAuth 2.0 client’s /oauth2/.well-known/openid-configuration endpoint.

Tip

Configure the Ping SDKs for OIDC login Ping SDKs

790 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingoneaic/latest/am-oidc1/oidc-authentication-requirements.html#proc-configure-acr
https://docs.pingidentity.com/pingoneaic/latest/am-oidc1/oidc-authentication-requirements.html#proc-configure-acr

Ping SDK OIDC login tutorials

Learn how your apps can authenticate users with an OpenID Connect flow.

The tutorials show how your apps can leverage the user interface each server provides, centralizing the experience across your
apps.

To start, choose the platform to host your app:

Android OIDC login tutorials

Follow these Android tutorials to integrate your apps using OpenID Connect login to the following servers:



Android

Android OIDC login tutorials



iOS

iOS OIDC login tutorials



JavaScript

JavaScript OIDC login tutorials

Ping SDK OIDC login tutorials Ping SDKs

792 Copyright © 2025 Ping Identity Corporation

OIDC login to PingOne tutorial for Android

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingOne UI for
authentication.

The sample connects to the .well-known endpoint of your PingOne server to obtain the correct URIs to authenticate the user,
and redirects to your PingOne server’s login UI.

After authentication, PingOne redirects the browser back to your application, which then obtains an OAuth 2.0 access token and
displays the related user information.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne server with the required configuration.

For example, you will need to have an OAuth 2.0 client application set up, and a demo user to authenticate.

Complete prerequisites 

PingOne

PingOne Advanced Identity Cloud

PingAM
PingFederate

Prepare › Download › Configure › Run

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 793

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingOne.

Start step 2 

Step 3. Test the app

To test the app, run the sample that you configured in the previous step.

The sample connects to your PingOne server to obtain the correct URIs to authenticate the user, and redirects the browser
to your PingOne server.

After authentication, PingOne redirects the browser back to your application, which then obtains an OAuth 2.0 access
token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured PingOne instance.

Compatibility

Android

This sample requires at least Android API 23 (Android 6.0)

Java

This sample requires at least Java 8 (v1.8).

Prepare › Download › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

794 Copyright © 2025 Ping Identity Corporation

Prerequisites

Android Studio

Download and install Android Studio, which is available for many popular operating systems.

An Android emulator or physical device

To try the quick start application as you develop it, you need an Android device. To add a virtual, emulated Android device
to Android Studio, refer to Create and manage virtual devices, on the Android Developers website.

Server configuration

This tutorial requires you to configure your PingOne server as follows:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne, follow these steps:

Log in to your PingOne administration console.

In the left panel, navigate to Directory > Users.

Next to the Users label, click the plus icon (+).

PingOne displays the Add User panel.

Enter the following details:

Given Name = Demo

Family Name = User

Username = demo

Email = demo.user@example.com

Population = Default

Password = Ch4ng3it!

Click Save.

To register a public OAuth 2.0 client application in PingOne for use with the Ping SDKs for Android and iOS, follow these steps:

Log in to your PingOne administration console.

In the left panel, navigate to Applications > Applications.

Next to the Applications label, click the plus icon (+).

PingOne displays the Add Application panel.

In Application Name, enter a name for the profile, for example sdkNativeClient

Select Native as the Application Type, and then click Save.

1.

2.

3.

4.

◦

◦

◦

◦

◦

◦

5.

1.

2.

3.

4.

5.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 795

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

On the Configuration tab, click the pencil icon ().

In Grant Type, select the following values:

Authorization Code

Refresh Token

In Redirect URIs, enter the following value:

org.forgerock.demo://oauth2redirect

In Token Endpoint Authentication Method, select None .

In the Advanced Settings section, enable Terminate User Session by ID Token.

Click Save.

On the Resources tab, next to Allowed Scopes, click the pencil icon ().

In Scopes, select the following values:

email

phone

profile

The result resembles the following:

6.

1.

2.

3.

4.

5.

7.

1.

info
The openid scope is selected by default.

Note

Ping SDK OIDC login tutorials Ping SDKs

796 Copyright © 2025 Ping Identity Corporation

Figure 1. Adding scopes to an application.

Optionally, on the Policies tab, click the pencil icon () to select the authentication policies for the application.

If you have a DaVinci license, you can select PingOne policies or DaVinci Flow policies, but not both. If you do not have a
DaVinci license, the page only displays PingOne policies.

To use a PingOne policy:

Click + Add policies and then select the policies that you want to apply to the application.

Click Save.

PingOne applies the policies in the order in which they appear in the list. PingOne evaluates the first policy in the
list first. If the requirements are not met, PingOne moves to the next one.

For more information, see Authentication policies for applications.

To use a DaVinci Flow policy:

You must clear all PingOne policies. Click Deselect all PingOne Policies.

In the confirmation message, click Continue.

8.

info
Applications that have no authentication policy assignments use the environment’s default authentication
policy to authenticate users.

Note

1.

2.

1.

2.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 797

https://docs.pingidentity.com/r/0ue6NPmZLPN667l6iXUjRg/Wl28ypLnPtjCUDjVnLFCxQ
https://docs.pingidentity.com/r/0ue6NPmZLPN667l6iXUjRg/Wl28ypLnPtjCUDjVnLFCxQ

On the DaVinci Policies tab, select the policies that you want to apply to the application.

Click Save.

PingOne applies the first policy in the list.

Click Save.

Enable the OAuth 2.0 client application by using the toggle next to its name:

Figure 2. Enable the application using the toggle.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the Android and iOS PingOne
example applications and tutorials covered by this documentation.

Step 1. Download the samples

To start this tutorial, you need to download the ForgeRock SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

3.

4.

9.

10.

Prepare › Download › Configure › Run

1.

2.

1.

2.

Ping SDK OIDC login tutorials Ping SDKs

798 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties

In this step, you configure the kotlin-central-login-oidc sample to connect to the OAuth 2.0 application you created in PingOne,
using OIDC login.

In Android Studio, open the sdk-sample-apps/android/kotlin-central-login-oidc project you cloned in the previous
step.

In the Project pane, switch to the Android view.

1.

2.

Prepare › Download › Configure › Run

1.

2.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 799

https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git

Figure 1. Switching the project pane to Android view.

In the Android view, navigate to app > kotlin+java > com.example.app, and open Config.kt .

Edit the default values provided in the PingConfig class with the values from your PingOne server:

PingConfig class default values

data class PingConfig(
 var discoveryEndpoint: String = "https://openam-sdks.forgeblocks.com/am/oauth2/realms/alpha/.well-known/
openid-configuration",
 var oauthClientId: String = "AndroidTest",
 var oauthRedirectUri: String = "org.forgerock.demo:/oauth2redirect",
 var oauthSignOutRedirectUri: String = "",
 var cookieName: String = "5421aeddf91aa20",
 var oauthScope: String = "openid profile email address")
)

discoveryEndpoint

The .well-known endpoint from your OAuth 2.0 application in PingOne.

3.

4.

Ping SDK OIDC login tutorials Ping SDKs

800 Copyright © 2025 Ping Identity Corporation

To find the .well-known endpoint for an OAuth 2.0 client in PingOne:

Log in to your PingOne administration console.

Go to Applications > Applications, and then select the OAuth 2.0 client you created earlier.

For example, sdkPublicClient.

On the Configuration tab, expand the URLs section, and then copy the OIDC Discovery Endpoint value.

For example, https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/openid-
configuration

oauthClientId

The client ID from your OAuth 2.0 application in PingOne.

For example, 6c7eb89a-66e9-ab12-cd34-eeaf795650b2

oauthRedirectUri

The redirect_uri as configured in the OAuth 2.0 client profile.

This value must exactly match a value configured in your OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect

oauthSignOutRedirectUri

Leave this property empty.

It signals that the SDK can use the ID token to end the user’s session, and does not need to open and return from a
web page to perform log out.

cookieName

Set this property to an empty string. PingOne servers do not require this setting.

oauthScope

The scopes you added to your OAuth 2.0 application in PingOne.

For example, openid profile email phone

The result resembles the following:

1.

2.

3.

info
You must have enabled the Terminate User Session by ID Token setting when creating the OAuth 2.0
client in PingOne if you leave this property empty.

Note

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 801

PingConfig class example values

data class PingConfig(
 var discoveryEndpoint: String = "https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-
known/openid-configuration",
 var oauthClientId: String = "6c7eb89a-66e9-ab12-cd34-eeaf795650b2",
 var oauthRedirectUri: String = "org.forgerock.demo://oauth2redirect",
 var oauthSignOutRedirectUri: String = "",
 var cookieName: String = "",
 var oauthScope: String = "openid profile email phone"
)

Optionally, specify which of the configured policies PingOne uses to authenticate users.

In /app/kotlin+java/com.example.app/centralize/CentralizeLoginViewModel , in the login(fragmentActivity:
FragmentActivity) function, add an acr_values parameter to the authorization request by using the
setAdditionalParameters() method:

fun login(fragmentActivity: FragmentActivity) {
 FRUser.browser().appAuthConfigurer()

// Add acr values to the authorization request
 .authorizationRequest{
 it.setAdditionalParameters(
 mapOf(
 "acr_values" to "<Policy IDs>"
)
)
 }
 .customTabsIntent {
 it.setColorScheme(CustomTabsIntent.COLOR_SCHEME_DARK)
 }.appAuthConfiguration { appAuthConfiguration → }
 .done()
 .login(fragmentActivity,
 object : FRListener<FRUser> {
 override fun onSuccess(result: FRUser) {
 state.update {
 it.copy(user = result, exception = null)
 }
 }

 override fun onException(e: Exception) {
 state.update {
 it.copy(user = null, exception = e)
 }
 }
 }
)
}

Replace <Policy IDs> with either a single DaVinci policy by using its flow policy ID, or one or more PingOne policies by
specifying the policy names, separated by spaces or the encoded space character %20 .

Examples:

5.

Ping SDK OIDC login tutorials Ping SDKs

802 Copyright © 2025 Ping Identity Corporation

DaVinci flow policy ID

"acr_values" to "d1210a6b0b2665dbaa5b652221badba2"

PingOne policy names

"acr_values" to "Single_Factor%20Multi_Factor"

For more information, refer to Editing an application - OIDC.

Save your changes.

Step 3. Test the app

In the following procedure, you run the sample app that you configured in the previous step. The app performs a centralized login
on your PingOne instance.

Log in as a demo user

In Android Studio, select Run > Run 'ping-oidc.app'.

On the Environment screen, ensure the PingOne environment you added earlier is correct.

You can edit any of the values in the app if required.

6.

Prepare › Download › Configure › Run

1.

2.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 803

https://docs.pingidentity.com/r/en-us/pingone/pingone_edit_application_oidc
https://docs.pingidentity.com/r/en-us/pingone/pingone_edit_application_oidc

Figure 1. Confirm the PingOne connection properties

Tap Centralized Login.

The app launches a web browser and redirects to your PingOne environment:

3.

Ping SDK OIDC login tutorials Ping SDKs

804 Copyright © 2025 Ping Identity Corporation

Figure 2. Browser launched and redirected to PingOne

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

If authentication is successful, the application returns to the access token screen.

Tap the menu icon (), and then tap account_box User Profile:

4.

◦

◦

5.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 805

Figure 3. User info of the demo user

Tap the menu icon (), and then tap logout Logout.

The app logs the user out of PingOne, revokes the tokens, and returns to the config page.

6.

Ping SDK OIDC login tutorials Ping SDKs

806 Copyright © 2025 Ping Identity Corporation

OIDC login to PingOne Advanced Identity Cloud tutorial for Android

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingOne Advanced
Identity Cloud UI for authentication.

The sample connects to the .well-known endpoint of your PingOne Advanced Identity Cloud server to obtain the correct URIs to
authenticate the user, and redirects to your PingOne Advanced Identity Cloud server’s login UI.

After authentication, PingOne Advanced Identity Cloud redirects the browser back to your application, which then obtains an
OAuth 2.0 access token and displays the related user information.

lightbulb_2
To verify the user is logged out:

In the PingOne administration console, navigate to Directory > Users.
Select the user you signed in as.
From the Sevices dropdown, select Authentication:

Figure 4. Checking a user’s sessions in PingOne.
The Sessions section displays any existing sessions the user has, and whether they originate from a
mobile device.

Tip

1.
2.
3.

Prepare › Download › Configure › Run

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 807

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud server with the required
configuration.

For example, you will need to have an OAuth 2.0 client application set up, and a demo user to authenticate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingOne Advanced
Identity Cloud.

Start step 2 

Step 3. Test the app

To test the app, run the sample that you configured in the previous step.

The sample connects to your PingOne Advanced Identity Cloud server to obtain the correct URIs to authenticate the user,
and redirects the browser to your PingOne Advanced Identity Cloud server.

After authentication, PingOne Advanced Identity Cloud redirects the browser back to your application, which then obtains
an OAuth 2.0 access token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

Prepare › Download › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

808 Copyright © 2025 Ping Identity Corporation

The tutorial also requires a configured PingOne Advanced Identity Cloud tenant.

Compatibility

Android

This sample requires at least Android API 23 (Android 6.0)

Java

This sample requires at least Java 8 (v1.8).

Prerequisites

Android Studio

Download and install Android Studio, which is available for many popular operating systems.

An Android emulator or physical device

To try the quick start application as you develop it, you need an Android device. To add a virtual, emulated Android device
to Android Studio, refer to Create and manage virtual devices, on the Android Developers website.

Server configuration

This tutorial requires you to configure your PingOne Advanced Identity Cloud tenant as follows:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

1.

2.

3.

4.

◦

◦

◦

◦

◦

5.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 809

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 1. Example username and password authentication journey

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

1.

2.

3.

◦

◦

◦

◦

4.

5.

6.

Ping SDK OIDC login tutorials Ping SDKs

810 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

org.forgerock.demo://oauth2redirect

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 811

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

Step 1. Download the samples

To start this tutorial, you need to download the ForgeRock SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties

1.

2.

3.

4.

5.

6.

Prepare › Download › Configure › Run

1.

2.

1.

2.

1.

2.

Prepare › Download › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

812 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git

In this step, you configure the kotlin-central-login-oidc sample to connect to the OAuth 2.0 application you created in PingOne
Advanced Identity Cloud, using OIDC login.

In Android Studio, open the sdk-sample-apps/android/kotlin-central-login-oidc project you cloned in the previous
step.

In the Project pane, switch to the Android view.

In the Android view, navigate to app > kotlin+java > com.example.app, and open Config.kt .

Edit the default values provided in the PingConfig class with the values from your PingOne Advanced Identity Cloud
tenant:

data class PingConfig(
 var discoveryEndpoint: String = "https://openam-sdks.forgeblocks.com/am/oauth2/realms/alpha/.well-known/
openid-configuration",
 var oauthClientId: String = "AndroidTest",
 var oauthRedirectUri: String = "org.forgerock.demo://oauth2redirect",
 var oauthSignOutRedirectUri: String = "",
 var cookieName: String = "5421aeddf91aa20",
 var oauthScope: String = "openid profile email address"
)

discoveryEndpoint

The .well-known endpoint from your PingOne Advanced Identity Cloud tenant.

You can view the .well-known endpoint for an OAuth 2.0 client in the PingOne Advanced Identity Cloud admin
console:

Log in to your PingOne Advanced Identity Cloud administration console.

Click Applications, and then select the OAuth 2.0 client you created earlier. For example, sdkPublicClient.

On the Sign On tab, in the Client Credentials section, copy the Discovery URI value.

For example, https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/alpha/.well-known/openid-
configuration

oauthClientId

The client ID from your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, sdkPublicClient

oauthRedirectUri

The redirect_uri as configured in the OAuth 2.0 client profile.

This value must exactly match a value configured in your OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect

oauthSignOutRedirectUri

Leave this property empty.

1.

2.

3.

4.

1.

2.

3.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 813

It signals that the SDK does not need to open and return from a web page to perform log out.

cookieName

The name of the cookie your PingOne Advanced Identity Cloud tenant uses to store SSO tokens in client browsers.

To locate the cookie name in an PingOne Advanced Identity Cloud tenant:

Navigate to Tenant settings > Global Settings

Copy the value of the Cookie property.

For example, ch15fefc5407912

oauthScope

The scopes you added to your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, openid profile email address

The result resembles the following:

data class PingConfig(
 var discoveryEndpoint: String = "https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/
alpha/.well-known/openid-configuration",
 var oauthClientId: String = "sdkNativeClient",
 var oauthRedirectUri: String = "org.forgerock.demo://oauth2redirect",
 var oauthSignOutRedirectUri: String = "",
 var cookieName: String = "ch15fefc5407912",
 var oauthScope: String = "openid profile email address"
)

Save your changes.

Step 3. Test the app

In the following procedure, you run the sample app that you configured in the previous step. The app performs a centralized login
on your PingOne Advanced Identity Cloud instance.

Log in as a demo user

In Android Studio, select Run > Run 'ping-oidc.app'.

On the Environment screen, ensure the PingOne Advanced Identity Cloud environment you added earlier is correct.

You can edit any of the values in the app if required.

1.

2.

5.

Prepare › Download › Configure › Run

1.

2.

Ping SDK OIDC login tutorials Ping SDKs

814 Copyright © 2025 Ping Identity Corporation

Figure 1. Confirm the PingOne Advanced Identity Cloud connection properties

Tap Centralized Login.

The app launches a web browser and redirects to your PingOne Advanced Identity Cloud environment:

3.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 815

Figure 2. Browser launched and redirected to PingOne Advanced Identity Cloud

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

If authentication is successful, the application returns to the access token screen.

Tap the menu icon (), and then tap User Profile:

4.

◦

◦

5.

Ping SDK OIDC login tutorials Ping SDKs

816 Copyright © 2025 Ping Identity Corporation

Figure 3. User info of the demo user

Tap the menu icon (), and then tap Logout.

The app logs the user out of PingOne Advanced Identity Cloud, revokes the tokens, and returns to the config page.

OIDC login to PingAM tutorial for Android

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingAM UI for
authentication.

The sample connects to the .well-known endpoint of your PingAM server to obtain the correct URIs to authenticate the user,
and redirects to your PingAM server’s login UI.

After authentication, PingAM redirects the browser back to your application, which then obtains an OAuth 2.0 access token and
displays the related user information.

6.

Prepare › Download › Configure › Run

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 817

Before you begin

Before you begin this tutorial ensure you have set up your PingAM server with the required configuration.

For example, you will need to have an OAuth 2.0 client application set up, and a demo user to authenticate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingAM.

Start step 2 

Step 3. Test the app

To test the app, run the sample that you configured in the previous step.

The sample connects to your PingAM server to obtain the correct URIs to authenticate the user, and redirects the browser
to your PingAM server.

After authentication, PingAM redirects the browser back to your application, which then obtains an OAuth 2.0 access token
and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured PingAM server.

Prepare › Download › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

818 Copyright © 2025 Ping Identity Corporation

Compatibility

Android

This sample requires at least Android API 23 (Android 6.0)

Java

This sample requires at least Java 8 (v1.8).

Prerequisites

Android Studio

Download and install Android Studio, which is available for many popular operating systems.

An Android emulator or physical device

To try the quick start application as you develop it, you need an Android device. To add a virtual, emulated Android device
to Android Studio, refer to Create and manage virtual devices, on the Android Developers website.

Server configuration

This tutorial requires you to configure your PingAM server as follows:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

1.

2.

3.

◦

◦

◦

4.

1.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 819

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 1. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

2.

3.

◦

◦

◦

◦

4.

5.

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

7.

1.

2.

3.

4.

5.

Ping SDK OIDC login tutorials Ping SDKs

820 Copyright © 2025 Ping Identity Corporation

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

org.forgerock.demo://oauth2redirect

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

1.

2.

3.

4.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 821

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

Step 1. Download the samples

To start this tutorial, you need to download the ForgeRock SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties

In this step, you configure the kotlin-central-login-oidc sample to connect to the OAuth 2.0 application you created in PingOne
Advanced Identity Cloud, using OIDC login.

In Android Studio, open the sdk-sample-apps/android/kotlin-central-login-oidc project you cloned in the previous
step.

In the Project pane, switch to the Android view.

In the Android view, navigate to app > kotlin+java > com.example.app, and open Config.kt .

5.

6.

Prepare › Download › Configure › Run

1.

2.

1.

2.

1.

2.

Prepare › Download › Configure › Run

1.

2.

3.

Ping SDK OIDC login tutorials Ping SDKs

822 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git

Edit the default values provided in the PingConfig class with the values from your PingOne Advanced Identity Cloud
tenant:

data class PingConfig(
 var discoveryEndpoint: String = "https://openam-sdks.forgeblocks.com/am/oauth2/realms/alpha/.well-known/
openid-configuration",
 var oauthClientId: String = "AndroidTest",
 var oauthRedirectUri: String = "org.forgerock.demo://oauth2redirect",
 var oauthSignOutRedirectUri: String = "",
 var cookieName: String = "5421aeddf91aa20",
 var oauthScope: String = "openid profile email address"
)

discoveryEndpoint

The .well-known endpoint from your PingOne Advanced Identity Cloud tenant.

You can view the .well-known endpoint for an OAuth 2.0 client in the PingOne Advanced Identity Cloud admin
console:

Log in to your PingOne Advanced Identity Cloud administration console.

Click Applications, and then select the OAuth 2.0 client you created earlier. For example, sdkPublicClient.

On the Sign On tab, in the Client Credentials section, copy the Discovery URI value.

For example, https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/alpha/.well-known/openid-
configuration

oauthClientId

The client ID from your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, sdkPublicClient

oauthRedirectUri

The redirect_uri as configured in the OAuth 2.0 client profile.

This value must exactly match a value configured in your OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect

oauthSignOutRedirectUri

Leave this property empty.

It signals that the SDK does not need to open and return from a web page to perform log out.

cookieName

The name of the cookie your PingOne Advanced Identity Cloud tenant uses to store SSO tokens in client browsers.

To locate the cookie name in an PingOne Advanced Identity Cloud tenant:

Navigate to Tenant settings > Global Settings

4.

1.

2.

3.

1.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 823

Copy the value of the Cookie property.

For example, ch15fefc5407912

oauthScope

The scopes you added to your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, openid profile email address

The result resembles the following:

data class PingConfig(
 var discoveryEndpoint: String = "https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/
alpha/.well-known/openid-configuration",
 var oauthClientId: String = "sdkNativeClient",
 var oauthRedirectUri: String = "org.forgerock.demo://oauth2redirect",
 var oauthSignOutRedirectUri: String = "",
 var cookieName: String = "ch15fefc5407912",
 var oauthScope: String = "openid profile email address"
)

Save your changes.

Step 3. Test the app

In the following procedure, you run the sample app that you configured in the previous step. The app performs a centralized login
on your PingAM instance.

Log in as a demo user

In Android Studio, select Run > Run 'ping-oidc.app'.

On the Environment screen, ensure the PingAM environment you added earlier is correct.

You can edit any of the values in the app if required.

2.

5.

Prepare › Download › Configure › Run

1.

2.

Ping SDK OIDC login tutorials Ping SDKs

824 Copyright © 2025 Ping Identity Corporation

Figure 1. Confirm the PingAM connection properties

Tap Centralized Login.

The app launches a web browser and redirects to your PingAM environment:

3.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 825

Figure 2. Browser launched and redirected to PingAM

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

If authentication is successful, the application returns to the access token screen.

Tap the menu icon (), and then tap User Profile:

4.

◦

◦

5.

Ping SDK OIDC login tutorials Ping SDKs

826 Copyright © 2025 Ping Identity Corporation

Figure 3. User info of the demo user

Tap the menu icon (), and then tap Logout.

The app logs the user out of PingAM, revokes the tokens, and returns to the config page.

OIDC login to PingFederate tutorial for Android

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingFederate UI
for authentication.

The sample connects to the .well-known endpoint of your PingFederate server to obtain the correct URIs to authenticate the
user, and redirects to your PingFederate server’s login UI.

After authentication, PingFederate redirects the browser back to your application, which then obtains an OAuth 2.0 access token
and displays the related user information.

6.

Prepare › Download › Configure › Run

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 827

Before you begin

Before you begin this tutorial ensure you have set up your PingFederate server with the required configuration.

For example, you will need to configure an OAuth 2.0 client application.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingFederate.

Start step 3 

Step 3. Test the app

In the following procedure, you run the sample app that you configured in the previous step.

The sample connects to your PingFederate server to obtain the correct URIs to authenticate the user, and redirects the
browser to your PingFederate server.

After authentication, PingFederate redirects the browser back to your application, which then obtains an OAuth 2.0 access
token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

The tutorial also requires a configured PingFederate server.

Prepare › Download › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

828 Copyright © 2025 Ping Identity Corporation

Compatibility

Android

This sample requires at least Android API 23 (Android 6.0)

Java

This sample requires at least Java 8 (v1.8).

Prerequisites

Android Studio

Download and install Android Studio, which is available for many popular operating systems.

An Android emulator or physical device

To try the quick start application as you develop it, you need an Android device. To add a virtual, emulated Android device
to Android Studio, refer to Create and manage virtual devices, on the Android Developers website.

Server configuration

This tutorial requires you to configure your PingFederate server as follows:

OAuth 2.0 client application profiles define how applications connect to PingFederate and obtain OAuth 2.0 tokens.

To allow the Ping SDKs to connect to PingFederate and obtain OAuth 2.0 tokens, you must register an OAuth 2.0 client
application:

Log in to the PingFederate administration console as an administrator.

Navigate to Applications › OAuth › Clients.

Click Add Client.

PingFederate displays the Clients | Client page.

In Client ID and Name, enter a name for the profile, for example sdkPublicClient

Make a note of the Client ID value, you will need it when you configure the sample code.

In Client Authentication, select None .

In Redirect URIs, add the following values:

org.forgerock.demo://oauth2redirect

1.

2.

3.

4.

5.

6.

emergency_home
Also add any other URLs where you host SDK applications.
Failure to add redirect URLs that exactly match your client app’s values can cause PingFederate to display an
error message such as Redirect URI mismatch when attempting to end a session by redirecting from the
SDK.

Important

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 829

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

In Allowed Grant Types, select the following values:

Authorization Code

Refresh Token

In the OpenID Connect section:

In Logout Mode, select Ping Front-Channel

In Front-Channel Logout URIs, add the following values:

org.forgerock.demo://oauth2redirect

In Post-Logout Redirect URIs, add the following values:

org.forgerock.demo://oauth2redirect

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the Ping SDK
PingFederate example applications and tutorials covered by this documentation.

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingFederate, you can configure
CORS to allow browsers or apps from trusted domains to access protected resources.

To configure CORS in PingFederate follow these steps:

Log in to the PingFederate administration console as an administrator.

Navigate to System › OAuth Settings › Authorization Server Settings.

In the Cross-Origin Resource Sharing Settings section, in the Allowed Origin field, enter any DNS aliases you use for your
SDK apps.

This documentation assumes the following configuration:

7.

8.

1.

2.

emergency_home
Also add any other URLs that redirect users to PingFederate to end their session.
Failure to add sign off URLs that exactly match your client app’s values can cause PingFederate to
display an error message such as invalid post logout redirect URI when attempting to end a
session by redirecting from the SDK.

Important

3.

9.

emergency_home
After changing PingFederate configuration using the administration console, you must replicate the changes to
each server node in the cluster before they take effect.
In the PingFederate administration console, navigate to System > Server > Cluster Management, and click
Replicate.

Important

1.

2.

3.

Property Values

Allowed Origin org.forgerock.demo://oauth2redirect

Ping SDK OIDC login tutorials Ping SDKs

830 Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Click Save.

Your PingFederate server is now able to accept connections from origins hosting apps built with the Ping SDKs.

Step 1. Download the samples

To start this tutorial, you need to download the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties

4.

emergency_home
After changing PingFederate configuration using the administration console, you must replicate the changes to
each server node in the cluster before they take effect.
In the PingFederate administration console, navigate to System > Server > Cluster Management, and click
Replicate.

Important

Prepare › Download › Configure › Run

1.

2.

1.

2.

1.

2.

Prepare › Download › Configure › Run

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 831

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

In this step, you configure the kotlin-central-login-oidc sample to connect to the OAuth 2.0 application you created in
PingFederate, using OIDC login.

In Android Studio, open the sdk-sample-apps/android/kotlin-central-login-oidc project you cloned in the previous
step.

In the Project pane, switch to the Android view.

Figure 1. Switching the project pane to Android view.

In the Android view, navigate to app > kotlin+java > com.example.app, and open Config.kt .

Edit the default values provided in the PingConfig class with the values from your PingFederate server:

1.

2.

3.

4.

Ping SDK OIDC login tutorials Ping SDKs

832 Copyright © 2025 Ping Identity Corporation

PingConfig class default values

data class PingConfig(
 var discoveryEndpoint: String = "https://openam-sdks.forgeblocks.com/am/oauth2/realms/alpha/.well-known/
openid-configuration",
 var oauthClientId: String = "AndroidTest",
 var oauthRedirectUri: String = "org.forgerock.demo:/oauth2redirect",
 var oauthSignOutRedirectUri: String = "",
 var cookieName: String = "5421aeddf91aa20",
 var oauthScope: String = "openid profile email address")
)

discoveryEndpoint

The .well-known endpoint of your PingFederate server.

To form the .well-known endpoint for a PingFederate server:

Log in to your PingFederate administration console.

Navigate to System › Server › Protocol Settings.

Make a note of the Base URL value.

For example, https://pingfed.example.com

Append /.well-known/openid-configuration after the base URL value to form the .well-known
endpoint of your server.

For example, https://pingfed.example.com/.well-known/openid-configuration .

The SDK reads the OAuth 2.0 paths it requires from this endpoint.

For example, https://pingfed.example.com/.well-known/openid-configuration

oauthClientId

The client ID from your OAuth 2.0 application in PingFederate.

For example, sdkPublicClient

oauthRedirectUri

The Redirect URIs as configured in the OAuth 2.0 client profile.

This value must exactly match a value configured in your OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect

1.

2.

3.

info
Do not use the admin console URL.

Note

4.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 833

oauthSignOutRedirectUri

The Front-Channel Logout URIs as configured in the OAuth 2.0 client profile.

This value must exactly match a value configured in your OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect

cookieName

Set this property to an empty string. PingFederate servers do not require this setting.

oauthScope

The scopes you added to your OAuth 2.0 application in PingFederate.

For example, openid profile email phone

The result resembles the following:

PingConfig class example values

data class PingConfig(
 var discoveryEndpoint: String = "https://pingfed.example.com/.well-known/openid-configuration",
 var oauthClientId: String = "sdkPublicClient",
 var oauthRedirectUri: String = "org.forgerock.demo://oauth2redirect",
 var oauthSignOutRedirectUri: String = "org.forgerock.demo://oauth2redirect",
 var cookieName: String = "",
 var oauthScope: String = "openid profile email phone"
)

Save your changes.

Step 3. Test the app

In the following procedure, you run the sample app that you configured in the previous step. The app performs a centralized login
on your PingFederate instance.

Log in as a demo user

In Android Studio, select Run > Run 'ping-oidc.app'.

On the Environment screen, ensure the PingFederate environment you added earlier is correct.

You can edit any of the values in the app if required.

5.

Prepare › Download › Configure › Run

1.

2.

Ping SDK OIDC login tutorials Ping SDKs

834 Copyright © 2025 Ping Identity Corporation

Figure 1. Confirm the PingFederate connection properties

Tap Centralized Login.

The app launches a web browser and redirects to your PingFederate environment:

3.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 835

Figure 2. Browser launched and redirected to PingFederate

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

If authentication is successful, the application returns to the access token screen.

Tap the menu icon (), and then tap account_box User Profile:

4.

◦

◦

5.

Ping SDK OIDC login tutorials Ping SDKs

836 Copyright © 2025 Ping Identity Corporation

Figure 3. User info of the demo user

Tap the menu icon (), and then tap logout Logout.

The app opens a browser momentarily to log the user out of PingFederate, and revoke the tokens.

Apple iOS OIDC login tutorials

Follow these iOS tutorials to integrate your apps using OpenID Connect login to the following servers:

6.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 837

Authentication journey tutorial for iOS

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingOne UI for
authentication.

The sample connects to the .well-known endpoint of your PingOne server to obtain the correct URIs to authenticate the user,
and redirects to your PingOne server’s login UI.

After authentication, PingOne redirects the browser back to your application, which then obtains an OAuth 2.0 access token and
displays the related user information.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne server with the required configuration.

For example, you will need to have an OAuth 2.0 client application set up, and a demo user to authenticate.

Complete prerequisites 

PingOne

PingOne Advanced Identity Cloud

PingAM
PingFederate

Prepare › Download › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

838 Copyright © 2025 Ping Identity Corporation

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingOne.

Start step 2 

Step 3. Test the app

To test the app, run the sample that you configured in the previous step.

The sample connects to your PingOne server to obtain the correct URIs to authenticate the user, and redirects the browser
to your PingOne server.

After authentication, PingOne redirects the browser back to your application, which then obtains an OAuth 2.0 access
token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

The tutorial also requires a configured PingOne instance.

Compatibility

iOS

This sample app is compatible with iOS 12 and later.

Prepare › Download › Configure › Run

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 839

Prerequisites

Xcode

You can download the latest version for free from https://developer.apple.com/xcode/.

Server configuration

This tutorial requires you to configure your PingOne server as follows:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne, follow these steps:

Log in to your PingOne administration console.

In the left panel, navigate to Directory > Users.

Next to the Users label, click the plus icon (+).

PingOne displays the Add User panel.

Enter the following details:

Given Name = Demo

Family Name = User

Username = demo

Email = demo.user@example.com

Population = Default

Password = Ch4ng3it!

Click Save.

To register a public OAuth 2.0 client application in PingOne for use with the Ping SDKs for Android and iOS, follow these steps:

Log in to your PingOne administration console.

In the left panel, navigate to Applications > Applications.

Next to the Applications label, click the plus icon (+).

PingOne displays the Add Application panel.

In Application Name, enter a name for the profile, for example sdkNativeClient

Select Native as the Application Type, and then click Save.

On the Configuration tab, click the pencil icon ().

In Grant Type, select the following values:

Authorization Code

1.

2.

3.

4.

◦

◦

◦

◦

◦

◦

5.

1.

2.

3.

4.

5.

6.

1.

Ping SDK OIDC login tutorials Ping SDKs

840 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Refresh Token

In Redirect URIs, enter the following value:

org.forgerock.demo://oauth2redirect

In Token Endpoint Authentication Method, select None .

In the Advanced Settings section, enable Terminate User Session by ID Token.

Click Save.

On the Resources tab, next to Allowed Scopes, click the pencil icon ().

In Scopes, select the following values:

email

phone

profile

The result resembles the following:

2.

3.

4.

5.

7.

1.

info
The openid scope is selected by default.

Note

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 841

Figure 1. Adding scopes to an application.

Optionally, on the Policies tab, click the pencil icon () to select the authentication policies for the application.

If you have a DaVinci license, you can select PingOne policies or DaVinci Flow policies, but not both. If you do not have a
DaVinci license, the page only displays PingOne policies.

To use a PingOne policy:

Click + Add policies and then select the policies that you want to apply to the application.

Click Save.

PingOne applies the policies in the order in which they appear in the list. PingOne evaluates the first policy in the
list first. If the requirements are not met, PingOne moves to the next one.

For more information, see Authentication policies for applications.

To use a DaVinci Flow policy:

You must clear all PingOne policies. Click Deselect all PingOne Policies.

In the confirmation message, click Continue.

8.

info
Applications that have no authentication policy assignments use the environment’s default authentication
policy to authenticate users.

Note

1.

2.

1.

2.

Ping SDK OIDC login tutorials Ping SDKs

842 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/r/0ue6NPmZLPN667l6iXUjRg/Wl28ypLnPtjCUDjVnLFCxQ
https://docs.pingidentity.com/r/0ue6NPmZLPN667l6iXUjRg/Wl28ypLnPtjCUDjVnLFCxQ

On the DaVinci Policies tab, select the policies that you want to apply to the application.

Click Save.

PingOne applies the first policy in the list.

Click Save.

Enable the OAuth 2.0 client application by using the toggle next to its name:

Figure 2. Enable the application using the toggle.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the Android and iOS PingOne
example applications and tutorials covered by this documentation.

Step 1. Download the samples

To start this tutorial, you need to download the ForgeRock SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

3.

4.

9.

10.

Prepare › Download › Configure › Run

1.

2.

1.

2.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 843

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties

In this step, you configure the "swiftui-oidc" app to connect to the OAuth 2.0 application you created in PingOne, and display the
login UI of the server.

In Xcode, on the File menu, click Open.

Navigate to the sdk-sample-apps folder you cloned in the previous step, navigate to iOS > swiftui-oidc >
PingExample > PingExample.xcodeproj , and then click Open.

In the Project Navigator pane, navigate to PingExample > PingExample > Utilities, and open the ConfigurationManager
file.

Locate the ConfigurationViewModel function which contains placeholder configuration properties.

return ConfigurationViewModel(
clientId: "[CLIENT ID]",
scopes: ["openid", "email", "address", "phone", "profile"],
redirectUri: "[REDIRECT URI]",
signOutUri: "[SIGN OUT URI]",
discoveryEndpoint: "[DISCOVERY ENDPOINT URL]",
environment: "[ENVIRONMENT - EITHER AIC OR PingOne]",
cookieName: "[COOKIE NAME - OPTIONAL (Applicable for AIC only)]",
browserSeletorType: .authSession

)

In the ConfigurationViewModel function, update the following properties with the values you obtained when preparing
your environment.

1.

2.

Prepare › Download › Configure › Run

1.

2.

3.

4.

lightbulb_2
The function is commented with //TODO: in the source to make it easier to locate.

Tip

5.

Ping SDK OIDC login tutorials Ping SDKs

844 Copyright © 2025 Ping Identity Corporation

clientId

The client ID from your OAuth 2.0 application in PingOne.

For example, 6c7eb89a-66e9-ab12-cd34-eeaf795650b2

scopes

The scopes you added to your OAuth 2.0 application in PingOne.

For example, openid profile email phone

redirectUri

The redirect_uri to return to after logging in with the server UI, for example the URI to your client app.

For example, org.forgerock.demo://oauth2redirect .

signOutUri

Leave this property empty.

It signals that the SDK can use the ID token to end the user’s session, and does not need to open and return from a
web page to perform log out.

discoveryEndpoint

The .well-known endpoint from your PingOne tenant.

To find the .well-known endpoint for an OAuth 2.0 client in PingOne:

Log in to your PingOne administration console.

Go to Applications > Applications, and then select the OAuth 2.0 client you created earlier.

For example, sdkPublicClient.

On the Configuration tab, expand the URLs section, and then copy the OIDC Discovery Endpoint value.

For example, https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/openid-
configuration

environment

Ensures the sample app uses the correct behavior for the different servers it supports, for example what logout
parameters to use.

info
This value must exactly match a value configured in your OAuth 2.0 client.

Note

info
You must have enabled the Terminate User Session by ID Token setting when creating the OAuth 2.0
client in PingOne if you leave this property empty.

Note

1.

2.

3.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 845

For PingOne and PingAM servers, specify AIC .

cookieName

Set this property to an empty string.

For example, "" .

browserSeletorType

You can specify what type of browser the client iOS device opens to handle centralized login.

Each browser has slightly different characteristics, which make them suitable to different scenarios, as outlined in
this table:

Browser type Characteristics

.authSession Opens a web authentication session browser.
Designed specifically for authentication sessions, however it prompts the
user before opening the browser with a modal that asks them to confirm
the domain is allowed to authenticate them.
This is the default option in the Ping SDK for iOS.

.ephemeralAuthSession Opens a web authentication session browser, but enables the
prefersEphemeralWebBrowserSession  parameter.
This browser type does not prompt the user before opening the browser
with a modal.
The difference between this and .authSession is that the browser does
not include any existing data such as cookies in the request, and also
discards any data obtained during the browser session, including any
session tokens.
When is ephemeralAuthSession suitable:

 ephemeralAuthSession is not suitable when you require single
sign-on (SSO) between your iOS apps, as the browser will not
maintain session tokens.
 ephemeralAuthSession is not suitable when you require a
session token to log a user out of the server, for example for
logging out of PingOne, as the browser will not maintain session
tokens.
 Use ephemeralAuthSession when you do not want the user’s
existing sessions to affect the authentication.

.nativeBrowserApp Opens the installed browser that is marked as the default by the user.
Often Safari.
The browser opens without any interaction from the user. However, the
browser does display a modal when returning to your application.

◦

◦

◦

Ping SDK OIDC login tutorials Ping SDKs

846 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession

The result resembles the following:

return ConfigurationViewModel(
 clientId: "6c7eb89a-66e9-ab12-cd34-eeaf795650b2",
 scopes: ["openid", "email", "phone", "profile"],
 redirectUri: "org.forgerock.demo://oauth2redirect",
 signOutUri: "",
 discoveryEndpoint: "https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/openid-
configuration",
 environment: "AIC",
 cookieName: "",
 browserSeletorType: .authSession
)

Optionally, specify ACR values to choose which authentication journey the server uses.

Navigate to PingExample > PingExample > ViewModels, and open the OIDCViewModel file.

In the startOIDC() function, add an acr_values parameter to the authorization request by using the
setCustomParam() method:

Browser type Characteristics

.sfViewController Opens a Safari view controller browser.
Your client app is not able to interact with the pages in the
sfViewController or access the data or browsing history.
The view controller opens within your app without any interaction from
the user. As the user does not leave your app, the view controller does
not need to display a warning modal when authentication is complete
and control returns to your application.

6.

1.

2.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 847

https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

public func startOIDC() async throws → FRUser {
 return try await withCheckedThrowingContinuation({
 (continuation: CheckedContinuation<FRUser, Error>) in
 Task { @MainActor in
 FRUser.browser()?
 .set(presentingViewController: self.topViewController!)
 .set(browserType:
ConfigurationManager.shared.currentConfigurationViewModel?.getBrowserType() ?? .authSession)

.setCustomParam(key: "acr_values", value: "sdkUsernamePasswordJourney")
 .build().login { (user, error) in
 if let frUser = user {
 Task { @MainActor in
 self.status = "User is authenticated"
 }
 continuation.resume(returning: frUser)
 } else {
 Task { @MainActor in
 self.status = error?.localizedDescription ?? "Error was nil"
 }
 continuation.resume(throwing: error!)
 }
 }
 }
 })
}

Enter one or more of the ACR mapping keys as configured in the OAuth 2.0 provider service.

To learn more, refer to Choose journeys with ACR values.

Step 3. Test the app

In this step, run the sample app that you configured in the previous step. The app performs OIDC login to your PingOne instance.

In Xcode, select Product › Run.

Xcode launches the sample app in the iPhone simulator.

lightbulb_2
You can list the available keys by inspecting the acr_values_supported property in the output of your /
oauth2/.well-known/openid-configuration endpoint.

Tip

Prepare › Download › Configure › Run

1.

Ping SDK OIDC login tutorials Ping SDKs

848 Copyright © 2025 Ping Identity Corporation

Figure 1. iOS OIDC login sample home screen

In the sample app on the iPhone simulator, tap Edit configuration, and verify or edit the configuration you entered in the
previous step.

2.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 849

Figure 2. Verify the configuration settings

Tap  Ping OIDC to go back to the main menu, and then tap Launch OIDC.

The app launches a web browser and redirects to your PingOne login UI:

3.

info
You might see a dialog asking if you want to open a browser. If you do, tap Continue.

Note

Ping SDK OIDC login tutorials Ping SDKs

850 Copyright © 2025 Ping Identity Corporation

Figure 3. Browser launched and redirected to PingOne

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

If authentication is successful, the application displays the access token issued by PingOne.

4.

◦

◦

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 851

Figure 4. Access token after successful authentication

Tap  Ping OIDC to go back to the main menu, and then tap User Info. The app displays the user information relating to
the access token:

5.

Ping SDK OIDC login tutorials Ping SDKs

852 Copyright © 2025 Ping Identity Corporation

Figure 5. User info relating to the access token

Tap  Ping OIDC to go back to the main menu, and then tap Logout.

The app logs the user out of the authorization server.

6.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 853

OIDC login to PingOne Advanced Identity Cloud tutorial for Android

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingOne Advanced
Identity Cloud UI for authentication.

The sample connects to the .well-known endpoint of your PingOne Advanced Identity Cloud server to obtain the correct URIs to
authenticate the user, and redirects to your PingOne Advanced Identity Cloud server’s login UI.

After authentication, PingOne Advanced Identity Cloud redirects the browser back to your application, which then obtains an
OAuth 2.0 access token and displays the related user information.

lightbulb_2
To verify the user is signed out:

In the PingOne administration console, navigate to Directory > Users.
Select the user you signed in as.
From the Sevices dropdown, select Authentication:

Figure 6. Checking a user’s sessions in PingOne.
The Sessions section displays any existing sessions the user has, and whether they originate from a
mobile device.

Tip

1.
2.
3.

Prepare › Download › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

854 Copyright © 2025 Ping Identity Corporation

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud server with the required
configuration.

For example, you will need to have an OAuth 2.0 client application set up, and a demo user to authenticate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingOne Advanced
Identity Cloud.

Start step 2 

Step 3. Test the app

To test the app, run the sample that you configured in the previous step.

The sample connects to your PingOne Advanced Identity Cloud server to obtain the correct URIs to authenticate the user,
and redirects the browser to your PingOne Advanced Identity Cloud server.

After authentication, PingOne Advanced Identity Cloud redirects the browser back to your application, which then obtains
an OAuth 2.0 access token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

Prepare › Download › Configure › Run

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 855

The tutorial also requires a configured PingOne Advanced Identity Cloud tenant.

Compatibility

iOS

This sample app is compatible with iOS 12 and later.

Prerequisites

Xcode

You can download the latest version for free from https://developer.apple.com/xcode/.

Server configuration

This tutorial requires you to configure your PingOne Advanced Identity Cloud tenant as follows:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

1.

2.

3.

4.

◦

◦

◦

◦

◦

5.

1.

2.

Ping SDK OIDC login tutorials Ping SDKs

856 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 1. Example username and password authentication journey

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

3.

◦

◦

◦

◦

4.

5.

6.

1.

2.

3.

4.

5.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 857

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

org.forgerock.demo://oauth2redirect

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

1.

2.

3.

4.

Ping SDK OIDC login tutorials Ping SDKs

858 Copyright © 2025 Ping Identity Corporation

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

Step 1. Download the samples

To start this tutorial, you need to download the ForgeRock SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties

In this step, you configure the "swiftui-oidc" app to connect to the OAuth 2.0 application you created in PingOne Advanced
Identity Cloud, and display the login UI of the server.

In Xcode, on the File menu, click Open.

Navigate to the sdk-sample-apps folder you cloned in the previous step, navigate to iOS > swiftui-oidc >
PingExample > PingExample.xcodeproj , and then click Open.

In the Project Navigator pane, navigate to PingExample > PingExample > Utilities, and open the ConfigurationManager
file.

5.

6.

Prepare › Download › Configure › Run

1.

2.

1.

2.

1.

2.

Prepare › Download › Configure › Run

1.

2.

3.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 859

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Locate the ConfigurationViewModel function which contains placeholder configuration properties.

return ConfigurationViewModel(
clientId: "[CLIENT ID]",
scopes: ["openid", "email", "address", "phone", "profile"],
redirectUri: "[REDIRECT URI]",
signOutUri: "[SIGN OUT URI]",
discoveryEndpoint: "[DISCOVERY ENDPOINT URL]",
environment: "[ENVIRONMENT - EITHER AIC OR PingOne]",
cookieName: "[COOKIE NAME - OPTIONAL (Applicable for AIC only)]",
browserSeletorType: .authSession

)

In the ConfigurationViewModel function, update the following properties with the values you obtained when preparing
your environment.

clientId

The client ID from your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, sdkPublicClient

scopes

The scopes you added to your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, address email openid phone profile

redirectUri

The redirect_uri to return to after logging in with the server UI, for example the URI to your client app.

For example, org.forgerock.demo://oauth2redirect .

signOutUri

The URI to redirect to after logging out of the authorization server, for example the URI to your client app.

For example, org.forgerock.demo://oauth2redirect .

4.

lightbulb_2
The function is commented with //TODO: in the source to make it easier to locate.

Tip

5.

info
This value must exactly match a value configured in your OAuth 2.0 client.

Note

info
This value must exactly match a value configured in your OAuth 2.0 client.

Note

Ping SDK OIDC login tutorials Ping SDKs

860 Copyright © 2025 Ping Identity Corporation

discoveryEndpoint

The .well-known endpoint from your PingOne Advanced Identity Cloud tenant.

You can view the .well-known endpoint for an OAuth 2.0 client in the PingOne Advanced Identity Cloud admin
console:

Log in to your PingOne Advanced Identity Cloud administration console.

Click Applications, and then select the OAuth 2.0 client you created earlier. For example, sdkPublicClient.

On the Sign On tab, in the Client Credentials section, copy the Discovery URI value.

For example, https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/alpha/.well-known/openid-
configuration

environment

Ensures the sample app uses the correct behavior for the different servers it supports, for example what logout
parameters to use.

For PingOne Advanced Identity Cloud and PingAM servers, specify AIC .

cookieName

The name of the cookie your PingOne Advanced Identity Cloud tenant uses to store SSO tokens in client browsers.

To locate the cookie name in an PingOne Advanced Identity Cloud tenant:

Navigate to Tenant settings > Global Settings

Copy the value of the Cookie property.

For example, ch15fefc5407912

browserSeletorType

You can specify what type of browser the client iOS device opens to handle centralized login.

Each browser has slightly different characteristics, which make them suitable to different scenarios, as outlined in
this table:

1.

2.

3.

1.

2.

Browser type Characteristics

.authSession Opens a web authentication session browser.
Designed specifically for authentication sessions, however it prompts the
user before opening the browser with a modal that asks them to confirm
the domain is allowed to authenticate them.
This is the default option in the Ping SDK for iOS.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 861

https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession

The result resembles the following:

return ConfigurationViewModel(
 clientId: "sdkPublicClient",
 scopes: ["openid", "email", "address", "phone", "profile"],
 redirectUri: "org.forgerock.demo://oauth2redirect",
 signOutUri: "org.forgerock.demo://oauth2redirect",
 discoveryEndpoint: "https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/alpha/.well-known/openid-
configuration",
 environment: "AIC",
 cookieName: "ch15fefc5407912",
 browserSeletorType: .authSession
)

Browser type Characteristics

.ephemeralAuthSession Opens a web authentication session browser, but enables the
prefersEphemeralWebBrowserSession  parameter.
This browser type does not prompt the user before opening the browser
with a modal.
The difference between this and .authSession is that the browser does
not include any existing data such as cookies in the request, and also
discards any data obtained during the browser session, including any
session tokens.
When is ephemeralAuthSession suitable:

 ephemeralAuthSession is not suitable when you require single
sign-on (SSO) between your iOS apps, as the browser will not
maintain session tokens.
 ephemeralAuthSession is not suitable when you require a
session token to log a user out of the server, for example for
logging out of PingOne, as the browser will not maintain session
tokens.
 Use ephemeralAuthSession when you do not want the user’s
existing sessions to affect the authentication.

.nativeBrowserApp Opens the installed browser that is marked as the default by the user.
Often Safari.
The browser opens without any interaction from the user. However, the
browser does display a modal when returning to your application.

.sfViewController Opens a Safari view controller browser.
Your client app is not able to interact with the pages in the
sfViewController or access the data or browsing history.
The view controller opens within your app without any interaction from
the user. As the user does not leave your app, the view controller does
not need to display a warning modal when authentication is complete
and control returns to your application.

◦

◦

◦

Ping SDK OIDC login tutorials Ping SDKs

862 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

Optionally, specify ACR values to choose which authentication journey the server uses.

Navigate to PingExample > PingExample > ViewModels, and open the OIDCViewModel file.

In the startOIDC() function, add an acr_values parameter to the authorization request by using the
setCustomParam() method:

public func startOIDC() async throws → FRUser {
 return try await withCheckedThrowingContinuation({
 (continuation: CheckedContinuation<FRUser, Error>) in
 Task { @MainActor in
 FRUser.browser()?
 .set(presentingViewController: self.topViewController!)
 .set(browserType:
ConfigurationManager.shared.currentConfigurationViewModel?.getBrowserType() ?? .authSession)

.setCustomParam(key: "acr_values", value: "sdkUsernamePasswordJourney")
 .build().login { (user, error) in
 if let frUser = user {
 Task { @MainActor in
 self.status = "User is authenticated"
 }
 continuation.resume(returning: frUser)
 } else {
 Task { @MainActor in
 self.status = error?.localizedDescription ?? "Error was nil"
 }
 continuation.resume(throwing: error!)
 }
 }
 }
 })
}

Enter one or more of the ACR mapping keys as configured in the OAuth 2.0 provider service.

To learn more, refer to Choose journeys with ACR values.

Step 3. Test the app

In this step, run the sample app that you configured in the previous step. The app performs OIDC login to your PingOne Advanced
Identity Cloud instance.

In Xcode, select Product › Run.

Xcode launches the sample app in the iPhone simulator.

6.

1.

2.

lightbulb_2
You can list the available keys by inspecting the acr_values_supported property in the output of your /
oauth2/.well-known/openid-configuration endpoint.

Tip

Prepare › Download › Configure › Run

1.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 863

Figure 1. iOS OIDC login sample home screen

In the sample app on the iPhone simulator, tap Edit configuration, and verify or edit the configuration you entered in the
previous step.

2.

Ping SDK OIDC login tutorials Ping SDKs

864 Copyright © 2025 Ping Identity Corporation

Figure 2. Verify the configuration settings

Tap  Ping OIDC to go back to the main menu, and then tap Launch OIDC.

The app launches a web browser and redirects to your PingOne Advanced Identity Cloud login UI:

3.

info
You might see a dialog asking if you want to open a browser. If you do, tap Continue.

Note

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 865

Figure 3. Browser launched and redirected to PingOne Advanced Identity Cloud

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

If authentication is successful, the application displays the access token issued by PingOne Advanced Identity Cloud.

4.

◦

◦

Ping SDK OIDC login tutorials Ping SDKs

866 Copyright © 2025 Ping Identity Corporation

Figure 4. Access token after successful authentication

Tap  Ping OIDC to go back to the main menu, and then tap User Info.

The app displays the information relating to the access token:

5.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 867

Figure 5. User info relating to the access token

Tap  Ping OIDC to go back to the main menu, and then tap Logout.

The app logs the user out of the authorization server and prints a message to the Xcode console:

[FRCore][4.8.0] [🌐 - Network] Response | [✅ 204] :
 https://openam-forgerock-sdks.forgeblocks.com:443/am/oauth2/alpha/connect/endSession?
id_token_hint=eyJ0...sbrA&client_id=sdkPublicClient in 34 ms
[FRAuth][4.8.0] [FRUser.swift:211 : logout()] [Verbose]
 Invalidating OIDC Session successful

OIDC login to PingAM tutorial for Android

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingAM UI for
authentication.

6.

Prepare › Download › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

868 Copyright © 2025 Ping Identity Corporation

The sample connects to the .well-known endpoint of your PingAM server to obtain the correct URIs to authenticate the user,
and redirects to your PingAM server’s login UI.

After authentication, PingAM redirects the browser back to your application, which then obtains an OAuth 2.0 access token and
displays the related user information.

Before you begin

Before you begin this tutorial ensure you have set up your PingAM server with the required configuration.

For example, you will need to have an OAuth 2.0 client application set up, and a demo user to authenticate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingAM.

Start step 2 

Step 3. Test the app

To test the app, run the sample that you configured in the previous step.

The sample connects to your PingAM server to obtain the correct URIs to authenticate the user, and redirects the browser
to your PingAM server.

After authentication, PingAM redirects the browser back to your application, which then obtains an OAuth 2.0 access token
and displays the related user information.

Test app 

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 869

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured PingAM server.

Compatibility

iOS

This sample app is compatible with iOS 12 and later.

Prerequisites

Xcode

You can download the latest version for free from https://developer.apple.com/xcode/.

Server configuration

This tutorial requires you to configure your PingAM server as follows:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

Prepare › Download › Configure › Run

1.

2.

3.

◦

◦

◦

4.

1.

Ping SDK OIDC login tutorials Ping SDKs

870 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 1. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

2.

3.

◦

◦

◦

◦

4.

5.

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

7.

1.

2.

3.

4.

5.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 871

org.forgerock.demo://oauth2redirect

In Scopes, enter the following values:

openid profile email address

Click Create.

PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.

On the Core tab:

In Client type, select Public .

Disable Allow wildcard ports in redirect URIs.

Click Save Changes.

On the Advanced tab:

In Grant Types, enter the following values:

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

emergency_home
Also add any other domains where you will be hosting SDK applications.

Important

6.

7.

8.

1.

2.

3.

9.

1.

2.

3.

10.

1.

2.

3.

4.

5.

6.

Ping SDK OIDC login tutorials Ping SDKs

872 Copyright © 2025 Ping Identity Corporation

Step 1. Download the samples

To start this tutorial, you need to download the ForgeRock SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties

In this step, you configure the "swiftui-oidc" app to connect to the OAuth 2.0 application you created in PingAM, and display the
login UI of the server.

In Xcode, on the File menu, click Open.

Navigate to the sdk-sample-apps folder you cloned in the previous step, navigate to iOS > swiftui-oidc >
PingExample > PingExample.xcodeproj , and then click Open.

In the Project Navigator pane, navigate to PingExample > PingExample > Utilities, and open the ConfigurationManager
file.

Locate the ConfigurationViewModel function which contains placeholder configuration properties.

Prepare › Download › Configure › Run

1.

2.

1.

2.

1.

2.

Prepare › Download › Configure › Run

1.

2.

3.

4.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 873

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

return ConfigurationViewModel(
clientId: "[CLIENT ID]",
scopes: ["openid", "email", "address", "phone", "profile"],
redirectUri: "[REDIRECT URI]",
signOutUri: "[SIGN OUT URI]",
discoveryEndpoint: "[DISCOVERY ENDPOINT URL]",
environment: "[ENVIRONMENT - EITHER AIC OR PingOne]",
cookieName: "[COOKIE NAME - OPTIONAL (Applicable for AIC only)]",
browserSeletorType: .authSession

)

In the ConfigurationViewModel function, update the following properties with the values you obtained when preparing
your environment.

clientId

The client ID from your OAuth 2.0 application in PingAM.

For example, sdkPublicClient

scopes

The scopes you added to your OAuth 2.0 application in PingAM.

For example, address email openid phone profile

redirectUri

The redirect_uri to return to after logging in with the server UI, for example the URI to your client app.

For example, org.forgerock.demo://oauth2redirect .

signOutUri

The URI to redirect to after logging out of the authorization server, for example the URI to your client app.

For example, org.forgerock.demo://oauth2redirect .

discoveryEndpoint

The .well-known endpoint from your PingAM server.

lightbulb_2
The function is commented with //TODO: in the source to make it easier to locate.

Tip

5.

info
This value must exactly match a value configured in your OAuth 2.0 client.

Note

info
This value must exactly match a value configured in your OAuth 2.0 client.

Note

Ping SDK OIDC login tutorials Ping SDKs

874 Copyright © 2025 Ping Identity Corporation

For example, https://openam.example.com:8443/openam/oauth2/.well-known/openid-configuration

environment

Ensures the sample app uses the correct behavior for the different servers it supports, for example what logout
parameters to use.

For PingAM servers, specify AIC .

cookieName

The name of the cookie your PingAM server uses to store SSO tokens in client browsers.

For example, iPlanetDirectoryPro

browserSeletorType

You can specify what type of browser the client iOS device opens to handle centralized login.

Each browser has slightly different characteristics, which make them suitable to different scenarios, as outlined in
this table:

Browser type Characteristics

.authSession Opens a web authentication session browser.
Designed specifically for authentication sessions, however it prompts the
user before opening the browser with a modal that asks them to confirm
the domain is allowed to authenticate them.
This is the default option in the Ping SDK for iOS.

.ephemeralAuthSession Opens a web authentication session browser, but enables the
prefersEphemeralWebBrowserSession  parameter.
This browser type does not prompt the user before opening the browser
with a modal.
The difference between this and .authSession is that the browser does
not include any existing data such as cookies in the request, and also
discards any data obtained during the browser session, including any
session tokens.
When is ephemeralAuthSession suitable:

 ephemeralAuthSession is not suitable when you require single
sign-on (SSO) between your iOS apps, as the browser will not
maintain session tokens.
 ephemeralAuthSession is not suitable when you require a
session token to log a user out of the server, for example for
logging out of PingOne, as the browser will not maintain session
tokens.
 Use ephemeralAuthSession when you do not want the user’s
existing sessions to affect the authentication.

◦

◦

◦

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 875

https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession

The result resembles the following:

return ConfigurationViewModel(
 clientId: "sdkPublicClient",
 scopes: ["openid", "email", "address", "phone", "profile"],
 redirectUri: "org.forgerock.demo://oauth2redirect",
 signOutUri: "org.forgerock.demo://oauth2redirect",
 discoveryEndpoint: "https://openam.example.com:8443/openam/oauth2/.well-known/openid-configuration",
 environment: "AIC",
 cookieName: "iPlanetDirectoryPro",
 browserSeletorType: .authSession
)

Optionally, specify ACR values to choose which authentication journey the server uses.

Navigate to PingExample > PingExample > ViewModels, and open the OIDCViewModel file.

In the startOIDC() function, add an acr_values parameter to the authorization request by using the
setCustomParam() method:

Browser type Characteristics

.nativeBrowserApp Opens the installed browser that is marked as the default by the user.
Often Safari.
The browser opens without any interaction from the user. However, the
browser does display a modal when returning to your application.

.sfViewController Opens a Safari view controller browser.
Your client app is not able to interact with the pages in the
sfViewController or access the data or browsing history.
The view controller opens within your app without any interaction from
the user. As the user does not leave your app, the view controller does
not need to display a warning modal when authentication is complete
and control returns to your application.

6.

1.

2.

Ping SDK OIDC login tutorials Ping SDKs

876 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

public func startOIDC() async throws → FRUser {
 return try await withCheckedThrowingContinuation({
 (continuation: CheckedContinuation<FRUser, Error>) in
 Task { @MainActor in
 FRUser.browser()?
 .set(presentingViewController: self.topViewController!)
 .set(browserType:
ConfigurationManager.shared.currentConfigurationViewModel?.getBrowserType() ?? .authSession)

.setCustomParam(key: "acr_values", value: "sdkUsernamePasswordJourney")
 .build().login { (user, error) in
 if let frUser = user {
 Task { @MainActor in
 self.status = "User is authenticated"
 }
 continuation.resume(returning: frUser)
 } else {
 Task { @MainActor in
 self.status = error?.localizedDescription ?? "Error was nil"
 }
 continuation.resume(throwing: error!)
 }
 }
 }
 })
}

Enter one or more of the ACR mapping keys as configured in the OAuth 2.0 provider service.

To learn more, refer to Choose journeys with ACR values.

Step 3. Test the app

In this step, run the sample app that you configured in the previous step. The app performs OIDC login to your PingAM server.

In Xcode, select Product › Run.

Xcode launches the sample app in the iPhone simulator.

lightbulb_2
You can list the available keys by inspecting the acr_values_supported property in the output of your /
oauth2/.well-known/openid-configuration endpoint.

Tip

Prepare › Download › Configure › Run

1.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 877

Figure 1. iOS OIDC login sample home screen

In the sample app on the iPhone simulator, tap Edit configuration, and verify or edit the configuration you entered in the
previous step.

2.

Ping SDK OIDC login tutorials Ping SDKs

878 Copyright © 2025 Ping Identity Corporation

Figure 2. Verify the configuration settings

Tap  Ping OIDC to go back to the main menu, and then tap Launch OIDC.

The app launches a web browser and redirects to your PingAM login UI:

3.

info
You might see a dialog asking if you want to open a browser. If you do, tap Continue.

Note

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 879

Figure 3. Browser launched and redirected to PingAM

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

If authentication is successful, the application displays the access token issued by PingAM.

4.

◦

◦

Ping SDK OIDC login tutorials Ping SDKs

880 Copyright © 2025 Ping Identity Corporation

Figure 4. Access token after successful authentication

Tap  Ping OIDC to go back to the main menu, and then tap User Info.

The app displays the information relating to the access token:

5.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 881

Figure 5. User info relating to the access token

Tap  Ping OIDC to go back to the main menu, and then tap Logout.

The app logs the user out of the authorization server and prints a message to the Xcode console:

[FRCore][4.8.0] [🌐 - Network] Response | [✅ 204] :
 https://openam.example.com:443/am/oauth2/connect/endSession?
id_token_hint=eyJ0...sbrA&client_id=sdkPublicClient in 34 ms
[FRAuth][4.8.0] [FRUser.swift:211 : logout()] [Verbose]
 Invalidating OIDC Session successful

Authentication journey tutorial for iOS

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingFederate UI
for authentication.

6.

Prepare › Download › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

882 Copyright © 2025 Ping Identity Corporation

The sample connects to the .well-known endpoint of your PingFederate server to obtain the correct URIs to authenticate the
user, and redirects to your PingFederate server’s login UI.

After authentication, PingFederate redirects the browser back to your application, which then obtains an OAuth 2.0 access token
and displays the related user information.

Before you begin

Before you begin this tutorial ensure you have set up your PingFederate server with the required configuration.

For example, you will need to configure an OAuth 2.0 client application.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingFederate.

Start step 2 

Step 3. Test the app

In the following procedure, you run the sample app that you configured in the previous step.

The sample connects to your PingFederate server to obtain the correct URIs to authenticate the user, and redirects the
browser to your PingFederate server.

After authentication, PingFederate redirects the browser back to your application, which then obtains an OAuth 2.0 access
token and displays the related user information.

Test app 

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 883

Before you begin

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

The tutorial also requires a configured PingFederate server.

Compatibility

iOS

This sample app is compatible with iOS 12 and later.

Prerequisites

Xcode

You can download the latest version for free from https://developer.apple.com/xcode/.

Server configuration

This tutorial requires you to configure your PingFederate server as follows:

OAuth 2.0 client application profiles define how applications connect to PingFederate and obtain OAuth 2.0 tokens.

To allow the Ping SDKs to connect to PingFederate and obtain OAuth 2.0 tokens, you must register an OAuth 2.0 client
application:

Log in to the PingFederate administration console as an administrator.

Navigate to Applications › OAuth › Clients.

Click Add Client.

PingFederate displays the Clients | Client page.

In Client ID and Name, enter a name for the profile, for example sdkPublicClient

Make a note of the Client ID value, you will need it when you configure the sample code.

In Client Authentication, select None .

In Redirect URIs, add the following values:

org.forgerock.demo://oauth2redirect

Prepare › Download › Configure › Run

1.

2.

3.

4.

5.

6.

Ping SDK OIDC login tutorials Ping SDKs

884 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

In Allowed Grant Types, select the following values:

Authorization Code

Refresh Token

In the OpenID Connect section:

In Logout Mode, select Ping Front-Channel

In Front-Channel Logout URIs, add the following values:

org.forgerock.demo://oauth2redirect

In Post-Logout Redirect URIs, add the following values:

org.forgerock.demo://oauth2redirect

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the Ping SDK
PingFederate example applications and tutorials covered by this documentation.

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingFederate, you can configure
CORS to allow browsers or apps from trusted domains to access protected resources.

To configure CORS in PingFederate follow these steps:

Log in to the PingFederate administration console as an administrator.

Navigate to System › OAuth Settings › Authorization Server Settings.

In the Cross-Origin Resource Sharing Settings section, in the Allowed Origin field, enter any DNS aliases you use for your
SDK apps.

emergency_home
Also add any other URLs where you host SDK applications.
Failure to add redirect URLs that exactly match your client app’s values can cause PingFederate to display an
error message such as Redirect URI mismatch when attempting to end a session by redirecting from the
SDK.

Important

7.

8.

1.

2.

emergency_home
Also add any other URLs that redirect users to PingFederate to end their session.
Failure to add sign off URLs that exactly match your client app’s values can cause PingFederate to
display an error message such as invalid post logout redirect URI when attempting to end a
session by redirecting from the SDK.

Important

3.

9.

emergency_home
After changing PingFederate configuration using the administration console, you must replicate the changes to
each server node in the cluster before they take effect.
In the PingFederate administration console, navigate to System > Server > Cluster Management, and click
Replicate.

Important

1.

2.

3.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 885

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

This documentation assumes the following configuration:

Click Save.

Your PingFederate server is now able to accept connections from origins hosting apps built with the Ping SDKs.

Step 1. Download the samples

To start this tutorial, you need to download the ForgeRock SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the SDK Sample Apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Property Values

Allowed Origin org.forgerock.demo://oauth2redirect

4.

emergency_home
After changing PingFederate configuration using the administration console, you must replicate the changes to
each server node in the cluster before they take effect.
In the PingFederate administration console, navigate to System > Server > Cluster Management, and click
Replicate.

Important

Prepare › Download › Configure › Run

1.

2.

1.

2.

1.

2.

Ping SDK OIDC login tutorials Ping SDKs

886 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Step 2. Configure connection properties

In this step, you configure the "swiftui-oidc" app to connect to the OAuth 2.0 application you created in PingFederate, and display
the login UI of the server.

In Xcode, on the File menu, click Open.

Navigate to the sdk-sample-apps folder you cloned in the previous step, navigate to iOS > swiftui-oidc >
PingExample > PingExample.xcodeproj , and then click Open.

In the Project Navigator pane, navigate to PingExample > PingExample > Utilities, and open the ConfigurationManager
file.

Locate the ConfigurationViewModel function which contains placeholder configuration properties.

return ConfigurationViewModel(
clientId: "[CLIENT ID]",
scopes: ["openid", "email", "address", "phone", "profile"],
redirectUri: "[REDIRECT URI]",
signOutUri: "[SIGN OUT URI]",
discoveryEndpoint: "[DISCOVERY ENDPOINT URL]",
environment: "[ENVIRONMENT - EITHER AIC OR PingOne]",
cookieName: "[COOKIE NAME - OPTIONAL (Applicable for AIC only)]",
browserSeletorType: .authSession

)

In the ConfigurationViewModel function, update the following properties with the values you obtained when preparing
your environment.

clientId

The client ID from your OAuth 2.0 application in PingFederate.

For example, sdkPublicClient

scopes

The scopes you want to assign in PingFederate.

For example, openid profile email phone

redirectUri

The Redirect URIs as configured in the OAuth 2.0 client profile.

This value must exactly match a value configured in your OAuth 2.0 client.

Prepare › Download › Configure › Run

1.

2.

3.

4.

lightbulb_2
The function is commented with //TODO: in the source to make it easier to locate.

Tip

5.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 887

For example, org.forgerock.demo://oauth2redirect

signOutUri

The Front-Channel Logout URIs as configured in the OAuth 2.0 client profile.

This value must exactly match a value configured in your OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect

discoveryEndpoint

The .well-known endpoint from your PingFederate tenant.

To form the .well-known endpoint for a PingFederate server:

Log in to your PingFederate administration console.

Navigate to System › Server › Protocol Settings.

Make a note of the Base URL value.

For example, https://pingfed.example.com

Append /.well-known/openid-configuration after the base URL value to form the .well-known
endpoint of your server.

For example, https://pingfed.example.com/.well-known/openid-configuration .

The SDK reads the OAuth 2.0 paths it requires from this endpoint.

For example, https://pingfed.example.com/.well-known/openid-configuration

environment

Ensures the sample app uses the correct behavior for the different servers it supports, for example what logout
parameters to use.

For PingFederate specify PingOne .

cookieName

Set this property to an empty string.

For example, "" .

browserSeletorType

You can specify what type of browser the client iOS device opens to handle centralized login.

Each browser has slightly different characteristics, which make them suitable to different scenarios, as outlined in
this table:

1.

2.

3.

info
Do not use the admin console URL.

Note

4.

Ping SDK OIDC login tutorials Ping SDKs

888 Copyright © 2025 Ping Identity Corporation

The result resembles the following:

Browser type Characteristics

.authSession Opens a web authentication session browser.
Designed specifically for authentication sessions, however it prompts the
user before opening the browser with a modal that asks them to confirm
the domain is allowed to authenticate them.
This is the default option in the Ping SDK for iOS.

.ephemeralAuthSession Opens a web authentication session browser, but enables the
prefersEphemeralWebBrowserSession  parameter.
This browser type does not prompt the user before opening the browser
with a modal.
The difference between this and .authSession is that the browser does
not include any existing data such as cookies in the request, and also
discards any data obtained during the browser session, including any
session tokens.
When is ephemeralAuthSession suitable:

 ephemeralAuthSession is not suitable when you require single
sign-on (SSO) between your iOS apps, as the browser will not
maintain session tokens.
 ephemeralAuthSession is not suitable when you require a
session token to log a user out of the server, for example for
logging out of PingOne, as the browser will not maintain session
tokens.
 Use ephemeralAuthSession when you do not want the user’s
existing sessions to affect the authentication.

.nativeBrowserApp Opens the installed browser that is marked as the default by the user.
Often Safari.
The browser opens without any interaction from the user. However, the
browser does display a modal when returning to your application.

.sfViewController Opens a Safari view controller browser.
Your client app is not able to interact with the pages in the
sfViewController or access the data or browsing history.
The view controller opens within your app without any interaction from
the user. As the user does not leave your app, the view controller does
not need to display a warning modal when authentication is complete
and control returns to your application.

◦

◦

◦

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 889

https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

return ConfigurationViewModel(
 clientId: "sdkPublicClient",
 scopes: ["openid", "email", "phone", "profile"],
 redirectUri: "org.forgerock.demo://oauth2redirect",
 signOutUri: "org.forgerock.demo://oauth2redirect",
 discoveryEndpoint: "https://pingfed.example.com/.well-known/openid-configuration",
 environment: "PingOne",
 cookieName: "",
 browserSeletorType: .authSession
)

With the sample configured, you can proceed to Step 3. Test the app.

Step 3. Test the app

In this step, run the sample app that you configured in the previous step. The app performs OIDC login to your PingFederate
instance.

In Xcode, select Product › Run.

Xcode launches the sample app in the iPhone simulator.

Prepare › Download › Configure › Run

1.

Ping SDK OIDC login tutorials Ping SDKs

890 Copyright © 2025 Ping Identity Corporation

Figure 1. iOS OIDC login sample home screen

In the sample app on the iPhone simulator, tap Edit configuration, and verify or edit the configuration you entered in the
previous step.

2.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 891

Figure 2. Verify the configuration settings

Tap  Ping OIDC to go back to the main menu, and then tap Launch OIDC.

The app launches a web browser and redirects to your PingFederate login UI:

3.

info
You might see a dialog asking if you want to open a browser. If you do, tap Continue.

Note

Ping SDK OIDC login tutorials Ping SDKs

892 Copyright © 2025 Ping Identity Corporation

Figure 3. Browser launched and redirected to PingFederate

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

If authentication is successful, the application displays the access token issued by PingFederate.

4.

◦

◦

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 893

Figure 4. Access token after successful authentication

Tap  Ping OIDC to go back to the main menu, and then tap User Info. The app displays the user information relating to
the access token:

5.

Ping SDK OIDC login tutorials Ping SDKs

894 Copyright © 2025 Ping Identity Corporation

Figure 5. User info relating to the access token

Tap  Ping OIDC to go back to the main menu, and then tap Logout.

The app briefly opens a browser to sign the user out of PingFederate, and revoke the tokens.

JavaScript OIDC login tutorials

Follow these JavaScript tutorials to integrate your apps using OpenID Connect login to the following servers:

6.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 895

OIDC login to PingOne tutorial for JavaScript

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingOne UI for
authentication.

The sample connects to the .well-known endpoint of your PingOne server to obtain the correct URIs to authenticate the user,
and redirects to your PingOne server’s login UI.

After authentication, PingOne redirects the browser back to your application, which then obtains an OAuth 2.0 access token and
displays the related user information.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne server with the required configuration.

For example, you will need to have an OAuth 2.0 client application set up, and a demo user to authenticate.

Complete prerequisites 

PingOne

PingOne Advanced Identity Cloud

PingAM
PingFederate

Prepare › Download › Install › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

896 Copyright © 2025 Ping Identity Corporation

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Install the Ping SDK

The sample projects need a number of dependencies that you can install by using the npm command.

For example, the Ping SDK for JavaScript itself is one of the dependencies.

Start step 2 

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingOne.

Start step 3 

Step 4. Test the app

To test the app, run the sample that you configured in the previous step.

The sample connects to your PingOne server to obtain the correct URIs to authenticate the user, and redirects the browser
to your PingOne server.

After authentication, PingOne redirects the browser back to your application, which then obtains an OAuth 2.0 access
token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured PingOne instance.

Prepare › Download › Install › Configure › Run

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 897

Prerequisites

Node and NPM

This sample requires a minimum Node.js version of 18 , and is tested on versions 18 and 20 . To get a supported version
of Node.js, refer to the Node.js download page.

You will also need npm to build the code and run the samples.

Server configuration

This tutorial requires you to configure your PingOne server as follows:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne, follow these steps:

Log in to your PingOne administration console.

In the left panel, navigate to Directory > Users.

Next to the Users label, click the plus icon (+).

PingOne displays the Add User panel.

Enter the following details:

Given Name = Demo

Family Name = User

Username = demo

Email = demo.user@example.com

Population = Default

Password = Ch4ng3it!

Click Save.

To register a public OAuth 2.0 client application in PingOne for use with the Ping SDK for JavaScript, follow these steps:

Log in to your PingOne administration console.

In the left panel, navigate to Applications > Applications.

Next to the Applications label, click the plus icon (+).

PingOne displays the Add Application panel.

In Application Name, enter a name for the profile, for example sdkPublicClient

Select OIDC Web App as the Application Type, and then click Save.

1.

2.

3.

4.

◦

◦

◦

◦

◦

◦

5.

1.

2.

3.

4.

5.

Ping SDK OIDC login tutorials Ping SDKs

898 Copyright © 2025 Ping Identity Corporation

https://nodejs.org/en/download/
https://nodejs.org/en/download/

On the Configuration tab, click the pencil icon ().

In Grant Type, select the following values:

Authorization Code

Refresh Token

In Redirect URIs, enter the following value:

https://localhost:8443

In Token Endpoint Authentication Method, select None .

In Signoff URLs, enter the following value:

https://localhost:8443

In CORS Settings, in the drop-down select Allow specific origins, and in the Allowed Origins field, enter the URL
where you will be running the sample app.

For example:

https://localhost:8443

In the Advanced Settings section, enable Terminate User Session by ID Token.

Click Save.

On the Resources tab, next to Allowed Scopes, click the pencil icon ().

In Scopes, select the following values:

email

phone

profile

6.

1.

2.

emergency_home
Also add any other URLs where you host SDK applications.
Failure to add redirect URLs that exactly match your client app’s values can cause PingOne to display an error
message such as Redirect URI mismatch when attempting to end a session by redirecting from the SDK.

Important

1.

2.

emergency_home
Also add any other URLs that redirect users to PingOne to end their session.
Failure to add sign off URLs that exactly match your client app’s values can cause PingOne to display an
error message such as invalid post logout redirect URI when attempting to end a session by
redirecting from the SDK.

Important

3.

4.

5.

7.

1.

info
The openid scope is selected by default.

Note

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 899

The result resembles the following:

Figure 1. Adding scopes to an application.

Optionally, on the Policies tab, click the pencil icon () to select the authentication policies for the application.

If you have a DaVinci license, you can select PingOne policies or DaVinci Flow policies, but not both. If you do not have a
DaVinci license, the page only displays PingOne policies.

To use a PingOne policy:

Click + Add policies and then select the policies that you want to apply to the application.

Click Save.

PingOne applies the policies in the order in which they appear in the list. PingOne evaluates the first policy in the
list first. If the requirements are not met, PingOne moves to the next one.

For more information, see Authentication policies for applications.

To use a DaVinci Flow policy:

You must clear all PingOne policies. Click Deselect all PingOne Policies.

8.

info
Applications that have no authentication policy assignments use the environment’s default authentication
policy to authenticate users.

Note

1.

2.

1.

Ping SDK OIDC login tutorials Ping SDKs

900 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/r/0ue6NPmZLPN667l6iXUjRg/Wl28ypLnPtjCUDjVnLFCxQ
https://docs.pingidentity.com/r/0ue6NPmZLPN667l6iXUjRg/Wl28ypLnPtjCUDjVnLFCxQ

In the confirmation message, click Continue.

On the DaVinci Policies tab, select the policies that you want to apply to the application.

Click Save.

PingOne applies the first policy in the list.

Click Save.

Enable the OAuth 2.0 client application by using the toggle next to its name:

Figure 2. Enable the application using the toggle.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the JavaScript example
PingOne applications and tutorials covered by this documentation.

Step 1. Download the samples

To start this tutorial, you need to download the Ping SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the Ping SDK sample apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

2.

3.

4.

9.

10.

Prepare › Download › Install › Configure › Run

1.

2.

1.

2.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 901

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Install the Ping SDK

In the following procedure, you install the Ping SDK for JavaScript.

In a terminal window, navigate to the sdk-sample-apps folder.

To install the required packages, enter the following:

npm install

The npm tool downloads the required packages, and places them inside a node_modules folder.

More information

Cloning a repository | GitHub Help

Get npm | npm

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingOne.

In the IDE of your choice, open the sdk-sample-apps folder you cloned in the previous step.

Open the /javascript/central-login-oidc/src/main.js file.

Locate the forgerock.Config.setAsync() method and update the properties to match your PingOne environment:

1.

2.

Prepare › Download › Install › Configure › Run

1.

2.

•

•

Prepare › Download › Install › Configure › Run

1.

2.

3.

Ping SDK OIDC login tutorials Ping SDKs

902 Copyright © 2025 Ping Identity Corporation

https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm

await forgerock.Config.setAsync({
 clientId: process.env.WEB_OAUTH_CLIENT, // e.g. 'ForgeRockSDKClient' or PingOne Services Client GUID
 redirectUri: `${window.location.origin}`, // Redirect back to your app, e.g. 'https://localhost:8443' or the
domain your app is served.
 scope: process.env.SCOPE, // e.g. 'openid profile email address phone revoke' When using PingOne services
revoke scope is required
 serverConfig: {
 wellknown: process.env.WELL_KNOWN,
 timeout: process.env.TIMEOUT, // Any value between 3000 to 5000 is good, this impacts the redirect time to
login. Change that according to your needs.
 },
});

Replace the following strings with the values you obtained when you registered an OAuth 2.0 application in PingOne:

process.env.WEB_OAUTH_CLIENT

The client ID from your OAuth 2.0 application in PingOne.

For example, 6c7eb89a-66e9-ab12-cd34-eeaf795650b2

process.env.SCOPE

The scopes you added to your OAuth 2.0 application in PingOne.

For example, openid profile email phone revoke

process.env.WELL_KNOWN

The .well-known endpoint from your OAuth 2.0 application in PingOne.

To find the .well-known endpoint for an OAuth 2.0 client in PingOne:

Log in to your PingOne administration console.

Go to Applications > Applications, and then select the OAuth 2.0 client you created earlier.

For example, sdkPublicClient.

On the Configuration tab, expand the URLs section, and then copy the OIDC Discovery Endpoint value.

For example, https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/openid-
configuration

process.env.TIMEOUT

Enter how many milliseconds to wait before timing out the OAuth 2.0 flow.

For example, 3000

The result resembles the following:

1.

2.

3.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 903

await forgerock.Config.setAsync({
 clientId: "6c7eb89a-66e9-ab12-cd34-eeaf795650b2",
 redirectUri: `${window.location.origin}`,
 scope: "openid profile email phone revoke",
 serverConfig: {
 wellknown: "https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/openid-
configuration",
 timeout: 3000
 },
});

Alter the logout object as follows:

In the forgerock.FRUser.logout() method, add the following parameter:

{logoutRedirectUri: `${window.location.origin}`}

The presence of this parameter causes the SDK to use a redirect flow for ending the session and revoking the
tokens, which PingOne servers require.

Remove or comment out the following line:

location.assign(`${document.location.origin}/`);

The result resembles the following:

const logout = async () => {
 try {
 await FRUser.logout({
 logoutRedirectUri: `${window.location.origin}`
 });
 // location.assign(`${document.location.origin}/`);
 } catch (error) {
 console.error(error);
 }
};

Optionally, specify which of the configured policies PingOne uses to authenticate users.

In the /javascript/central-login-oidc/src/main.js file, find each instance of the getTokens method that has a
login: 'redirect' parameter and add an additional acr_values query parameter:

await TokenManager.getTokens({
 login: 'redirect',
 query: {
 acr_values: "<Policy IDs>"
 }
});

Replace <Policy IDs> with either a single DaVinci policy, by using its flow policy ID, or one or more PingOne policies by
specifying the policy names, separated by spaces or the encoded space character %20 .

4.

1.

2.

5.

Ping SDK OIDC login tutorials Ping SDKs

904 Copyright © 2025 Ping Identity Corporation

Examples:

DaVinci flow policy ID

acr_values: "d1210a6b0b2665dbaa5b652221badba2"

PingOne policy names

acr_values: "Single_Factor%20Multi_Factor"

For more information, refer to Authentication policies.

Step 4. Test the app

In the following procedure, you run the sample app that you configured in the previous step.

The sample connects to your PingOne server to obtain the correct URIs to authenticate the user, and redirects the browser to
your PingOne server.

After authentication, PingOne redirects the browser back to your application, which then obtains an OAuth 2.0 access token and
displays the related user information.

Run the sample

In a terminal window, navigate to the /javascript folder in your sdk-sample-apps project.

To run the embedded login sample, enter the following:

npm run start:central-login-oidc

In a web browser, navigate to the following URL:

https://localhost:8443

The sample displays a page with two buttons:

Click Login.

The sample app redirects the browser to your PingOne instance.

Prepare › Download › Install › Configure › Run

1.

2.

3.

4.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 905

https://docs.pingidentity.com/pingone/authentication/p1_authenticationpolicies.html
https://docs.pingidentity.com/pingone/authentication/p1_authenticationpolicies.html

Authenticate as a known user in your PingOne system.

After successful authentication, PingOne redirects the browser to the client application.

If the app displays the user information, authentication was successful:

To revoke the OAuth 2.0 token, click the Sign Out button.

The application redirects to the PingOne server to revoke the OAuth 2.0 token and end the session, and then returns to
the URI specified by the logoutRedirectUri parameter of the logout method.

In this tutorial, PingOne redirects users back to the client application, ready to authenticate again.

Recap

Congratulations!

You have now used the Ping SDK for JavaScript to obtain an OAuth 2.0 access token on behalf of a user from your PingOne server.

You have seen how to obtain OAuth 2.0 tokens, and view the related user information.

More information

API reference: TokenManager 

API reference: UserManager 

lightbulb_2
To see the application calling the authorize endpoint, and the redirect back from PingOne with the code and
state OAuth 2.0 parameters, open the Network tab of your browser’s developer tools.

Tip

5.

6.

•

•

Ping SDK OIDC login tutorials Ping SDKs

906 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html

OIDC login to PingOne Advanced Identity Cloud tutorial for Android

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingOne Advanced
Identity Cloud UI for authentication.

The sample connects to the .well-known endpoint of your PingOne Advanced Identity Cloud tenant to obtain the correct URIs to
authenticate the user, and redirects to your PingOne Advanced Identity Cloud tenant’s login UI.

After authentication, PingOne Advanced Identity Cloud redirects the browser back to your application, which then obtains an
OAuth 2.0 access token and displays the related user information.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant with the required
configuration.

For example, you will need to have an OAuth 2.0 client application set up, and a demo user to authenticate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Install the Ping SDK

The sample projects need a number of dependencies that you can install by using the npm command.

For example, the Ping SDK for JavaScript itself is one of the dependencies.

Start step 2 

Prepare › Download › Install › Configure › Run

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 907

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingOne Advanced
Identity Cloud.

Start step 3 

Step 4. Test the app

To test the app, run the sample that you configured in the previous step.

The sample connects to your PingOne Advanced Identity Cloud tenant to obtain the correct URIs to authenticate the user,
and redirects the browser to your PingOne Advanced Identity Cloud tenant.

After authentication, PingOne Advanced Identity Cloud redirects the browser back to your application, which then obtains
an OAuth 2.0 access token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured PingOne Advanced Identity Cloud tenant.

Node and NPM

This sample requires a minimum Node.js version of 18 , and is tested on versions 18 and 20 . To get a supported version
of Node.js, refer to the Node.js download page.

You will also need npm to build the code and run the samples.

Server configuration

This tutorial requires you to configure your PingOne Advanced Identity Cloud tenant as follows:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

Prepare › Download › Install › Configure › Run

1.

Ping SDK OIDC login tutorials Ping SDKs

908 Copyright © 2025 Ping Identity Corporation

https://nodejs.org/en/download/
https://nodejs.org/en/download/

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

2.

3.

4.

◦

◦

◦

◦

◦

5.

1.

2.

3.

◦

◦

◦

◦

4.

5.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 909

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Figure 1. Example username and password authentication journey

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

https://localhost:8443/callback.html

6.

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

Ping SDK OIDC login tutorials Ping SDKs

910 Copyright © 2025 Ping Identity Corporation

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingOne Advanced Identity Cloud,
you can configure CORS to allow browsers from trusted domains to access PingOne Advanced Identity Cloud protected resources.
For example, you might want a custom web application running on your own domain to get an end-user’s profile information
using the PingOne Advanced Identity Cloud REST API.

The Ping SDK for JavaScript samples and tutorials use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different domain for hosting SDK applications, ensure you add them to the CORS configuration as accepted
origin domains.

To update the CORS configuration in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

1.

2.

3.

4.

5.

6.

1.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 911

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

At the top right of the screen, click your name, and then select Tenant settings.

On the Global Settings tab, click Cross-Origin Resource Sharing (CORS).

Perform one of the following actions:

If available, click ForgeRockSDK.

If you haven’t added any CORS configurations to the tenant, click + Add a CORS Configuration, select Ping SDK,
and then click Next.

Add https://localhost:8443 and any DNS aliases you use to host your Ping SDK for JavaScript applications to the
Accepted Origins property.

Complete the remaining fields to suit your environment.

This documentation assumes the following configuration, required for the tutorials and sample applications:

Click Save CORS Configuration.

1. Cookie name value in PingAM servers.
2. In PingOne Advanced Identity Cloud tenants, go to Tenant Settings > Global Settings > Cookie to find this dynamic cookie
name value.

2.

3.

4.

◦

◦

5.

6.

Property Values

Accepted Origins https://localhost:8443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

Enable Caching True

Max Age 600

Allow Credentials True

lightbulb_2
Click Show advanced settings to be able to edit all available fields.

Tip

7.

Ping SDK OIDC login tutorials Ping SDKs

912 Copyright © 2025 Ping Identity Corporation

Step 1. Download the samples

To start this tutorial, you need to download the Ping SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the Ping SDK sample apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Install the Ping SDK

In the following procedure, you install the Ping SDK for JavaScript.

In a terminal window, navigate to the sdk-sample-apps folder.

To install the required packages, enter the following:

npm install

The npm tool downloads the required packages, and places them inside a node_modules folder.

More information

API reference: Ping SDK for JavaScript 

Prepare › Download › Install › Configure › Run

1.

2.

1.

2.

1.

2.

Prepare › Download › Install › Configure › Run

1.

2.

•

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 913

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html

Cloning a repository | GitHub Help

Get npm | npm

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingOne Advanced Identity
Cloud.

In the IDE of your choice, open the sdk-sample-apps folder you cloned in the previous step.

Make a copy of the /javascript/central-login-oidc/.env.example file, and name it .env .

The .env file provides the values used by the forgerock.Config.setAsync() method in javascript/central-login-
oidc/src/main.js .

Update the .env file with the details of your PingOne Advanced Identity Cloud instance.

SCOPE="$SCOPE"
TIMEOUT=$TIMEOUT
WEB_OAUTH_CLIENT="$WEB_OAUTH_CLIENT"
WELL_KNOWN="$WELL_KNOWN"
SERVER_TYPE="$SERVER_TYPE"

Replace the following strings with the values you obtained when preparing your environment.

$SCOPE

The scopes you added to your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, address email openid phone profile

$TIMEOUT

How long to wait for OAuth 2.0 timeouts, in milliseconds.

For example, 3000

$WEB_OAUTH_CLIENT

The client ID from your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, sdkPublicClient

$WELL_KNOWN

The .well-known endpoint from your PingOne Advanced Identity Cloud tenant.

•

•

Prepare › Download › Install › Configure › Run

1.

2.

3.

Ping SDK OIDC login tutorials Ping SDKs

914 Copyright © 2025 Ping Identity Corporation

https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm

You can view the .well-known endpoint for an OAuth 2.0 client in the PingOne Advanced Identity Cloud admin
console:

Log in to your PingOne Advanced Identity Cloud administration console.

Click Applications, and then select the OAuth 2.0 client you created earlier. For example, sdkPublicClient.

On the Sign On tab, in the Client Credentials section, copy the Discovery URI value.

For example, https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/alpha/.well-known/openid-
configuration

$SERVER_TYPE

Ensures the sample app uses the correct behavior for the different servers it supports, for example what logout
parameters to use.

For PingOne Advanced Identity Cloud and PingAM servers, specify AIC .

The result resembles the following:

.env

SCOPE="address email openid phone profile"
TIMEOUT=3000
WEB_OAUTH_CLIENT="sdkPublicClient"
WELL_KNOWN="https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/alpha/.well-known/openid-configuration"
SERVER_TYPE="AIC"

Step 4. Test the app

In the following procedure, you run the sample app that you configured in the previous step.

The sample connects to your PingOne Advanced Identity Cloud tenant to obtain the correct URIs to authenticate the user, and
redirects the browser to your PingOne Advanced Identity Cloud tenant.

After authentication, PingOne Advanced Identity Cloud redirects the browser back to your application, which then obtains an
OAuth 2.0 access token and displays the related user information.

Run the sample

In a terminal window, navigate to the /javascript folder in your sdk-sample-apps project.

To run the embedded login sample, enter the following:

1.

2.

3.

Prepare › Download › Install › Configure › Run

1.

2.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 915

npm run start:central-login-oidc

In a web browser, navigate to the following URL:

https://localhost:8443

The sample displays a page with two buttons:

Click Login.

The sample app redirects the browser to your PingOne Advanced Identity Cloud instance.

Authenticate as a known user in your PingOne Advanced Identity Cloud tenant.

After successful authentication, PingOne Advanced Identity Cloud redirects the browser to the client application.

If the app displays the user information, authentication was successful:

To revoke the OAuth 2.0 token, click the Sign Out button.

3.

4.

lightbulb_2
To see the application calling the authorize endpoint, and the redirect back from PingOne Advanced Identity
Cloud with the code and state OAuth 2.0 parameters, open the Network tab of your browser’s developer
tools.

Tip

5.

6.

Ping SDK OIDC login tutorials Ping SDKs

916 Copyright © 2025 Ping Identity Corporation

In this tutorial, PingOne Advanced Identity Cloud redirects users back to the client application, ready to authenticate again.

Recap

Congratulations!

You have now used the Ping SDK for JavaScript to obtain an OAuth 2.0 access token on behalf of a user from your PingOne
Advanced Identity Cloud tenant.

You have seen how to obtain OAuth 2.0 tokens, and view the related user information.

More information

API reference: TokenManager 

API reference: UserManager 

OIDC login to PingAM tutorial for Android

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingAM UI for
authentication.

The sample connects to the .well-known endpoint of your PingAM server to obtain the correct URIs to authenticate the user,
and redirects to your PingAM server’s login UI.

After authentication, PingAM redirects the browser back to your application, which then obtains an OAuth 2.0 access token and
displays the related user information.

Before you begin

Before you begin this tutorial ensure you have set up your PingAM server with the required configuration.

For example, you will need to have an OAuth 2.0 client application set up, and a demo user to authenticate.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

•

•

Prepare › Download › Install › Configure › Run

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 917

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html

Step 2. Install the Ping SDK

The sample projects need a number of dependencies that you can install by using the npm command.

For example, the Ping SDK for JavaScript itself is one of the dependencies.

Start step 2 

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingAM.

Start step 3 

Step 4. Test the app

To test the app, run the sample that you configured in the previous step.

The sample connects to your PingAM server to obtain the correct URIs to authenticate the user, and redirects the browser
to your PingAM server.

After authentication, PingAM redirects the browser back to your application, which then obtains an OAuth 2.0 access token
and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured PingAM server.

Node and NPM

This sample requires a minimum Node.js version of 18 , and is tested on versions 18 and 20 . To get a supported version
of Node.js, refer to the Node.js download page.

You will also need npm to build the code and run the samples.

Prepare › Download › Install › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

918 Copyright © 2025 Ping Identity Corporation

https://nodejs.org/en/download/
https://nodejs.org/en/download/

Server configuration

This tutorial requires you to configure your PingAM server as follows:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

1.

2.

3.

◦

◦

◦

4.

1.

2.

3.

◦

◦

◦

◦

4.

5.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 919

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Figure 1. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

https://localhost:8443/callback.html

+

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

7.

1.

2.

3.

4.

5.

lightbulb_2
The Ping SDK for JavaScript attempts to load the redirect page to capture the OAuth 2.0 code and state query
parameters that the server appended to the redirect URL.
If the page you redirect to does not exist, takes a long time to load, or runs any JavaScript you might get a timeout,
delayed authentication, or unexpected errors.
To ensure the best user experience, we highly recommend that you redirect to a static HTML page with minimal HTML
and no JavaScript when obtaining OAuth 2.0 tokens.

Tip

emergency_home
Also add any other domains where you will be hosting SDK applications. . In Scopes, enter the following values:

Important

Ping SDK OIDC login tutorials Ping SDKs

920 Copyright © 2025 Ping Identity Corporation

+ openid profile email address . Click Create.

+ PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration. . On the Core tab: .. In Client
type, select Public . .. Disable Allow wildcard ports in redirect URIs. .. Click Save Changes. . On the Advanced tab: .. In Grant
Types, enter the following values:

+

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingAM, you can configure CORS
to allow browsers from trusted domains to access PingAM protected resources. For example, you might want a custom web
application running on your own domain to get an end-user’s profile information using the PingAM REST API.

The Ping SDK for JavaScript samples and tutorials all use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different URL for hosting SDK applications, ensure you add them to the CORS configuration as accepted origin
domains.

To enable CORS in PingAM, and create a CORS filter to allow requests from your configured domain names, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to Configure > Global Services > CORS Service > Configuration, and set the Enable the CORS filter property to
true .

1.

2.

1.

1.

2.

3.

4.

5.

6.

1.

2.

emergency_home
If this property is not enabled, CORS headers are not added to responses from PingAM, and CORS is disabled
entirely.

Important

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 921

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

On the Secondary Configurations tab, click Click Add a Secondary Configuration.

In the Name field, enter ForgeRockSDK .

in the Accepted Origins field, enter any DNS aliases you use for your SDK apps.

This documentation assumes the following configuration:

Click Create.

PingAM displays the configuration of your new CORS filter.

On the CORS filter configuration page:

Ensure Enable the CORS filter is enabled.

Set the Max Age property to 600

Ensure Allow Credentials is enabled.

Click Save Changes.

1. Cookie name value in PingAM servers.
2. In PingOne Advanced Identity Cloud tenants, go to Tenant Settings > Global Settings > Cookie to find this dynamic cookie
name value.

Step 1. Download the samples

3.

4.

5.

Property Values

Accepted Origins https://localhost:8443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

6.

7.

1.

2.

3.

8.

Prepare › Download › Install › Configure › Run

Ping SDK OIDC login tutorials Ping SDKs

922 Copyright © 2025 Ping Identity Corporation

To start this tutorial, you need to download the Ping SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the Ping SDK sample apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Install the Ping SDK

In the following procedure, you install the Ping SDK for JavaScript.

In a terminal window, navigate to the sdk-sample-apps folder.

To install the required packages, enter the following:

npm install

The npm tool downloads the required packages, and places them inside a node_modules folder.

More information

API reference: Ping SDK for JavaScript 

Cloning a repository | GitHub Help

Get npm | npm

1.

2.

1.

2.

1.

2.

Prepare › Download › Install › Configure › Run

1.

2.

•

•

•

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 923

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingOne Advanced Identity
Cloud.

In the IDE of your choice, open the sdk-sample-apps folder you cloned in the previous step.

Make a copy of the /javascript/central-login-oidc/.env.example file, and name it .env .

The .env file provides the values used by the forgerock.Config.setAsync() method in javascript/central-login-
oidc/src/main.js .

Update the .env file with the details of your PingAM server.

SCOPE="$SCOPE"
TIMEOUT=$TIMEOUT
WEB_OAUTH_CLIENT="$WEB_OAUTH_CLIENT"
WELL_KNOWN="$WELL_KNOWN"
SERVER_TYPE="$SERVER_TYPE"

Replace the following strings with the values you obtained when preparing your environment.

$SCOPE

The scopes you added to your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, address email openid phone profile

$TIMEOUT

How long to wait for OAuth 2.0 timeouts, in milliseconds.

For example, 3000

$WEB_OAUTH_CLIENT

The client ID from your OAuth 2.0 application in PingAM.

For example, sdkPublicClient

$WELL_KNOWN

The .well-known endpoint from your PingAM tenant.

For example, https://openam.example.com:8443/openam/oauth2/.well-known/openid-configuration

$SERVER_TYPE

Ensures the sample app uses the correct behavior for the different servers it supports, for example what logout
parameters to use.

Prepare › Download › Install › Configure › Run

1.

2.

3.

Ping SDK OIDC login tutorials Ping SDKs

924 Copyright © 2025 Ping Identity Corporation

For PingOne Advanced Identity Cloud and PingAM servers, specify AIC .

The result resembles the following:

.env

SCOPE="address email openid phone profile"
TIMEOUT=3000
WEB_OAUTH_CLIENT="sdkPublicClient"
WELL_KNOWN="https://openam.example.com:8443/openam/oauth2/.well-known/openid-configuration"
SERVER_TYPE="AIC"

Step 4. Test the app

In the following procedure, you run the sample app that you configured in the previous step.

The sample connects to your PingAM server to obtain the correct URIs to authenticate the user, and redirects the browser to your
PingAM server.

After authentication, PingAM redirects the browser back to your application, which then obtains an OAuth 2.0 access token and
displays the related user information.

Run the sample

In a terminal window, navigate to sdk-sample-apps/javascript in your project.

To run the embedded login sample, enter the following:

npm run start:central-login-oidc

In a web browser, navigate to the following URL:

https://localhost:8443

The sample displays a page with two buttons:

Click Login.

The sample app redirects the browser to your PingAM instance.

Prepare › Download › Install › Configure › Run

1.

2.

3.

4.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 925

Authenticate as a known user in your PingAM system.

After successful authentication, PingAM redirects the browser to the client application.

If the app displays the user information, authentication was successful:

To revoke the OAuth 2.0 token, click the Sign Out button.

In this tutorial, PingAM redirects users back to the client application, ready to authenticate again.

Recap

Congratulations!

You have now used the Ping SDK for JavaScript to obtain an OAuth 2.0 access token on behalf of a user from your PingAM server.

You have seen how to obtain OAuth 2.0 tokens, and view the related user information.

More information

API reference: TokenManager 

API reference: UserManager 

lightbulb_2
To see the application calling the authorize endpoint, and the redirect back from PingAM with the code and
state OAuth 2.0 parameters, open the Network tab of your browser’s developer tools.

Tip

5.

6.

•

•

Ping SDK OIDC login tutorials Ping SDKs

926 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html

OIDC login to PingFederate tutorial for JavaScript

In this tutorial you update a sample app that uses OIDC-based login to obtain tokens by redirecting to the PingFederate UI
for authentication.

The sample connects to the .well-known endpoint of your PingFederate server to obtain the correct URIs to authenticate the
user, and redirects to your PingFederate server’s login UI.

After authentication, PingFederate redirects the browser back to your application, which then obtains an OAuth 2.0 access token
and displays the related user information.

Before you begin

Before you begin this tutorial ensure you have set up your PingFederate server with the required configuration.

For example, you will need to configure CORS, have an OAuth 2.0 client application set up.

Complete prerequisites 

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 

Step 2. Install the Ping SDK

The sample projects need a number of dependencies that you can install by using the npm command.

For example, the Ping SDK for JavaScript itself is one of the dependencies.

Start step 2 

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingFederate.

Start step 3 

Prepare › Download › Install › Configure › Run

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 927

Step 4. Test the app

In the following procedure, you run the sample app that you configured in the previous step.

The sample connects to your PingFederate server to obtain the correct URIs to authenticate the user, and redirects the
browser to your PingFederate server.

After authentication, PingFederate redirects the browser back to your application, which then obtains an OAuth 2.0 access
token and displays the related user information.

Test app 

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured PingFederate server.

Prerequisites

Node and NPM

This sample requires a minimum Node.js version of 18 , and is tested on versions 18 and 20 . To get a supported version
of Node.js, refer to the Node.js download page.

You will also need npm to build the code and run the samples.

Server configuration

This tutorial requires you to configure your PingFederate server as follows:

OAuth 2.0 client application profiles define how applications connect to PingFederate and obtain OAuth 2.0 tokens.

To allow the Ping SDKs to connect to PingFederate and obtain OAuth 2.0 tokens, you must register an OAuth 2.0 client
application:

Log in to the PingFederate administration console as an administrator.

Navigate to Applications › OAuth › Clients.

Click Add Client.

PingFederate displays the Clients | Client page.

In Client ID and Name, enter a name for the profile, for example sdkPublicClient

Make a note of the Client ID value, you will need it when you configure the sample code.

Prepare › Download › Install › Configure › Run

1.

2.

3.

4.

Ping SDK OIDC login tutorials Ping SDKs

928 Copyright © 2025 Ping Identity Corporation

https://nodejs.org/en/download/
https://nodejs.org/en/download/

In Client Authentication, select None .

In Redirect URIs, add the following values:

https://localhost:8443

In Allowed Grant Types, select the following values:

Authorization Code

Refresh Token

In the OpenID Connect section:

In Logout Mode, select Ping Front-Channel

In Front-Channel Logout URIs, add the following values:

https://localhost:8443

In Post-Logout Redirect URIs, add the following values:

https://localhost:8443

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the Ping SDK
PingFederate example applications and tutorials covered by this documentation.

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingFederate, you can configure
CORS to allow browsers or apps from trusted domains to access protected resources.

5.

6.

emergency_home
Also add any other URLs where you host SDK applications.
Failure to add redirect URLs that exactly match your client app’s values can cause PingFederate to display an
error message such as Redirect URI mismatch when attempting to end a session by redirecting from the
SDK.

Important

7.

8.

1.

2.

emergency_home
Also add any other URLs that redirect users to PingFederate to end their session.
Failure to add sign off URLs that exactly match your client app’s values can cause PingFederate to
display an error message such as invalid post logout redirect URI when attempting to end a
session by redirecting from the SDK.

Important

3.

9.

emergency_home
After changing PingFederate configuration using the administration console, you must replicate the changes to
each server node in the cluster before they take effect.
In the PingFederate administration console, navigate to System > Server > Cluster Management, and click
Replicate.

Important

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 929

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

To configure CORS in PingFederate follow these steps:

Log in to the PingFederate administration console as an administrator.

Navigate to System › OAuth Settings › Authorization Server Settings.

In the Cross-Origin Resource Sharing Settings section, in the Allowed Origin field, enter any DNS aliases you use for your
SDK apps.

This documentation assumes the following configuration:

Click Save.

Your PingFederate server is now able to accept connections from origins hosting apps built with the Ping SDKs.

Step 1. Download the samples

To start this tutorial, you need to download the Ping SDK sample apps repo, which contains the projects you will use.

In a web browser, navigate to the Ping SDK sample apps repository.

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

1.

2.

3.

Property Values

Allowed Origin https://localhost:8443

4.

emergency_home
After changing PingFederate configuration using the administration console, you must replicate the changes to
each server node in the cluster before they take effect.
In the PingFederate administration console, navigate to System > Server > Cluster Management, and click
Replicate.

Important

Prepare › Download › Install › Configure › Run

1.

2.

1.

2.

1.

2.

Ping SDK OIDC login tutorials Ping SDKs

930 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Install the Ping SDK

In the following procedure, you install the Ping SDK for JavaScript.

In a terminal window, navigate to the sdk-sample-apps folder.

To install the required packages, enter the following:

npm install

The npm tool downloads the required packages, and places them inside a node_modules folder.

More information

API reference: Ping SDK for JavaScript 

Cloning a repository | GitHub Help

Get npm | npm

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the OAuth 2.0 application you created in PingFederate.

In the IDE of your choice, open the sdk-sample-apps folder you cloned in the previous step.

Open the /javascript/central-login-oidc/src/main.js file.

Locate the forgerock.Config.setAsync() method and update the properties to match your PingFederate environment:

Prepare › Download › Install › Configure › Run

1.

2.

•

•

•

Prepare › Download › Install › Configure › Run

1.

2.

3.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 931

https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm

await forgerock.Config.setAsync({
 clientId: process.env.WEB_OAUTH_CLIENT, // e.g. 'ForgeRockSDKClient' or PingOne Services Client GUID
 redirectUri: `${window.location.origin}`, // Redirect back to your app, e.g. 'https://localhost:8443' or the
domain your app is served.
 scope: process.env.SCOPE, // e.g. 'openid profile email address phone revoke' When using PingOne services
revoke scope is required
 serverConfig: {
 wellknown: process.env.WELL_KNOWN,
 timeout: process.env.TIMEOUT, // Any value between 3000 to 5000 is good, this impacts the redirect time to
login. Change that according to your needs.
 },
});

Replace the following strings with the values you obtained when you registered an OAuth 2.0 application in PingFederate:

process.env.WEB_OAUTH_CLIENT

The client ID from your OAuth 2.0 application in PingFederate.

For example, sdkPublicClient

process.env.SCOPE

The scopes you added to your OAuth 2.0 application in PingFederate.

For example, openid profile email phone

process.env.WELL_KNOWN

The .well-known endpoint from your OAuth 2.0 application in PingFederate.

To form the .well-known endpoint for a PingFederate server:

Log in to your PingFederate administration console.

Navigate to System › Server › Protocol Settings.

Make a note of the Base URL value.

For example, https://pingfed.example.com

Append /.well-known/openid-configuration after the base URL value to form the .well-known
endpoint of your server.

For example, https://pingfed.example.com/.well-known/openid-configuration .

The SDK reads the OAuth 2.0 paths it requires from this endpoint.

For example, https://pingfed.example.com/.well-known/openid-configuration

1.

2.

3.

info
Do not use the admin console URL.

Note

4.

Ping SDK OIDC login tutorials Ping SDKs

932 Copyright © 2025 Ping Identity Corporation

process.env.TIMEOUT

Enter how many milliseconds to wait before timing out the OAuth 2.0 flow.

For example, 3000

The result resembles the following:

await forgerock.Config.setAsync({
 clientId: "sdkPublicClient",
 redirectUri: `${window.location.origin}`,
 scope: "openid profile email phone",
 serverConfig: {
 wellknown: "https://auth.pingone.com/3072206d-c6ce-ch15-m0nd-f87e972c7cc3/as/.well-known/openid-

configuration",
 timeout: 3000
 },
});

Step 4. Test the app

In the following procedure, you run the sample app that you configured in the previous step.

The sample connects to your PingFederate server to obtain the correct URIs to authenticate the user, and redirects the browser
to your PingFederate server.

After authentication, PingFederate redirects the browser back to your application, which then obtains an OAuth 2.0 access token
and displays the related user information.

Run the sample

In a terminal window, navigate to the /javascript folder in your sdk-sample-apps project.

To run the embedded login sample, enter the following:

npm run start:central-login-oidc

In a web browser, navigate to the following URL:

https://localhost:8443

The sample displays a page with two buttons:

Prepare › Download › Install › Configure › Run

1.

2.

3.

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 933

https://pingfed.example.com/.well-known/openid-configuration
https://pingfed.example.com/.well-known/openid-configuration
https://pingfed.example.com/.well-known/openid-configuration

Click Login.

The sample app redirects the browser to your PingFederate instance.

Authenticate as a known user in your PingFederate system.

After successful authentication, PingFederate redirects the browser to the client application.

If the app displays the user information, authentication was successful:

To revoke the OAuth 2.0 token, click the Sign Out button.

In this tutorial, PingFederate redirects users back to the client application, ready to authenticate again.

Recap

Congratulations!

You have now used the Ping SDK for JavaScript to obtain an OAuth 2.0 access token on behalf of a user from your PingFederate
server.

You have seen how to obtain OAuth 2.0 tokens, and view the related user information.

4.

lightbulb_2
To see the application calling the authorize endpoint, and the redirect back from PingFederate with the code
and state OAuth 2.0 parameters, open the Network tab of your browser’s developer tools.

Tip

5.

6.

Ping SDK OIDC login tutorials Ping SDKs

934 Copyright © 2025 Ping Identity Corporation

More information

API reference: TokenManager 

API reference: UserManager 

•

•

Ping SDKs Ping SDK OIDC login tutorials

Copyright © 2025 Ping Identity Corporation 935

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html

Implement your use cases with the Ping
SDKs

The SDKs enable you to implement many authentication, registration, and self-service use cases into your mobile and web apps.

Visit the following pages for more information on implementing different OIDC login use cases using the Ping SDKs:

Creating a custom UI to share across OIDC apps

Applies to: Android |  iOS |  JavaScript

Learn how to replace the default PingAM or PingOne Advanced Identity Cloud user interface for authentication with your
own custom user interface.

You’ll use an existing JavaScript sample application to act as your custom UI. This app will step through your
authentication journeys, and act as the central UI for one or more sample client apps.

Read more 

Creating a custom UI app to share across OIDC apps

In this tutorial you replace the default PingAM or PingOne Advanced Identity Cloud user interface for authentication with your
own custom user interface.

You’ll use an existing JavaScript sample application to act as your custom UI. This app will step through your authentication
journeys, and act as the central UI for one or more sample client apps.

Server support:

 PingOne
 PingOne Advanced Identity Cloud
 PingAM
 PingFederate

SDK support:

 Ping SDK for Android
 Ping SDK for iOS
 Ping SDK for JavaScript

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 937

Understanding the custom UI flow

When the Ping SDKs perform OIDC login they initiate the OAuth 2.0 Authorization Code flow on your PingOne Advanced
Identity Cloud tenant or PingAM server.

Your server would usually use its built-in user interface to authenticate the user, before returning to the client app with the
authorization code.

For this tutorial you’ll configure your server to use your custom UI app to authenticate users instead.

Figure 1. Custom UI app in OAuth 2.0 authorization code flow

The overall authentication flow is as follows:

In the client app, when the user initiates sign on the client app calls the /authorize endpoint to start the OAuth 2.0 flow.

The OAuth 2.0 client you configure in the server needs to authenticate the user, and redirects users to your custom UI.

It appends a goto query parameter to the URL, so that the custom UI app can redirect to the server after successful
authentication.

The custom UI starts the authentication journey, and steps through each node, handling the callbacks as necessary.

Note that the custom UI app does not perform any OAuth 2.0 operations itself. Its only role is to authenticate the user by
stepping through the journey, and then returning back to the server with the session token, so that the server can
continue the OAuth 2.0 flow.

Client app Advanced Identity Cloud / PingAM Custom UI app

Browser

Browser

OAuth 2.0 client

Client ID:
sdkCustomUI

OAuth 2.0 client

Client ID:
sdkCustomUI

Auth journey

Journey name:
login

Auth journey

Journey name:
login

Running on local IP:
https://192.168.0.35:9443

Running on local IP:
https://192.168.0.35:9443

1)
Visit /authorize endpoint
to start flow

2) Redirect to custom UI app for authentication

3) Start auth journey

Custom UI app steps
through journey with
input from the user
when required.

4)
Authenticate user, displaying
the custom UI app in the
webview or browser.

5) Return session token

6) Call /authorize endpoint with session token

7)
Redirect to client
with authorization code

8)
Call /access_token endpoint
with authorization code

9)
Return access, refresh,
and ID tokens

1.

2.

3.

Implement your use cases with the Ping SDKs Ping SDKs

938 Copyright © 2025 Ping Identity Corporation

https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.1
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.1

The custom UI app renders the UI to handle any interactive callbacks in the journey. For example, to capture the
username and password credentials.

When authentication is successful, the server issues a session token on behalf of the user to the custom UI app.

The following snippet shows how the custom sample app handles the successful authentication, and uses the goto
parameter:

Excerpt from /javascript/embedded-login/src/main.js

// Check URL for query parameters
const url = new URL(document.location);
const params = url.searchParams;
const goto = params.get('goto');

const handleStep = async (step) => {
 switch (step.type) {
 case 'LoginSuccess': {
 if (goto != null) {
 // Journey complete
 // Return to server to issue auth code
 window.location.replace(goto);
 return;
 }
 ...
 }
...
}

Due to the presence of the goto parameter, the custom UI app can now redirect to the OAuth 2.0 /authorize endpoint,
using the session token to authenticate the request.

4.

5.

emergency_home
For security reasons your custom UI must validate that the URL in the goto parameter matches a domain you
trust before redirecting to it.
Failure to validate the domain of the goto URL before redirecting could result in link hijacking or other
security-related problems.

Important

6.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 939

The OAuth 2.0 client accepts the request, and returns the authorization code to the client application.

The URL of the client app must match one of the redirect URIs listed in the OAuth 2.0 client configuration.

The client application recognizes that an authorization code is present and that authentication was a success, and can now
exchange the authorization code by calling the /access_token OAuth 2.0 endpoint.

The server validates the authorization code and issues the access token, an ID token, and if enabled, refresh tokens.

The client app can now call the userinfo endpoint, using the access token as a bearer token for authentication, and
retrieve information about the user.

Tutorial steps

Complete the following tasks to try out this tutorial:

Before you begin

Before you begin this tutorial ensure you have downloaded the sample code from our sample code repository.

You will also need to determine the local IP address of your computer, and create a DNS alias from which to run the client
sample app.

Complete prerequisites 

info
To authenticate the user the browser attaches the session token as a cookie in the request to the /authorize
endpoint.
Your server issues session token cookies for use on the same domain you have assigned to it. That domain will
be one of the following:

The original URL for the server, for example:
openam-forgerock-sdks.forgeblocks.com (PingOne Advanced Identity Cloud tenants)
openam.example.com (PingAM servers)

A custom domain assigned to the server, for example:
id.mycompany.com

If the custom UI app is running on a different domain than your server then browsers consider the cookie to
be from a third party.
Some browsers, such as Safari block access to third-party cookies, so the requests that use them appear to not
be authenticated.
For this tutorial you can disable third-party cookie checks in the browser, but for production you must ensure
your custom UI and your server are sharing the same domain.

Note

◦

▪

▪

◦

▪

7.

8.

9.

person_check

Implement your use cases with the Ping SDKs Ping SDKs

940 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingoneaic/latest/realms/custom-domains.html
https://docs.pingidentity.com/pingoneaic/latest/realms/custom-domains.html

Part 1. Configuring your PingAM server or PingOne Advanced Identity
Cloud tenant

In this section you configure your PingAM server or PingOne Advanced Identity Cloud tenant with an OAuth 2.0 client to
accept connections from the sample client apps.

The OAuth 2.0 client also contains the configuration to redirect your users to authenticate using the custom UI sample app
running on your local IP address.

Lastly, you configure Cross-origin Resource Sharing (CORS) to allow the sample UI app, and the client JavaScript app to
connect to protected endpoints.

Start step 1 

Part 2. Running the JavaScript custom UI sample app

In this section you configure the embedded login sample JavaScript app to act as your custom UI.

Start step 2 

Part 3. Running a client sample app

The final step is to configure and run client OIDC sample apps.

These sample apps start the OAuth 2.0 flow on your PingAM server or PingOne Advanced Identity Cloud tenant, which
redirects the user to your custom UI sample app, running locally on your computer.

After authentication the server redirects users back to the client sample apps and appends the code parameter, which
your client app uses to complete the OAuth 2.0 flow.

Test app 

Before you begin

Step 1. Downloading the samples

You need to download the SDK sample apps repo, which contains the projects you will use for this tutorial.

In a web browser, navigate to the SDK Sample Apps repository.

widgets

desktop_windows

devices

1.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 941

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Download the source code using one of the following methods:

Download a ZIP file

Click Code, and then click Download ZIP.

Extract the contents of the downloaded ZIP file to a suitable location.

Use a Git-compatible tool to clone the repo locally

Click Code, and then copy the HTTPS URL.

Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Installing the dependencies

In the following procedure, you install the required modules and dependencies, including the Ping SDK for JavaScript.

In a terminal window, navigate to the sdk-sample-apps/javascript folder.

To install the required packages, enter the following:

npm install

The npm tool downloads the required packages, and places them inside a node_modules folder.

Step 3. Hosting the sample apps

In a production scenario your custom login UI app would have its own fully-qualified domain name that your Android, iOS, and
JavaScript clients could all connect to.

For simplicity, in this tutorial you will serve your custom login UI app from the local IP address of your host computer.

Using the local IP of your host computer means Android and iOS apps running on a simulator can resolve the address, and also
JavaScript apps running locally.

Obtaining your local IP address

Complete the following steps to obtain your local IP address:

2.

1.

2.

1.

2.

1.

2.

Implement your use cases with the Ping SDKs Ping SDKs

942 Copyright © 2025 Ping Identity Corporation

In a command prompt, enter ipconfig /all

Windows displays information about the network adapters in your computer.

Windows IP Configuration
 Host Name : Windows
 Primary Dns Suffix :
 Node Type : Hybrid
 IP Routing Enabled. : No
 WINS Proxy Enabled. : No

Ethernet adapter Ethernet:
 Media State : Media disconnected
 Description : E3100G 2.5 Gigabit Ethernet Controller
 Physical Address. : 74-34-E2-2b-30-44
 DHCP Enabled. : Yes
 Autoconfiguration Enabled : Yes

Wireless LAN adapter Local Area Connection* 1:
 Media State : Media disconnected
 Description : Microsoft Wi-Fi Direct Virtual Adapter
 Physical Address. : 67-6C-EB-B3-46-82
 DHCP Enabled. : Yes
 Autoconfiguration Enabled : Yes

Wireless LAN adapter Wi-Fi:
 Description : Wireless Network Adapter (210NGW)
 Physical Address. : 87-6C-DF-C9-17-90
 DHCP Enabled. : Yes
 Autoconfiguration Enabled : Yes
 IPv6 Address. : 2406:3d08:2f61:1400::2d47
 Lease Obtained. : January 27, 2025 11:09:26 AM
 Lease Expires : January 28, 2025 6:09:26 AM
 IPv6 Address. : 2406:3d08:2f61:1400::2d47
 Temporary IPv6 Address. : 2604:2b08:2f93:2600:b479:b5b4:25ff:acc8
 Link-local IPv6 Address : fe54::d9e5:16ff:d9d4:e22%10

IPv4 Address. : 192.168.0.35
 Subnet Mask : 255.255.255.0
 Lease Obtained. : January 27, 2025 11:09:24 AM
 Lease Expires : January 29, 2025 11:09:26 AM
 Default Gateway : fe80::bb8:c0ee:fea5:8c58%10
 192.168.0.1
 DHCP Server : 192.168.0.1
 DHCPv6 IAID : 893252287
 DHCPv6 Client DUID. : 00-01-00-01-1b-87-59-2D-74-86-C4-3C-30-88
 DNS Servers : 2025:4e8:0:230b::11
 2025:4e8:0:230c::11
 8.8.8.8
 NetBIOS over Tcpip. : Enabled

Ignoring adapters where the Media State property is listed as Media Disconnected , locate the ethernet or
wireless adapter that connects to your router.

Windows

1.

2.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 943

Make a note of the IPv4 Address field.

In this case, the local IPv4 IP address is 192.168.0.35 .

You will use this address to access your custom UI app for this tutorial.

3.

lightbulb_2
The address will often start with 192.168. , 10.0. , or 172.16. , which are the first digits of the
commonly used reserved private IPv4 addresses.

Tip

Implement your use cases with the Ping SDKs Ping SDKs

944 Copyright © 2025 Ping Identity Corporation

In a terminal window, enter ifconfig

macOS

1.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 945

macOS displays information about the network interfaces in your computer.

Implement your use cases with the Ping SDKs Ping SDKs

946 Copyright © 2025 Ping Identity Corporation

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
options=1203<RXCSUM,TXCSUM,TXSTATUS,SW_TIMESTAMP>
inet 127.0.0.1 netmask 0xff000000
inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
nd6 options=201<PERFORMNUD,DAD>

gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280
stf0: flags=0<> mtu 1280
anpi0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

options=400<CHANNEL_IO>
ether 22:d0:cb:e5:fd:09
media: none
status: inactive

en3: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=404<VLAN_MTU,CHANNEL_IO>
ether f8:e4:3b:ad:67:c5
inet6 fe80::ca4:9a6c:f835:80c9%en8 prefixlen 64 secured scopeid 0x7
inet6 fd84:bb80:dd60:23b3:855:171f:3651:b7de prefixlen 64 autoconf secured
inet 192.168.0.35 netmask 0xffffff00 broadcast 192.168.0.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

en1: flags=8963<UP,BROADCAST,SMART,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500
options=460<TSO4,TSO6,CHANNEL_IO>
ether 36:e5:80:6e:d1:40
media: autoselect <full-duplex>
status: inactive

en2: flags=8963<UP,BROADCAST,SMART,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500
options=460<TSO4,TSO6,CHANNEL_IO>
ether 36:e5:80:6e:d1:44
media: autoselect <full-duplex>
status: inactive

bridge0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=63<RXCSUM,TXCSUM,TSO4,TSO6>
ether 36:e5:80:6e:d1:40
Configuration:

id 0:0:0:0:0:0 priority 0 hellotime 0 fwddelay 0
maxage 0 holdcnt 0 proto stp maxaddr 100 timeout 1200
root id 0:0:0:0:0:0 priority 0 ifcost 0 port 0
ipfilter disabled flags 0x0

member: en1 flags=3<LEARNING,DISCOVER>
 ifmaxaddr 0 port 11 priority 0 path cost 0
member: en2 flags=3<LEARNING,DISCOVER>
 ifmaxaddr 0 port 12 priority 0 path cost 0
member: en3 flags=3<LEARNING,DISCOVER>
 ifmaxaddr 0 port 13 priority 0 path cost 0
media: <unknown type>
status: inactive

ap1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=6460<TSO4,TSO6,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
ether d6:0f:2c:90:e9:b6
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (none)
status: inactive

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 947

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=6460<TSO4,TSO6,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
ether c6:2a:06:29:ee:28
nd6 options=201<PERFORMNUD,DAD>
media: autoselect
status: inactive

utun0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500
inet6 fe80::a19f:5de6:a4ca:fd90%utun0 prefixlen 64 scopeid 0x13
nd6 options=201<PERFORMNUD,DAD>

Looking at interfaces where the status property is listed as active , locate the ethernet or wireless interface that
connects to your router.

Often the prefix of the interface is en .

Make a note of the IPv4 address in the inet field.

In this case, the local IPv4 IP address is 192.168.0.35 .

You will use this address to access your custom UI app for this tutorial.

Creating a DNS alias for the JavaScript client application

You should assign a DNS alias to your localhost address to help differentiate the client application from the custom UI application
during this tutorial.

You can choose whatever host name you prefer for your client application. This tutorial uses sdkapp.example.com .

Complete the following steps to configure a DNS alias for your local IP address:

As an administrator, in a text editor open the %SystemRoot%\system32\drivers\etc\hosts file.

Add the following:

127.0.0.1 sdkapp.example.com

Close and save the file.

2.

3.

lightbulb_2
The address will often start with 192.168. , 10.0. , or 172.16. , which are the first digits of the
commonly used reserved private IPv4 addresses.

Tip

Windows

1.

2.

3.

Implement your use cases with the Ping SDKs Ping SDKs

948 Copyright © 2025 Ping Identity Corporation

As an administrator, in a text editor open the /etc/hosts file.

Add the following:

127.0.0.1 sdkapp.example.com

Close and save the file.

Part 1. Configuring your PingAM server or PingOne Advanced Identity Cloud tenant

In this section you configure your PingAM server or PingOne Advanced Identity Cloud tenant with an OAuth 2.0 client to accept
connections from the sample client apps.

The OAuth 2.0 client also contains the configuration to redirect your users to authenticate using the custom UI sample app
running on your local IP address.

Lastly, you configure Cross-origin Resource Sharing (CORS) to allow the sample UI app, and the client JavaScript app to connect
to protected endpoints.

Step 1. Configure an OAuth 2.0 client

The initial request to authenticate a user from your client application requires an OAuth 2.0 client is setup.

This client also contains the configuration for your custom UI application. This means that you can have different UI applications
for different clients, allowing you to apply different branding to each.

In this step you configure a suitable OAuth 2.0 client in either your PingAM server of PingOne Advanced Identity Cloud tenant, by
using the Access Management native console.

If you are using an PingOne Advanced Identity Cloud tenant, follow these steps to open the Access Management native console:

Log in to your PingOne Advanced Identity Cloud tenant.

Navigate to  Native Consoles > Access Management.

In the Access Management native console, complete these steps to register an OAuth 2.0 client for this tutorial:

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client

On the New OAuth 2.0 Client page:

In Client ID, enter an identifier for the client.

For example, sdkCustomUI

In Redirection URIs, enter the URIs that will be hosting your client applications.

Add the DNS alias you created earlier for the JavaScript sample client app:

macOS

1.

2.

3.

1.

2.

1.

2.

1.

2.

▪

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 949

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

https://sdkapp.example.com:8443

If you want to test your setup with the Android or iOS sample apps, also add the following:

org.forgerock.demo://oauth2redirect

In Scopes, enter each of the following:

openid

profile

email

phone

address

Click Create.

The authorization server creates the client and navigates to the edit page for it.

On the Core tab:

In Client type, select Public .

Click Save Changes.

On the Advanced tab:

In Token Endpoint Authentication Method, select none .

Set Implied Consent to Enabled.

Click Save Changes.

On the OAuth2 Provider Overrides tab:

Set Enable OAuth2 Provider Overrides to Enabled.

In Custom Login URL Template, enter the URL of the custom UI application, followed by the query parameters
required to navigate between the client, custom UI, and authorization server.

For this tutorial, use the local IP address of your computer that you obtained earlier, and the port number you
configured for the custom UI sample app (9443):

https://192.168.0.35:9443?goto=${goto}<#if acrValues??>&acr_values=${acrValues}</#if><#if realm??

>&realm=${realm}</#if><#if module??>&module=${module}</#if><#if service??>&service=${service}</

#if><#if locale??>&locale=${locale}</#if>

Set Use Client-Side Access & Refresh Tokens to Enabled.

Set Allow Clients to Skip Consent to Enabled

▪

3.

◦

◦

◦

◦

◦

4.

5.

1.

2.

emergency_home
You must click Save Changes before changing tabs otherwise the page discards any changes you made
on the tab.

Important

6.

1.

2.

3.

7.

1.

2.

3.

4.

Implement your use cases with the Ping SDKs Ping SDKs

950 Copyright © 2025 Ping Identity Corporation

Click Save Changes.

You have now configured the OAuth 2.0 client to issue tokens to your client applications, and redirect login requests to your
custom UI application.

Step 2. Configure CORS

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. Configure CORS to allow browsers
from trusted addresses to access your protected resources.

For this tutorial you configure CORS to allow the client JavaScript application to access OAuth 2.0 endpoints, and the custom UI
application to access your authentication journeys.

To configure CORS, select your authorization server:

5.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 951

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

To update the CORS configuration in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

At the top right of the screen, click your name, and then select Tenant settings.

On the Global Settings tab, click Cross-Origin Resource Sharing (CORS).

Perform one of the following actions:

If available, click ForgeRockSDK.

If you haven’t added any CORS configurations to the tenant, click + Add a CORS Configuration, select Ping
SDK, and then click Next.

Add the IP addresses and port numbers of where you are hosting the custom UI app and the client sample app to
the Accepted Origins property.

Complete the remaining fields to suit your environment.

An example configuration for this tutorial is as follows:

PingOne Advanced Identity Cloud

1.

2.

3.

4.

◦

◦

5.

6.

Property Values
https://sdkapp.example.com:8443

https://192.168.0.35:9443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

Enable Caching True

Max Age 600

Allow Credentials True

lightbulb_2
Click Show advanced settings to be able to edit all available fields.

Tip

Implement your use cases with the Ping SDKs Ping SDKs

952 Copyright © 2025 Ping Identity Corporation

Click Save CORS Configuration.7.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 953

To enable CORS in PingAM, and create a CORS filter to allow requests from your configured domain names, follow these
steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Configure > Global Services > CORS Service > Configuration, and set the Enable the CORS filter
property to true .

On the Secondary Configurations tab, click Click Add a Secondary Configuration.

In the Name field, enter ForgeRockSDK .

In the Accepted Origins field, enter the IP addresses and port numbers of where you are hosting the custom UI
app and the client sample app.

An example configuration for this tutorial is as follows:

Click Create.

PingAM displays the configuration of your new CORS filter.

PingAM

1.

2.

emergency_home
If this property is not enabled, CORS headers are not added to responses from PingAM, and CORS is
disabled entirely.

Important

3.

4.

5.

Property Values
https://sdkapp.example.com:8443

https://192.168.0.35:9443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

Enable Caching True

Max Age 600

Allow Credentials True

6.

Implement your use cases with the Ping SDKs Ping SDKs

954 Copyright © 2025 Ping Identity Corporation

On the CORS filter configuration page:

Ensure Enable the CORS filter is enabled.

Set the Max Age property to 600

Ensure Allow Credentials is enabled.

Click Save Changes.

You are now ready to configure and run the sample JavaScript app to act as the custom UI.

1. Cookie name value in PingAM servers.
2. In PingOne Advanced Identity Cloud tenants, go to Tenant Settings > Global Settings > Cookie to find this dynamic cookie
name value.

Part 2. Running the JavaScript custom UI sample app

In this section you configure the embedded login sample JavaScript app to act as your custom UI.

This app walks your users through the authentication tree to obtain a session, which it returns to your client app via the
authentication server.

In a JavaScript-capable IDE, open the sdk-sample-apps folder you downloaded earlier.

Navigate to the /javascript/embedded-login folder, and open the .env.example file.

Edit the values in the file to match your environment:

In SERVER_URL, enter the base URL of the PingAM component of your deployment, including the deployment path.

PingAM example:

https://openam.example.com:8443/openam

PingOne Advanced Identity Cloud example:

https://openam-forgerock-sdks.forgeblocks.com/am

In REALM_PATH, enter the realm that contains the authentication journey you will use.

PingAM example:

root

PingOne Advanced Identity Cloud example:

alpha

In TREE, enter the name of the authentication journey to sign on end users.

Note that the sample custom UI app only supports a limited number of callbacks by default, so choose a simple
authentication tree that authenticates with only username and password.

7.

1.

2.

3.

8.

1.

2.

3.

1.

2.

3.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 955

For example, you can use the default Login authentication tree.

The result will resemble the following:

Example .env.example file

SERVER_URL=https://openam-docs-regular.forgeblocks.com/am
REALM_PATH=alpha
SCOPE=
TIMEOUT=$TIMEOUT
TREE=Login
WEB_OAUTH_CLIENT=

Save the file as .env in the same folder.

Update the webpack.config.js file:

Change the port value to 9443 so that it does not clash with the client sample app.

Change the host value to 0.0.0.0 , so that the app is made available on your local IP address, rather than just
localhost .

The result resembles the following:

devServer: {
 port: 9443,
 host: '0.0.0.0',
 ...
}

From the /javascript folder, run the embedded login custom UI app as follows:

cd javascript
npm run start:embedded-login

Webpack compiles the code and serves it on the local IP address of your computer.

In a browser, open the local IP address of your computer, with the port number you edited earlier.

For example, https://192.168.0.35:9443

lightbulb_2
As the custom UI does not perform any OAuth 2.0 interactions you can leave the SCOPE and
WEB_OAUTH_CLIENT properties blank.

Tip

4.

5.

1.

2.

6.

7.

Implement your use cases with the Ping SDKs Ping SDKs

956 Copyright © 2025 Ping Identity Corporation

As the custom UI sample app is running on a self-signed SSL certificate on your local IP address, your browser might
display a warning message.

You can ignore this warning for this tutorial:

In Chrome, click Advanced and then click Proceed to 192.168.0.35 (unsafe).

In Firefox, click Advanced and then click Accept the risk and continue.

In Safari, click Show Details and then click visit this website.

The custom UI app displays the first interactive node of the configured authentication journey:

Figure 1. Custom UI app showing the first interactive node of the configured journey.

With the custom UI sample app running, and your server configured, you can now proceed to test the setup by using one of the
OIDC sample apps as a client.

Part 3. Running a client sample app

In this section you configure one of the OIDC (centralized login) sample apps to test out your custom UI.

Running the JavaScript sample OIDC client app

In a JavaScript-capable IDE, open the sdk-sample-apps folder you downloaded earlier.

Open the /javascript/central-login-oidc sample.

Edit the values in the .env.sample file to match your environment:

In SCOPE, enter the list of scopes to request are present in the issued OAuth 2.0 token.

lightbulb_2
Webpack outputs links to the locations it is serving in the console, that you can click or copy and paste into a
browser.
Look for the line that includes the text On Your Network (IPv4) :

[webpack-dev-server] Project is running at:
[webpack-dev-server] Loopback: https://localhost:9443/
[webpack-dev-server] On Your Network (IPv4): https://192.168.0.35:9443/
[webpack-dev-server] On Your Network (IPv6): https://[fe80::1]:9443/

Tip

8.

◦

◦

◦

1.

2.

3.

1.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 957

For example, "openid profile email phone address"

In WEB_OAUTH_CLIENT, enter the client ID of the OAuth 2.0 client you configured earlier.

For example, sdkCustomUI

In WELL_KNOWN, enter the .well-known URL of the realm in which you created the OAuth 2.0 client.

You can view the .well-known endpoint for an OAuth 2.0 client in the PingOne Advanced Identity Cloud admin
console:

Log in to your PingOne Advanced Identity Cloud administration console.

Click Applications, and then select the OAuth 2.0 client you created earlier. For example, sdkPublicClient.

On the Sign On tab, in the Client Credentials section, copy the Discovery URI value.

To form the .well-known URL for an PingAM server, concatenate the following information into a single URL:

The base URL of the PingAM component of your deployment, including the port number and deployment
path.

For example, https://openam.example.com:8443/openam

The string /oauth2

The hierarchy of the realm that contains the OAuth 2.0 client.

You must specify the entire hierarchy of the realm, starting at the Top Level Realm. Prefix each realm in the
hierarchy with the realms/ keyword.

For example, /realms/root/realms/customers

The string /.well-known/openid-configuration

For example, https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-
configuration

The result will resemble the following:

Example .env.example file

SCOPE="openid profile email phone address"
TIMEOUT=1000
WEB_OAUTH_CLIENT=sdkCustomUI
WELL_KNOWN=https://openam-docs-regular.forgeblocks.com/am/oauth2/alpha/.well-known/openid-configuration
SERVER_TYPE=AIC

Save the file as .env in the same folder.

2.

3.

1.

2.

3.

1.

2.

3.

lightbulb_2
If you omit the realm hierarchy, the top level ROOT realm is used by default.

Tip

4.

4.

Implement your use cases with the Ping SDKs Ping SDKs

958 Copyright © 2025 Ping Identity Corporation

https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration
https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration
https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration

Edit the webpack.config.js file.

In the devServer section, add the DNS alias you created earlier, for example sdkapp.example.com in a new
allowedHosts property:

devServer: {
 port: 8443,
 host: 'localhost',

allowedHosts: 'sdkapp.example.com',
 …
}

From the /javascript folder, run the central login OIDC sample app as follows:

cd javascript
npm run start:central-login-oidc

Webpack compiles the code and serves it on the local IP address of your computer.

Try it out

To test that your custom UI app is acting as the centralized login pages, perform the following steps.

In a browser, open the local IP address of your computer, with the port number you edited earlier.

For example, https://sdkapp.example.com:8443

As the custom UI sample app is running on a self-signed SSL certificate on your local IP address, your browser might
display a warning message.

You can ignore this warning for this tutorial:

In Chrome, click Advanced and then click Proceed to sdkapp.example.com (unsafe).

In Firefox, click Advanced and then click Accept the risk and continue.

In Safari, click Show Details and then click visit this website.

The sample OIDC login app displays Login and Force Renew buttons:

Figure 1. JavaScript OIDC sample app showing Login and Force Renew buttons.

Click the Login button.

The client app connects to the OAuth 2.0 client you created earlier, and is redirected to the custom UI sample running on
your local computer.

5.

1.

6.

1.

2.

◦

◦

◦

3.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 959

https://sdkapp.example.com:8443
https://sdkapp.example.com:8443

The URL contains a goto parameter that contains the URL that the UI sample app redirects to after successful
authentication. That URL will be the authorize endpoint of your authorization server.

Enter the credentials of a known user, and then click Sign In.

If authentication is successful, the custom UI app redirects the browser to the goto URL, which points to your
authorization server. The authorization server redirects back to your client app with the necessary code
parameter.

The sample client app uses the code parameter to contact the authorization server access_token endpoint to
obtain the OAuth 2.0 access and ID tokens.

Using the access token as a bearer token, the sample app calls the userinfo endpoint and displays them on the
page:

Figure 2. Userinfo of the authenticated user.

Running the Android sample OIDC client app

In Android Studio, open the /android/kotlin-central-login-oidc sample from the repo you downloaded earlier.

Edit the app > kotlin+java > Config.kt file to match your environment:

In discoveryEndpoint, enter the .well-known URI of the realm in which you created the OAuth 2.0 client.

You can view the .well-known endpoint for an OAuth 2.0 client in the PingOne Advanced Identity Cloud admin
console:

Log in to your PingAM administration console.

Click Applications, and then select the OAuth 2.0 client you created earlier. For example, sdkPublicClient.

On the Sign On tab, in the Client Credentials section, copy the Discovery URI value.

4.

1.

2.

3.

1.

2.

1.

1.

2.

3.

Implement your use cases with the Ping SDKs Ping SDKs

960 Copyright © 2025 Ping Identity Corporation

To form the .well-known URL for an PingAM server, concatenate the following information into a single URL:

The base URL of the PingAM component of your deployment, including the port number and deployment
path.

For example, https://openam.example.com:8443/openam

The string /oauth2

The hierarchy of the realm that contains the OAuth 2.0 client.

You must specify the entire hierarchy of the realm, starting at the Top Level Realm. Prefix each realm in the
hierarchy with the realms/ keyword.

For example, /realms/root/realms/customers

The string /.well-known/openid-configuration

For example, https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-
configuration

In oauthClientId, enter the client ID of the OAuth 2.0 client you configured earlier.

For example, sdkCustomUI

In oauthRedirectUri, enter the redirect URI you configured in the OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect

In cookieName, enter the name of the cookie your authorization server uses to store session tokens on the client.

For example, PingAM servers use iPlanetDirectoryPro

To locate the cookie name in an PingOne Advanced Identity Cloud tenant:

Navigate to Tenant settings > Global Settings

Copy the value of the Cookie property.

In oauthScope, enter the list of scopes to request are present in the issued OAuth 2.0 token.

For example, openid profile email phone address

The result will resemble the following:

1.

2.

3.

lightbulb_2
If you omit the realm hierarchy, the top level ROOT realm is used by default.

Tip

4.

2.

3.

4.

1.

2.

5.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 961

https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration
https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration
https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration

data class PingConfig(
 var discoveryEndpoint: String = "https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/
alpha/.well-known/openid-configuration",
 var oauthClientId: String = "sdkCustomUI",
 var oauthRedirectUri: String = "org.forgerock.demo://oauth2redirect",
 var oauthSignOutRedirectUri: String = "",
 var cookieName: String = "ch15fefc5407912",
 var oauthScope: String = "openid profile email phone address"
)

Save your changes.

Try it out

To test that your custom UI app is acting as the centralized login pages, perform the following steps.

In Android Studio, on the Run menu, select Run 'ping-oidc.app'.

Android Studio compiles and launches the app in either your connected device or a simulator, and displays the
configuration you entered earlier:

Figure 3. Android sample app showing the configuration.

3.

1.

Implement your use cases with the Ping SDKs Ping SDKs

962 Copyright © 2025 Ping Identity Corporation

Click Centralized Login.

As the custom UI sample app is running on a self-signed SSL certificate on your local IP address, your browser might
display a warning message.

You can ignore this warning for this tutorial:

In Chrome, click Advanced and then click Proceed to 192.168.0.35 (unsafe).

In Firefox, click Advanced and then click Accept the risk and continue.

The client app connects to the OAuth 2.0 client you created earlier, and is redirected to the custom UI sample running on
your local computer.

The URL contains a goto parameter that contains the URL that the UI sample app redirects to after successful
authentication. That URL will be the authorize endpoint of your authorization server.

Enter the credentials of a known user, and then click Sign In.

If authentication is successful, the custom UI app redirects the browser to the goto URL, which points to your
authorization server. The authorization server redirects back to your client app with the necessary code
parameter.

The sample client app uses the code parameter to contact the authorization server access_token endpoint to
obtain the OAuth 2.0 access and ID tokens:

lightbulb_2
You can alter the values in the app if required.

Tip

2.

3.

◦

◦

4.

1.

2.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 963

Figure 4. Android OIDC sample app showing the access and ID tokens.

Tap the menu icon (), and then tap User Profile:

The OIDC sample app uses the access token as a bearer token and calls the userinfo endpoint, displaying the
result:

3.

Implement your use cases with the Ping SDKs Ping SDKs

964 Copyright © 2025 Ping Identity Corporation

Figure 5. Userinfo of the authenticated user.

Running the iOS sample OIDC client app

In Xcode, in the sdk-sample-apps folder you cloned in the previous step, open the iOS > swiftui-oidc > PingExample
> PingExample.xcodeproj file.

Locate the ConfigurationViewModel function which contains placeholder configuration properties.

1.

2.

lightbulb_2
The function is commented with //TODO: in the source to make it easier to locate.

Tip

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 965

return ConfigurationViewModel(
clientId: "[CLIENT ID]",
scopes: ["openid", "email", "address", "phone", "profile"],
redirectUri: "[REDIRECT URI]",
signOutUri: "[SIGN OUT URI]",
discoveryEndpoint: "[DISCOVERY ENDPOINT URL]",
environment: "[ENVIRONMENT - EITHER AIC OR PingOne]",
cookieName: "[COOKIE NAME - OPTIONAL (Applicable for AIC only)]",
browserSeletorType: .authSession

)

In clientId, enter the client ID of the OAuth 2.0 client you configured earlier.

For example, sdkCustomUI

In scopes, enter an array of scopes to request are present in the issued OAuth 2.0 token.

For example, ["openid","profile","email","address","phone"]

In redirectUri and signOutUri, enter the redirect URI you configured in the OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect

In discoveryEndpoint, enter the .well-known URI of the realm in which you created the OAuth 2.0 client.

You can view the .well-known endpoint for an OAuth 2.0 client in the PingOne Advanced Identity Cloud admin
console:

Log in to your PingAM administration console.

Click Applications, and then select the OAuth 2.0 client you created earlier. For example, sdkPublicClient.

On the Sign On tab, in the Client Credentials section, copy the Discovery URI value.

To form the .well-known URL for an PingAM server, concatenate the following information into a single URL:

The base URL of the PingAM component of your deployment, including the port number and deployment
path.

For example, https://openam.example.com:8443/openam

The string /oauth2

The hierarchy of the realm that contains the OAuth 2.0 client.

You must specify the entire hierarchy of the realm, starting at the Top Level Realm. Prefix each realm in the
hierarchy with the realms/ keyword.

For example, /realms/root/realms/customers

The string /.well-known/openid-configuration

1.

2.

3.

4.

1.

2.

3.

1.

2.

3.

lightbulb_2
If you omit the realm hierarchy, the top level ROOT realm is used by default.

Tip

4.

Implement your use cases with the Ping SDKs Ping SDKs

966 Copyright © 2025 Ping Identity Corporation

For example, https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-
configuration

In environment, enter AIC .

In cookieName, enter the name of the cookie your authorization server uses to store session tokens on the client.

For example, PingAM servers use iPlanetDirectoryPro

To locate the cookie name in an PingOne Advanced Identity Cloud tenant:

Navigate to Tenant settings > Global Settings

Copy the value of the Cookie property.

In browserSeletorType, enter .authSession .

You can specify what type of browser the client iOS device opens to handle centralized login.

Each browser has slightly different characteristics, which make them suitable to different scenarios, as outlined in
this table:

5.

6.

1.

2.

7.

Browser type Characteristics

.authSession Opens a web authentication session browser.
Designed specifically for authentication sessions, however it prompts the
user before opening the browser with a modal that asks them to confirm
the domain is allowed to authenticate them.
This is the default option in the Ping SDK for iOS.

.ephemeralAuthSession Opens a web authentication session browser, but enables the
prefersEphemeralWebBrowserSession  parameter.
This browser type does not prompt the user before opening the browser
with a modal.
The difference between this and .authSession is that the browser does
not include any existing data such as cookies in the request, and also
discards any data obtained during the browser session, including any
session tokens.
When is ephemeralAuthSession suitable:

 ephemeralAuthSession is not suitable when you require single
sign-on (SSO) between your iOS apps, as the browser will not
maintain session tokens.
 ephemeralAuthSession is not suitable when you require a
session token to log a user out of the server, for example for
logging out of PingOne, as the browser will not maintain session
tokens.
 Use ephemeralAuthSession when you do not want the user’s
existing sessions to affect the authentication.

▪

▪

▪

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 967

https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration
https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration
https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession/prefersephemeralwebbrowsersession

The result resembles the following:

return ConfigurationViewModel(
 clientId: "sdkCustomUI",
 scopes: ["openid", "email", "address", "phone", "profile"],
 redirectUri: "org.forgerock.demo://oauth2redirect",
 signOutUri: "org.forgerock.demo://oauth2redirect",
 discoveryEndpoint: "https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/alpha/.well-known/
openid-configuration",
 environment: "AIC",
 cookieName: "ch15fefc5407912",
 browserSeletorType: .authSession
)

Save your changes.

Try it out

To test that your custom UI app is acting as the centralized login pages, perform the following steps.

In Xcode, select Product > Run.

Xcode launches the sample app in the iPhone simulator.

Browser type Characteristics

.nativeBrowserApp Opens the installed browser that is marked as the default by the user.
Often Safari.
The browser opens without any interaction from the user. However, the
browser does display a modal when returning to your application.

.sfViewController Opens a Safari view controller browser.
Your client app is not able to interact with the pages in the
sfViewController or access the data or browsing history.
The view controller opens within your app without any interaction from
the user. As the user does not leave your app, the view controller does
not need to display a warning modal when authentication is complete
and control returns to your application.

3.

1.

Implement your use cases with the Ping SDKs Ping SDKs

968 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

Figure 6. iOS OIDC login sample home screen

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 969

emergency_home
Third-party cookies in the Safari browser
Safari blocks third-party cookies by default, so the custom UI app will not be able to authenticate calls to the /
authorize endpoint if it is running on a different domain than the server.
In production, ensure your custom UI app and server share the same domain.
For this tutorial disable third-party cookie checks in Safari as follows:

In the iPhone simulator, in the toolbar click Home. On the screen, use your mouse to swipe to the right,
and then tap Settings.
Tap Safari, scroll to the Privacy & Security section, and disable Prevent Cross-Site Tracking.

Figure 7. Allow third-party cookies in Safari
To return to the sample app, in the toolbar double-click Home to show the open apps, and then tap the
PingOIDC app.

Important

1.

2.

3.

Implement your use cases with the Ping SDKs Ping SDKs

970 Copyright © 2025 Ping Identity Corporation

In the sample app on the iPhone simulator, tap Edit configuration, and verify or edit the configuration you entered in the
previous step.

Figure 8. Return to the OIDC sample app by double-clicking the home icon.

2.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 971

Figure 9. Verify the configuration settings

Tap  Ping OIDC to go back to the main menu, and then tap Launch OIDC.

The app launches a web browser and connects to your authorization server, which then redirects to the custom UI app
running locally on your computer:

3.

info
You might see a dialog asking if you want to open a browser. If you do, tap Continue.

Note

Implement your use cases with the Ping SDKs Ping SDKs

972 Copyright © 2025 Ping Identity Corporation

Figure 10. Browser launched and redirected to local custom UI app.

Sign on as a demo user:

Name: demo

Password: Ch4ng3it!

If authentication is successful, the application displays the access token issued by PingAM.

4.

◦

◦

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 973

Figure 11. Access token after successful authentication

Tap  Ping OIDC to go back to the main menu, and then tap User Info.

The app displays the information relating to the access token:

5.

Implement your use cases with the Ping SDKs Ping SDKs

974 Copyright © 2025 Ping Identity Corporation

Figure 12. User info relating to the access token

Tap  Ping OIDC to go back to the main menu, and then tap Logout.

The app logs the user out of the authorization server and prints a message to the Xcode console:

[FRCore][4.8.0] [🌐 - Network] Response | [✅ 204] :
 https://openam.example.com:443/am/oauth2/connect/endSession?
id_token_hint=eyJ0...sbrA&client_id=sdkPublicClient in 34 ms
[FRAuth][4.8.0] [FRUser.swift:211 : logout()] [Verbose]
 Invalidating OIDC Session successful

6.

Ping SDKs Implement your use cases with the Ping SDKs

Copyright © 2025 Ping Identity Corporation 975

Ping (ForgeRock) Login Widget

The Ping (ForgeRock) Login Widget for PingOne Advanced Identity Cloud and PingAM is an all-inclusive UI component to help you
add authentication, user registration, and other self-service journeys into your web applications.

You can use the Ping (ForgeRock) Login Widget within React, Vue, Angular and a number of other modern JavaScript frameworks,
as well as vanilla JavaScript.

It does not currently support server-side rendering (SSR), including Node.js.

The Ping (ForgeRock) Login Widget uses the Ping SDK for JavaScript internally, and adds a user interface and state management.
This rendering layer helps eliminate the need to develop and maintain the UI components for providing complex authentication
experiences.

This rendering layer uses Svelte and Tailwind, but these are "compiled away" resulting in no runtime dependencies.

The resulting Ping (ForgeRock) Login Widget is both library- and framework-agnostic.

Topics

Get started with the Ping (ForgeRock) Login Widget in the following sections:

Server support:

 PingOne
 PingOne Advanced Identity Cloud
 PingAM
 PingFederate

SDK support:

 Ping SDK for Android
 Ping SDK for iOS
 Ping SDK for JavaScript

Tutorial

Learn how to install the Ping (ForgeRock) Login
Widget, add it to your applications and manage
user authentication and self-service journeys.



Themes

Discover how to reconfigure the Ping
(ForgeRock) Login Widget to use different colors,
fonts, or sizing, or select between the light and

dark modes.



Ping SDKs Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 977

https://svelte.dev/
https://svelte.dev/
https://tailwindcss.com/
https://tailwindcss.com/

Functionality

The Ping (ForgeRock) Login Widget supports the following PingOne Advanced Identity Cloud and PingAM features:

Use cases

Find out how to achieve some common use case
scenarios using the Ping (ForgeRock) Login

Widget.



Integrations

Integrate the Ping (ForgeRock) Login Widget into
various different frameworks.



API

Access a list of the modules included in the Ping
(ForgeRock) Login Widget and the API they offer.



Ping (ForgeRock) Login Widget Ping SDKs

978 Copyright © 2025 Ping Identity Corporation

Requirements

The Ping (ForgeRock) Login Widget is designed to work with the following:

An ECMAScript module or CommonJS enabled client-side JavaScript app

A "modern", fully-featured browser such as Chrome, Firefox, Safari, or Chromium Edge

The Ping (ForgeRock) Login Widget supports vanilla JavaScript and many frameworks. It is tested against the following:

The Ping (ForgeRock) Login Widget is not designed or tested for use with the following:

Internet Explorer

Legacy Edge

WebView

Electron

 Supported  Unsupported

Page node
Username
Password
QR codes
Push authentication and registration
One-time passwords and registration
WebAuthn
Device profiles
Social login providers:

Apple
Facebook
Google

Email suspend, or "magic links"
CAPTCHA display

hCaptcha
reCAPTCHA v2
reCAPTCHA v3

PingOne Protect

Centralized login
TextOutputCallback callbacks containing scripts
SAML federation

•
•
•
•
•
•
•
•
•

◦

◦

◦

•
•

◦

◦

◦

•

•
•
•

•

•

 Tested  Unsupported

Angular
React
Vue
Svelte

Server-side rendering (SSR), including Node.js•
•
•
•

•

•

•

•

•

Ping SDKs Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 979

Modified, browser-like environments•

Ping (ForgeRock) Login Widget Ping SDKs

980 Copyright © 2025 Ping Identity Corporation

Tutorial

This tutorial guides you through adding the Ping (ForgeRock) Login Widget to your application in the modal or inline form factor.

Prerequisites

You need to set up your PingOne Advanced Identity Cloud or PingAM instance with an authentication journey, and a demo user.
To obtain access tokens, you also need to create an OAuth 2.0 client.

You may need to edit the CORS configuration on your server.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne Advanced Identity Cloud

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingOne Advanced Identity Cloud,
you can configure CORS to allow browsers from trusted domains to access PingOne Advanced Identity Cloud protected resources.
For example, you might want a custom web application running on your own domain to get an end-user’s profile information
using the PingOne Advanced Identity Cloud REST API.

The Ping SDK for JavaScript samples and tutorials use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different domain for hosting SDK applications, ensure you add them to the CORS configuration as accepted
origin domains.

To update the CORS configuration in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

At the top right of the screen, click your name, and then select Tenant settings.

On the Global Settings tab, click Cross-Origin Resource Sharing (CORS).

Perform one of the following actions:

If available, click ForgeRockSDK.

If you haven’t added any CORS configurations to the tenant, click + Add a CORS Configuration, select Ping SDK,
and then click Next.

Add https://localhost:8443 and any DNS aliases you use to host your Ping SDK for JavaScript applications to the
Accepted Origins property.

Complete the remaining fields to suit your environment.

PingOne Advanced Identity Cloud
PingAM

1.

2.

3.

4.

◦

◦

5.

6.

Tutorial Ping SDKs

982 Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

This documentation assumes the following configuration, required for the tutorials and sample applications:

Click Save CORS Configuration.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Property Values

Accepted Origins https://localhost:8443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

Enable Caching True

Max Age 600

Allow Credentials True

lightbulb_2
Click Show advanced settings to be able to edit all available fields.

Tip

7.

1.

2.

3.

4.

◦

◦

◦

◦

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 983

Password = Ch4ng3it!

Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

Drag the following nodes into the designer area:

Page Node

Platform Username

Platform Password

Data Store Decision

Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 1. Example username and password authentication journey

Click Save.

◦

5.

1.

2.

3.

◦

◦

◦

◦

4.

5.

6.

Tutorial Ping SDKs

984 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

1.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 985

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

PingAM

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingAM, you can configure CORS
to allow browsers from trusted domains to access PingAM protected resources. For example, you might want a custom web
application running on your own domain to get an end-user’s profile information using the PingAM REST API.

The Ping SDK for JavaScript samples and tutorials all use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different URL for hosting SDK applications, ensure you add them to the CORS configuration as accepted origin
domains.

To enable CORS in PingAM, and create a CORS filter to allow requests from your configured domain names, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to Configure > Global Services > CORS Service > Configuration, and set the Enable the CORS filter property to
true .

On the Secondary Configurations tab, click Click Add a Secondary Configuration.

In the Name field, enter ForgeRockSDK .

in the Accepted Origins field, enter any DNS aliases you use for your SDK apps.

This documentation assumes the following configuration:

1.

2.

3.

4.

5.

6.

1.

2.

emergency_home
If this property is not enabled, CORS headers are not added to responses from PingAM, and CORS is disabled
entirely.

Important

3.

4.

5.

Property Values

Accepted Origins https://localhost:8443

Tutorial Ping SDKs

986 Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Click Create.

PingAM displays the configuration of your new CORS filter.

On the CORS filter configuration page:

Ensure Enable the CORS filter is enabled.

Set the Max Age property to 600

Ensure Allow Credentials is enabled.

Click Save Changes.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Property Values

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

6.

7.

1.

2.

3.

8.

1.

2.

3.

◦

◦

◦

4.

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 987

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:

Under Realm Overview, click Authentication Trees, then click Create Tree.

Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

Drag the following nodes from the Components panel on the left side into the designer area:

Page Node

Username Collector

Password Collector

Data Store Decision

Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

Connect the nodes as follows:

Figure 2. Example username and password authentication tree

Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

One of the samples uses this specific value to determine the custom UI to display.

Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

Log in to the PingAM admin UI as an administrator.

1.

2.

3.

◦

◦

◦

◦

4.

5.

6.

lightbulb_2
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

Tip

7.

1.

Tutorial Ping SDKs

988 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Navigate to  Applications > OAuth 2.0 > Clients, and then click + Add Client.

In Client ID, enter sdkPublicClient .

Leave Client secret empty.

In Redirection URIs, enter the following values:

In Scopes, enter the following values:

openid profile email address

Click Create.

PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.

On the Core tab:

In Client type, select Public .

Disable Allow wildcard ports in redirect URIs.

Click Save Changes.

On the Advanced tab:

In Grant Types, enter the following values:

Authorization Code
Refresh Token

In Token Endpoint Authentication Method, select None .

Enable the Implied consent property.

Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

2.

3.

4.

5.

emergency_home
Also add any other domains where you will be hosting SDK applications.

Important

6.

7.

8.

1.

2.

3.

9.

1.

2.

3.

10.

1.

2.

3.

4.

5.

6.

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 989

Steps

Step 1. Install the widget

In this step, you use npm to add the Ping (ForgeRock) Login Widget to your project. It also covers how to download and
build the Ping (ForgeRock) Login Widget to support custom requirements.

Step 2. Configure the CSS

In this step, you add the default CSS to your app, and learn how to use layers to control the CSS cascade.

Step 3. Import the widget

In this step, you import the modules from the Ping (ForgeRock) Login Widget you want to use in your app.

Step 4. Configure the SDK

In this step, you provide the configuration necessary for the Ping (ForgeRock) Login Widget to contact your server, such as
which realm to use, and the server URL.

Step 5. Instantiate the widget

In this step, you choose where in your app to mount the Ping (ForgeRock) Login Widget, and then instantiate an instance,
choosing either the inline or modal form factor.

Step 6. Start a journey

In ths step, you start a journey so that the Ping (ForgeRock) Login Widget can display the UI for the first callback.

Step 7. Subscribe to events

In this step, you subscribe to observables to capture and react to events that occur during use of the Ping (ForgeRock)
Login Widget.

1. Cookie name value in PingAM servers.
2. In PingOne Advanced Identity Cloud tenants, go to Tenant Settings > Global Settings > Cookie to find this dynamic cookie
name value.

Step 1. Install the widget

You can add the Ping (ForgeRock) Login Widget to your app by using Node Package Manager (npm), or you can download it from
GitHub and build it yourself, adding results to your project directly.

Install the Ping (ForgeRock) Login Widget with npm

The easiest way to add the Ping (ForgeRock) Login Widget to your project.

Build a customized Ping (ForgeRock) Login Widget

If you want to customize the themes included in the Ping (ForgeRock) Login Widget, you need to download the Ping
(ForgeRock) Web Login Framework source, make your modifications, and build a customized package.

Tutorial Ping SDKs

990 Copyright © 2025 Ping Identity Corporation

Install the Ping (ForgeRock) Login Widget with npm

Add the Ping (ForgeRock) Login Widget to your project using npm as follows:

npm install @forgerock/login-widget

Next, you can Step 2. Configure the CSS.

Build a customized Ping (ForgeRock) Login Widget

The following steps show how to download the Ping (ForgeRock) Web Login Framework and build the Ping (ForgeRock) Login
Widget:

Download the Ping (ForgeRock) Web Login Framework from the Git repository:

git clone https://github.com/ForgeRock/forgerock-web-login-framework.git

In a terminal window, navigate to the root of the Ping (ForgeRock) Web Login Framework:

cd forgerock-web-login-framework

Run npm to download and install the required packages and modules:

npm install

Build the Ping (ForgeRock) Login Widget with npm :

npm run build:widget

Copy the built package/ directory into your app project

Import the Widget component into your app:

import Widget from '../path/to/package/index.js';

Next

Next, you can Step 2. Configure the CSS.

Step 2. Configure the CSS

You can use any of the following methods to add the default Ping (ForgeRock) Login Widget styles to your app:

Import it into your JavaScript project as a module.

Import it using a CSS preprocessor, like Sass, Less, or PostCSS.

If you decide to import the CSS into your JavaScript, make sure your bundler is able to import and process the CSS as a module. If
using a CSS preprocessor, configure your preprocessor to access files from within your package or from a directory.

1.

2.

3.

4.

5.

6.

info
The exact syntax for importing the widget into your app varies depending on the technologies your app uses.

Note

1.

2.

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 991

Examples

Import the CSS into your JavaScript:

// app.js
import '@forgerock/login-widget/widget.css';

// app.js
import '../path/to/widget.css';

Import the CSS into your CSS:

/* style.css */
@import '@forgerock/login-widget/widget.css';

/* style.css */
@import '../path/to/widget.css';

Controlling the CSS cascade

How the browser applies styles to an app can depend on the order you import or declare CSS into it, referred to as the cascade.

You can use the @layer CSS rule to declare a cascade layer, ensuring Ping (ForgeRock) Login Widget styles apply separately from
your own.

npm

Local

npm

Local

Tutorial Ping SDKs

992 Copyright © 2025 Ping Identity Corporation

For more information, refer to @layer  in the MDN docs.

To create a cascade layer for the Ping (ForgeRock) Login Widget styles:

Wrap your existing styles in a new layer, for example, "app":

@layer app {
 /* Your app's existing CSS */
}

Declare the order of layers in your index HTML file before loading any CSS.

<style type="text/css">
 /* Your existing "app" CSS layer first */
 @layer app;

 /* List the Widget layers after your own styles */
 @layer 'fr-widget.base';
 @layer 'fr-widget.utilities';
 @layer 'fr-widget.components';
 @layer 'fr-widget.variants';
</style>

Next

Next, you can Step 3. Import the widget

Step 3. Import the widget

To use the Ping (ForgeRock) Login Widget, import the modules you want to use into your app:

info
The Ping (ForgeRock) Login Widget styles will not overwrite any of your CSS.
They are namespaced to help prevent collisions and use a CSS selector prefix of tw_ .

Note

1.

2.

info
The Widget has multiple @layer declarations in its CSS files

Note

info
The CSS imported for the Widget will not overwrite any of your app’s CSS. It’s all namespaced to ensure there
are no collisions. To help achieve this, the Ping (ForgeRock) Login Widget uses a selector naming convention
with a tw_ prefix.

Note

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 993

https://developer.mozilla.org/en-US/docs/Web/CSS/@layer
https://developer.mozilla.org/en-US/docs/Web/CSS/@layer
https://developer.mozilla.org/en-US/docs/Web/CSS/@layer

// Import the Login Widget
import Widget, { configuration } from '@forgerock/login-widget';

The exact syntax for importing the widget depends on the module system you are using.

The Ping (ForgeRock) Login Widget exports a number of different modules, each providing different functionality.

Next

Next, you can Step 4. Configure the SDK.

Step 4. Configure the SDK

The Ping (ForgeRock) Login Widget requires information about the server instance it connects to, as well as OAuth 2.0 client
configuration and other settings.

To provide these settings, import and use the configuration module and its set() method.

The Ping (ForgeRock) Login Widget uses the same underlying configuration properties as the main SDK. Add your configuration
under the forgerock property:

Ping (ForgeRock) Login Widget modules

Module Description API reference

Widget Use this main class to instantiate the Ping (ForgeRock) Login Widget,
mount it into the DOM, and set up event listeners.

Widget API reference

configuration Use this module to configure the Ping (ForgeRock) Login Widget. You can
configure the settings it needs to contact the authorization server, styles,
layout, and override content.

Configuration API
reference

journey Use this module to configure and start an authentication journey. Journey API reference

component Use this module to subscribe to events triggered by the Ping (ForgeRock)
Login Widget and for controlling the modal form factor.

Component API
reference

user Use this module for managing users in the Ping (ForgeRock) Login Widget,
such as obtaining user or token information, and logging users out.

User API reference

Tutorial Ping SDKs

994 Copyright © 2025 Ping Identity Corporation

Example Ping (ForgeRock) Login Widget configuration

// Import the modules
import Widget, { configuration } from '@forgerock/login-widget';

// Create a configuration instance
const myConfig = configuration();

// Set the configuration properties
myConfig.set({
 forgerock: {
 // Minimum required configuration:
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 3000,
 },
 // Optional configuration:
 clientId: 'sdkPublicClient', // The default is `WebLoginWidgetClient`
 realmPath: 'alpha', // This is the default if not specified
 redirectUri: window.location.href, // This is the default if not specified
 scope: 'openid profile email address', // The default is `openid profile` if not specified
 },
});

SDK configuration properties

The configuration properties available in both the SDK and the Ping (ForgeRock) Login Widget are as follows:

Server

lightbulb_2
Set your Ping (ForgeRock) Login Widget configuration at the top level of your application, such as its index.js or
app.js file.
This ensures the Ping (ForgeRock) Login Widget has the configuration needed to call out to your PingOne Advanced
Identity Cloud or PingAM server whenever and wherever you use its APIs in your app.
For example, you must set the configuration before starting a journey with journeyEvents.start() or calling either
userEvents.get() or tokenEvents.get() .

Tip

Properties

Property Description

serverConfig An interface for configuring how the SDK contacts the PingAM instance.
Contains baseUrl and timeout .

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 995

OAuth 2.0

Property Description

serverConfig: {baseUrl} The base URL of the server to connect to, including port and deployment path.
Identity Cloud example:
https://openam-forgerock-sdks.forgeblocks.com/am

Self-hosted example:
https://openam.example.com:8443/openam

serverConfig: {wellknown} A URL to the server’s .well-known/openid-configuration endpoint.
Use the Config.setAsync() method to set SDK configuration using values derived
from those provided at the URL.
Example:
https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/

realms/alpha/.well-known/openid-configuration

Self-hosted example:
https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/

openid-configuration

serverConfig: {timeout} A timeout, in milliseconds, for each request that communicates with your server.
For example, for 30 seconds specify 30000 .
Defaults to 5000 (5 seconds).

realmPath The realm in which the OAuth 2.0 client profile and authentication journeys are
configured.
For example, alpha .
Defaults to the self-hosted top-level realm root .

tree The name of the user authentication tree configured in your server.
For example, sdkUsernamePasswordJourney .

Properties

Property Description

clientId The client_id of the OAuth 2.0 client profile to use.

Tutorial Ping SDKs

996 Copyright © 2025 Ping Identity Corporation

Storage

Property Description

redirectUri The redirect_uri as configured in the OAuth 2.0 client profile.

For example, https://localhost:8443/callback.html .

scope A list of scopes to request when performing an OAuth 2.0 authorization flow,
separated by spaces.
For example, openid profile email address .

oauthThreshold A threshold, in seconds, to refresh an OAuth 2.0 token before the access_token
expires.
Defaults to 30 seconds.

lightbulb_2
The Ping SDK for JavaScript attempts to load the redirect page to capture the
OAuth 2.0 code and state query parameters that the server appended to
the redirect URL.
If the page you redirect to does not exist, takes a long time to load, or runs
any JavaScript you might get a timeout, delayed authentication, or
unexpected errors.
To ensure the best user experience, we highly recommend that you redirect
to a static HTML page with minimal HTML and no JavaScript when obtaining
OAuth 2.0 tokens.

Tip

Properties

Property Description

tokenStore The API to use for storing tokens on the client:

sessionStorage
Store tokens using the sessionStorage API. The browser clears session
storage when a page session ends.

localStorage
Store tokens using the localStorage API. The browser saves local storage
data across browser sessions. This is the default setting, as it provides the
highest browser compatibility.

{{custom}}
Specify a custom implementation that has functions that can set, retrieve,
and remove, items from a custom storage scheme.
Learn more in Customize storage on JavaScript.

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 997

Logging

General

Property Description

prefix Override the default fr prefix string applied to the keys used for storing data on
the client, such as tokens, device IDs, and information about the steps in a journey.
For example, the key used for storing tokens consists of the prefix , followed by
the ID of the OAuth 2.0 client:
fr-sdkPublicClient .

Properties

Property Description

logLevel Specify whether the SDK should output its log messages in the console and the
level of messages to display.
One of:

none (default)
info

warn

error

debug

logger Specify a function to override the default logging behavior.
Refer to Customize the Ping SDK for JavaScript logger.

•
•
•
•
•

Properties

Property Description

platformHeader Specify whether to include an X-Requested-Platform header in outgoing
requests.
The server can use the value of this header to alter the logic of an authentication
flow. For example, if the value indicates a JavaScript web app, the journey could
avoid device binding nodes, as they are only supported by Android and iOS apps.
Defaults to false .

Tutorial Ping SDKs

998 Copyright © 2025 Ping Identity Corporation

Endpoints

Next

Next, you can Step 5. Instantiate the widget.

Step 5. Instantiate the widget

To use the Ping (ForgeRock) Login Widget in your app you must choose an appropriate place to mount it. Then, you need to
choose which form factor to implement, either inline, or modal.

With those decisions made, you can instantiate the Ping (ForgeRock) Login Widget in your app, ready for your users to start their
authentication or self-service journey.

Choose where to mount the Ping (ForgeRock) Login Widget

To implement the Ping (ForgeRock) Login Widget, we recommend you add a new element into your HTML file.

For most single page applications (SPA) this is your index.html file.

This new element should be a direct child element of <body> and not within the element where you mount your SPA.

Properties

Property Description

serverConfig: { paths:

{ authenticate }}

Override the path to the authorization server’s authenticate endpoint.
Default: json/{realmPath}/authenticate

serverConfig: { paths:

{ authorize }}

Override the path to the authorization server’s authorize endpoint.
Default: oauth2/{realmPath}/authorize

serverConfig: { paths:

{ accessToken }}

Override the path to the authorization server’s access_token endpoint.
Default: oauth2/{realmPath}/access_token

serverConfig: { paths: { revoke }} Override the path to the authorization server’s revoke endpoint.
Default: oauth2/{realmPath}/token/revoke

serverConfig: { paths:

{ userInfo }}

Override the path to the authorization server’s userinfo endpoint.
Default: oauth2/{realmPath}/userinfo

serverConfig: { paths:

{ sessions }}

Override the path to the authorization server’s sessions endpoint.
Default: json/{realmPath}/sessions

serverConfig: { paths:

{ endSession }}

Override the path to the authorization server’s endSession endpoint.
Default: oauth2/{realmPath}/connect/endSession

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 999

Example HTML structure

<!DOCTYPE html>
<html lang="en">
<head>
<!-- ... -->
</head>
<body>
 <!-- Root element for main app -->
 <div id="root"></div>

 <!-- Root element for Widget -->
 <div id="widget-root"></div>

 <!-- scripts ... -->
 </body>
</html>

Instantiate the modal form factor

To use the default Ping (ForgeRock) Login Widget modal form factor, import the modules into your app and instantiate the widget
as follows:

lightbulb_2
We recommend that you do not inject the element into which you mount the modal form factor in your app. This can
cause virtual DOM issues.
Instead, manually hard-code the element in your HTML file.

Tip

Tutorial Ping SDKs

1000 Copyright © 2025 Ping Identity Corporation

Instantiate the modal form factor

// Import the Login Widget
import Widget, { configuration } from '@forgerock/login-widget';

// Configure SDK options
const myConfig = configuration();

myConfig.set({
 forgerock: {
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 3000,
 },
 // Optional but recommended configuration:
 realmPath: 'alpha',
 clientId: 'sdkPublicClient',
 redirectUri: window.location.href,
 scope: 'openid profile email address'
 },
 },
});

// Get the element in your HTML into which you will mount the widget
const widgetRootEl = document.getElementById('widget-root');

// Instantiate Widget with the `new` keyword
new Widget({
 target: widgetRootEl,
});

This mounts the Ping (ForgeRock) Login Widget into the DOM. The modal form factor is the default and is hidden when first
instantiated.

Top open the modal, import the component module, assign the function, and call its open() method:

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 1001

Open the modal

// Import the Login Widget
import Widget, { configuration, component } from '@forgerock/login-widget';

// Configure SDK options
const myConfig = configuration();

myConfig.set({
 forgerock: {
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 3000,
 },
 // Optional but recommended configuration:
 realmPath: 'alpha',
 clientId: 'sdkPublicClient',
 redirectUri: window.location.href,
 scope: 'openid profile email address'
 },
 },
});

// Get the element in your HTML into which you will mount the widget
const widgetRootEl = document.getElementById('widget-root');

// Instantiate Widget with the `new` keyword
new Widget({
 target: widgetRootEl, // Any existing element from static HTML file
});

// Assign the component function
const componentEvents = component();

// Call the open() method, for example after a button click
const loginButton = document.getElementById('loginButton');

loginButton.addEventListener('click', () => {
 componentEvents.open();
});

The modal form factor opens and displays a spinner graphic until you start a journey.

Instantiate the inline form factor

You override the default Ping (ForgeRock) Login Widget modal form factor and instead use the inline form factor. The inline form
factor mounts within your application’s controlled DOM, so it is important to consider how your framework mounts elements to
the DOM.

lightbulb_2
The modal form factor closes itself when a journey completes successfully.
You can also close it by calling componentEvents.close();

Tip

Tutorial Ping SDKs

1002 Copyright © 2025 Ping Identity Corporation

For example, the inline form factor cannot mount into a virtual DOM element, such as those used by React. In this scenario, you
must wait until the element has been property mounted to the real DOM before instantiating the Ping (ForgeRock) Login Widget.

To use the inline form factor, instantiate the widget with a type: 'inline' property, as follows:

Instantiate the inline form factor

// Import the Ping (ForgeRock) Login Widget
import Widget, { configuration } from '@forgerock/login-widget';

import { useRef } from 'react';

// Configure SDK options
const myConfig = configuration();

myConfig.set({
 forgerock: {
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 3000,
 },
 // Optional but recommended configuration:
 realmPath: 'alpha',
 clientId: 'sdkPublicClient',
 redirectUri: window.location.href,
 scope: 'openid profile email address'
 },
 },
});

// Target needs to be an actual DOM element, so ref is needed with inline type
const widgetElement = useRef(null);

// Instantiate Widget with the `new` keyword
new Widget({
 target: widgetElement.current,
 props: {
 type: 'inline', // Override the default 'modal' form factor
 },
});

The inline form factor loads into the specified DOM element and displays a spinner graphic until you start a journey.

Next

Next, you can Step 6. Start a journey.

Step 6. Start a journey

The Ping (ForgeRock) Login Widget displays a loading spinner graphic if it does not yet have a callback from the server to render.

You must specify and start a journey to make the initial call to the server and obtain the first callback.

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 1003

To start a journey, import the journey function and execute it to receive a journeyEvents object. After you have this
journeyEvents object, you can call the journeyEvents.start() method, which starts making requests to the server for the
initial form fields.

You can call the journeyEvents.start() method anywhere in your application, or anytime, as long as it is after calling the
configuration’s set() method and after instantiating the Widget.

Start the default journey

// Import the Login Widget
import Widget, { configuration, journey } from '@forgerock/login-widget';

// Configure SDK options
const myConfig = configuration();

myConfig.set({
 forgerock: {
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 3000,
 },
 // Optional but recommended configuration:
 realmPath: 'alpha',
 clientId: 'sdkPublicClient',
 redirectUri: window.location.href,
 scope: 'openid profile email address'
 },
 },
});

// Get the element in your HTML into which you will mount the widget
const widgetRootEl = document.getElementById('widget-root');

// Instantiate Widget with the `new` keyword
new Widget({
 target: widgetRootEl,
});

// Assign the journey function
const journeyEvents = journey();

// Ensure you call `.start` *AFTER* instantiating the Widget
journeyEvents.start();

This starts the journey configured as the default in your server and renders the initial callback.

To specify which journey to use and other parameters, refer to Configure start() parameters.

Configure start() parameters

If you do not pass any parameters when calling the start() method the Ping (ForgeRock) Login Widget will use whichever
journey is marked as the default in your server.

The Ping (ForgeRock) Login Widget will also use the values configured in the last invocation of the configuration’s set() method.

Tutorial Ping SDKs

1004 Copyright © 2025 Ping Identity Corporation

You can override both of these behaviors by passing in JSON parameters:

Example of specifying the journey to use:

// Specify a different journey
journeyEvents.start({
 journey: 'sdkRegistrationJourney',
});

For more information, refer to journey in the API reference.

Configure journey() parameters

If you do not pass any parameters when calling the journey() function the Ping (ForgeRock) Login Widget will attempt to
retrieve OAuth 2.0 tokens and user information by default.

You can override this behavior by passing in the following JSON parameters:

Optional start() parameters

Parameter Description

journey Specify the name of the journey to use.
If not specified, the Ping (ForgeRock) Login Widget uses whichever journey is marked as the
default

forgerock Override the current SDK configuration with any new or altered settings.
For more information, refer to Step 4. Configure the SDK.

resumeUrl Specify the full URL to visit if resuming a suspended journey. The server uses this to return
your users to your application after clicking a "magic link" in an email, for example.
The default is window.location.href .

Optional journey() parameters

Parameter Description

oauth Set to false to prevent the Ping (ForgeRock) Login Widget attempting to obtain OAuth 2.0
tokens after successfully completing a journey.
The default is true .

user Set to user to prevent the Ping (ForgeRock) Login Widget attempting to obtain user
information by calling the /oauth2/userinfo endpoint after successfully completing a
journey.
The default is true .

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 1005

Example - obtaining only a user session token:

const journeyEvents = journey({
 oauth: false,
 user: false,
});

For more information, refer to journey API reference

Listen for journey completion

Use the journeyEvents.subscribe method to know when a user has completed their journey.

A summary of the events for a journey and their order is as follow:

Journey is loading

Journey is complete

Tokens are loading

Tokens are complete

Userinfo is loading

Userinfo is complete

Pass a callback function into this method to run on journey related events, of which there will be many, and each event object you
receive contains a lot of information about the event.

You conditionally check for the events you are interested in and ignore what you do not need.

Example - subscribe to journey events

journeyEvents.subscribe((event) => {
 // Called multiple times, filtering by event data is recommended
 if (event.journey.successful) {
 // Only output successfull journey log entries
 console.log(event);
 }
});

Next

Next, you can learn more information about observables and how to Step 7. Subscribe to events.

1.

2.

3.

4.

5.

6.

Tutorial Ping SDKs

1006 Copyright © 2025 Ping Identity Corporation

Step 7. Subscribe to events

The Ping (ForgeRock) Login Widget has a number of asynchronous APIs, which are designed around an event-centric observable
pattern. It uses Svelte’s simplified, standard observable implementation called a "store".

For more information on Svelte stores, refer to the Svelte documentation.

This observable pattern is optimal for UI development as it allows for a dynamic user experience. You can update your application
in response to the events occurring within the Ping (ForgeRock) Login Widget. For example, the Ping (ForgeRock) Login Widget has
events such as "loading", "completed", "success", and, "failure".

Assign an observable

You can create a variable and assign the observable to it:

Assign an observable

const userInfoEvents = user.info();

Subscribe to observable events

An observable is a stream of events over time. The Ping (ForgeRock) Login Widget invokes the callback for each and every event
from the observable, until you unsubscribe from it.

Use the subscribe() method on your variable to observe the event stream:

Example userInfoEvents observable

userInfoEvents.subscribe((event) => {
 if (event.loading) {
 console.log('User info is being requested from server');
 } else if (event.successful) {
 console.log('User info request was successful');
 console.log(event.response);
 } else if (event.error) {
 console.error('User info request failed');
 console.error(event.error.message);
 }
});

For information on the events each observable returns, refer to the API reference.

info
These Svelte stores are embedded into the Ping (ForgeRock) Login Widget itself.
They are not a dependency that your app layer needs to import or manage.

Note

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 1007

https://svelte.dev/docs#component-format-script-4-prefix-stores-with-$-to-access-their-values-store-contract
https://svelte.dev/docs#component-format-script-4-prefix-stores-with-$-to-access-their-values-store-contract

Unsubscribe from an observable

Unlike a JavaScript promise, an observable does not resolve and then get cleaned up after completion.

You need to unsubscribe from an observable if it is no longer needed. This is especially important if you are subscribing to
observables in a component that gets created and destroyed many times over. Subscribing to an observable over and over
without unsubscribing creates a memory leak.

To unsubscribe, assign the function that is returned from calling the subscribe() method to a variable. Call this variable at a
later time to unsubscribe from the obeservable.

Example unsubscribe from an observable

const unsubUserInfoEvents = userInfoEvents.subscribe((event) => console.log(event));

// ...

// Unsubscribe when no longer needed
unsubUserInfoEvents();

You do not need to unsubscribe from observables if you subscribe to observables in a top-level component of your app that is
only initiated once, and is retained over the lifetime of your application.

A good location in which to subscribe to observables might be the central state management component or module of your
application.

Get current local values

The Ping (ForgeRock) Login Widget stores a number of important values internally.

You can get the current values stored within the Ping (ForgeRock) Login Widget without subscribing to any future events or their
resulting state changes by calling subscribe() and then immediately calling its unsubscribe method:

Get current stored values and unsubscribe

// Create variable for user info
let userInfo;

// Call subscribe, get the current local value, and then immediately call the returned function
userInfoEvents.subscribe((event) => (userinfo = event.response))(); // <-- notice the second pair of parentheses

Get updated values

You can ask the Ping (ForgeRock) Login Widget to request new, fresh values from the server, rather than just what it has stored
locally, by calling the observable action methods, such as get .

Tutorial Ping SDKs

1008 Copyright © 2025 Ping Identity Corporation

Get latest values from the server

userInfoEvents.get();

When using the observable pattern, you can call this method and forget about it. The get causes any subscribe callback
functions you have for the observable to receive the events and new state.

The subscribe can exist before or after this get call, and it will still capture the resulting events.

Use promises rather than observables

We recommend observables, but the choice is up to you.

All of the Ping (ForgeRock) Login Widget APIs that involve network calls have an alternative promise implementation that you can
use.

The following example again shows userInfoEvents but converted to use promises:

Using promises rather than observables

// async-await
let userInfo;
async function example() {
 try {
 userInfo = await userInfoEvents.get();
 } catch (err) {
 console.log(err);
 }
}

// Promise
let userInfo;
userInfoEvents
 .get()
 .then((data) => (userInfo = data))
 .catch((err) => console.log(err));

Ping SDKs Tutorial

Copyright © 2025 Ping Identity Corporation 1009

Theme the widget

The Ping (ForgeRock) Login Widget provides a default theme with both light and dark modes.

Figure 1. Example of the modal component in dark mode

You can alter these themes by using the Tailwind configuration file.

Switch between light and dark themes

To switch to the dark mode, you can manually add tw_dark to the <body> element:

<body class="tw_dark"></body>

The Ping (ForgeRock) Login Widget defaults to the light mode if the class is not present.

You can programmatically apply the class if required:

const prefersDarkTheme = window.matchMedia('(prefers-color-scheme: dark)').matches;
if (prefersDarkTheme) {
 document.body.classList.add('tw_dark');
}

info
If your organization’s UX or brand requires pixel-perfect UIs developed in accordance to Photoshop, Figma or other
"design mocks", Ping (ForgeRock) Login Widget might not be able to support such requirements.

Note

Ping SDKs Theme the widget

Copyright © 2025 Ping Identity Corporation 1011

Customize the theme

To reconfigure the theme to use different colors, fonts, or sizing you can provide new values to the Tailwind configuration file and
rebuild the Ping (ForgeRock) Login Widget, as follows:

Download the Ping (ForgeRock) Web Login Framework from the GitHub repository:

git clone https://github.com/ForgeRock/forgerock-web-login-framework.git

In a terminal window, navigate to the root of the Ping (ForgeRock) Web Login Framework:

cd forgerock-web-login-framework

Run npm to download and install the required packages and modules:

npm install

Run the development script:

npm run dev

Run Storybook:

npm run storybook

Make a note of the URLs to the Storybook UI listed in the terminal output:

Figure 2. URLs to the Storybook UI

Open the tailwind.config.cjs file in the root of the Ping (ForgeRock) Web Login Framework and adjust your theme by
adding them under the extend property:

1.

2.

3.

4.

5.

6.

Theme the widget Ping SDKs

1012 Copyright © 2025 Ping Identity Corporation

// tailwind.config.cjs
module.exports = {
 content: ['./src/**/*.{html,js,svelte,ts}', './.storybook/preview-head.html'],
 darkMode: 'class',
 presets: [require('./themes/default/config.cjs')],
 theme: {
 extend: {
 // Add your customizations here
 colors: {
 body: {
 light: 'darkblue',
 },
 primary: {
 dark: 'darkorange',
 },
 background: {
 light: "gainsboro",
 },
 },
 fontFamily: {
 sans: ['Impact'],
 },
 },
 },
};

Navigate to the Storybook UI provided in the terminal output earlier to view your changes:7.

Ping SDKs Theme the widget

Copyright © 2025 Ping Identity Corporation 1013

Figure 3. Customized registration modal in Storybook

Changes you make to the tailwind.config.cjs file are automatically reflected in the Storybook UI when you save them
to disk.

Recommendations

Anything configurable in Tailwind is also configurable in the theme. The custom properties the default theme uses are stored in
the /themes/default/tokens.cjs file.

We recommend you do not directly modify these default theme files. Only modify the root tailwind.config.cjs .

Supported customization

Using the methods on this page, you can customize:

Colors

Fonts

Type sizes

Spacing

•

•

•

•

Theme the widget Ping SDKs

1014 Copyright © 2025 Ping Identity Corporation

Breakpoints•

Ping SDKs Theme the widget

Copyright © 2025 Ping Identity Corporation 1015

Implement your use cases with the Ping
(ForgeRock) Login Widget

Find out how to achieve some common use case scenarios using the Ping (ForgeRock) Login Widget.

Log in with social authentication

Social authentication provides your users with a choice of ways to sign in that suits them.

Select from supported social providers in a journey to initiate an OAuth 2.0 flow to authenticate with the social provider,
before returning to the original journey.

Log in with OATH one-time passwords

If your users have registered the ForgeRock Authenticator for one-time passwords using a browser for example, then an
app using the Ping (ForgeRock) Login Widget will be able to accept the one-time password from the authenticator app.

Implement a CAPTCHA

Help to prevent automated scripts from attempting to authenticate to your servers by implementing a CAPTCHA in your
Ping (ForgeRock) Login Widget app.

Suspend journeys with "magic links"

You can use the Email Suspend Node within your journeys to support a number of authentication experiences, including
verifying a user’s email address, building a "forgot password" flow, or using an email address for multifactor
authentication.

Log in with social authentication

Social authentication provides your users with a choice of ways to sign in that suits them.

The Ping SDK for JavaScript supports social authentication with the following providers:

Apple

Facebook

Google

Selecting one of these providers in a journey initiates an OAuth 2.0 flow allowing them to authenticate themselves with the social
provider before returning to the original journey.

To enable this flow you need to:

Offer a choice of social identity providers using the Select Identity Provider node.

Optionally, you can allow users to skip social authentication and enter their credentials in the same form, provided
nodes such as a username collector are also present.

Handle the OAuth 2.0 flow for your users using the Social Provider Handler Node.

Determine if the user signed in to the social provider maps to a known user by adding the Identify Existing User Node.

The following is an example journey for social authentication:

•

•

•

1.

◦

2.

3.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1017

Figure 1. Example social login journey

On the client side, the Ping (ForgeRock) Login Widget handles the selection of the identity provider and redirection to the
provider.

You need to ensure your app manages the return back from the provider. To handle the return from a social provider, detect
code , state and form_post_entry query parameters, as these instruct the Ping (ForgeRock) Login Widget to resume
authentication using the current URL:

Detect social authentication query parameters and continue the journey

import { journey } from '@forgerock/login-widget';

const journeyEvents = journey();

const url = new URL(location.href);
const codeParam = url.searchParams.get('code');
const stateParam = url.searchParams.get('state');
const formPostEntryParam = url.searchParams.get('form_post_entry');

if (formPostEntryParam || (codeParam && stateParam)) {
 journey.start({ resumeUrl: location.href });
}

lightbulb_2
For a detailed guide covering the creation of social authentication journeys, refer to How do I create end user
journeys for social registration and login in PingOne Advanced Identity Cloud? in the Backstage Knowledge Base.

Tip

Implement your use cases with the Ping (ForgeRock) Login Widget Ping SDKs

1018 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/knowledge/kb/article/a80828410
https://backstage.forgerock.com/knowledge/kb/article/a80828410
https://backstage.forgerock.com/knowledge/kb/article/a80828410

The location.href value includes any query parameters returned from the social provider. Without all the query parameters,
the Ping (ForgeRock) Login Widget might not be able to rehydrate the journey and continue as needed.

Log in with OATH one-time passwords

The Ping (ForgeRock) Login Widget provides UI elements for the OATH Token Verifier node but not currently the OATH
Registration.

If your users have registered the ForgeRock Authenticator for one-time passwords using a browser, for example, then an app
using the Ping (ForgeRock) Login Widget will be able to accept the one-time password from the authenticator app.

The Ping (ForgeRock) Login Widget requires that the OATH Token Verifier node is contained within a Page node configured with a
specific Stage property.

In the containing Page Node, set the Stage property to OneTimePassword :

Figure 1. OATH journey example

The Ping (ForgeRock) Login Widget detects that stage value as a special case and renders the appropriate UI:

Ping SDKs Implement your use cases with the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1019

Figure 2. Rendering with the OneTimePassword stage property

If you do not put the OATH Token Verifier node within a Page node, the Ping (ForgeRock) Login Widget will not render the UI
correctly:

Figure 3. Rendering a lone OATH Token Verifier node

Implement a CAPTCHA

The Ping (ForgeRock) Login Widget supports the use of a CAPTCHA (Completely Automated Public Turing test to tell Computers
and Humans Apart), which helps to prevent automated scripts from attempting to authenticate to your servers.

Implement your use cases with the Ping (ForgeRock) Login Widget Ping SDKs

1020 Copyright © 2025 Ping Identity Corporation

To use a CAPTCHA in the Ping (ForgeRock) Login Widget, add the CAPTCHA node to your authentication journey.

Supported CAPTCHA variants

Ping (ForgeRock) Login Widget supports the following CAPTCHA variants:

Configure your app

The Ping (ForgeRock) Login Widget cannot inject the scripts necessary to use a CAPTCHA in your app.

You must add the relevant scripts yourself, usually to the <head> of the page:

hCaptcha

If you are using hCaptcha with the Ping (ForgeRock) Login Widget, you must first have the JavaScript loaded into your app’s
DOM:

<script src="https://js.hcaptcha.com/1/api.js" async defer></script>

reCAPTCHA v2

If you are using Google reCAPTCHA v2 with the Ping (ForgeRock) Login Widget, you must first have the JavaScript loaded
into your app’s DOM:

<script async src="https://www.google.com/recaptcha/api.js"></script>

reCAPTCHA v3

If you are using Google reCAPTCHA v3, you must append your site key in a query string parameter named render :

<script async src="https://www.google.com/recaptcha/api.js?render={reCAPTCHA_site_key}"></script>

When calling a journey that uses reCAPTCHA v3 you can add a recaptchaAction property with a custom value. That value
tags the event in the reCAPTCHA console so that you can track different usage:

CAPTCHA variant Support

hCaptcha  Active
 Passive / 99% Passive
 Invisible

reCAPTCHA v2  Full, except Invisible reCAPTCHA.

reCAPTCHA v3  Full

reCAPTCHA Enterprise  Not currently supported

Ping SDKs Implement your use cases with the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1021

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-captcha.html
https://www.hcaptcha.com/
https://www.hcaptcha.com/
https://developers.google.com/recaptcha/docs/display
https://developers.google.com/recaptcha/docs/display
https://developers.google.com/recaptcha/docs/invisible
https://developers.google.com/recaptcha/docs/invisible
https://developers.google.com/recaptcha/docs/v3
https://developers.google.com/recaptcha/docs/v3
https://cloud.google.com/security/products/recaptcha-enterprise
https://cloud.google.com/security/products/recaptcha-enterprise

journey.start({
 journey: 'reCAPTCHAv3journey',
 // ….any other journey config required….
 recaptchaAction: 'loginVIPArea', // reCAPTCHA v3 only, falls back to journey name
});

If you do not provide a recaptchaAction value, the SDK attempts to use the name of the journey instead, if available.

Test a CAPTCHA

With your app configured and the necessary scripts in place, you can visit any journey that contains a CAPTCHA node to test a
CAPTCHA with the Ping (ForgeRock) Login Widget.

For example, the following image shows how the Ping (ForgeRock) Login Widget handles a CAPTCHA node alongside a platform
username and platform password nodes, all within a single page node:

Figure 1. Login Widget handling reCAPTCHA v2 in a page node

Troubleshooting

This section contains information on how to diagnose issues when using a CAPTCHA with the Ping (ForgeRock) Login Widget.

Implement your use cases with the Ping (ForgeRock) Login Widget Ping SDKs

1022 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-captcha.html

Why does the reCAPTCHA display "ERROR for site owner: Invalid key type"?

Ensure the site key you have specified in the CAPTCHA node is configured for the version of reCAPTCHA type you want
to use.

For example, the following image shows a configuration for v2 Tickbox:

When using a v2 site key, do not select ReCaptcha V3 Node in the CAPTCHA node configuration.

Why does the browser console display "Error: Invalid site key or not loaded in api.js"?

Ensure you have added the correct site key value as a render query parameter of the Google api.js script.

For example:

<script async src="https://www.google.com/recaptcha/api.js?render=1249672216234"></script>

Why does the reCAPTCHA display "Localhost is not in the list of supported domains for this site key."?

The localhost domain is blocked from working with reCAPTCHA by default.

You can add the domain to the site key configuration for testing purposes if required.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1023

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-captcha.html

For more information, refer to Google’s reCAPTCHA documentation.

Suspend journeys with "magic links"

You can use the Email Suspend Node within your journeys to support a number of experiences, including verifying a user’s email
address, building a "forgot password" flow or using an email address for multifactor authentication.

The node suspends the journey until the user clicks a link—referred to as a magic link--in their email. This link contains a
generated unique code that can continue the suspended journey.

This page shows how to configure the Ping (ForgeRock) Login Widget to take advantage of this feature.

Configure the authentication server

Add the Email Suspend Node to the journey to suspend it until the user continues the journey from the link found in their
email.

Figure 1. Insert the Email Suspend Node into your journey

info
It can take several minutes for changes to the allowed domains to take effect.

Note

1.

Implement your use cases with the Ping (ForgeRock) Login Widget Ping SDKs

1024 Copyright © 2025 Ping Identity Corporation

https://developers.google.com/recaptcha/docs/faq#localhost_support
https://developers.google.com/recaptcha/docs/faq#localhost_support

Configure the External Login Page URL property in the Access Management native console to match your custom app’s
URL. This ensures the magic links are able to redirect users to your app to resume the journey. If not specified, the default
behavior is to route users to the login page.

Figure 2. Configure external login URL in the PingAM native console

When the Ping (ForgeRock) Login Widget encounters the Email Suspend Node, it renders the string configured in the Email
Suspend Message property configured in the node. The user is not able to continue the journey until they click the link
emailed to them.

Handle suspend IDs in your app

When your app handles a magic link, it needs to recognize it as a special condition and provide the Ping (ForgeRock) Login Widget
with the full URL that the user clicked in their email.

Return this URL, including all query parameters, to the server as the value of the resumeUrl parameter:

2.

3.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1025

import { journey } from '@forgerock/login-widget';

const journeyEvents = journey();

const url = new URL(location.href);
const suspendedId = url.searchParams.get('suspendedId');

if (suspendedId) {
 journeyEvents.start({ resumeUrl: location.href });
}

The location.href value includes all query parameters included in the magic link. Without all the query parameters, the Ping
(ForgeRock) Login Widget might not be able to rehydrate the journey and continue as needed.

Implement your use cases with the Ping (ForgeRock) Login Widget Ping SDKs

1026 Copyright © 2025 Ping Identity Corporation

Integrating the Ping (ForgeRock) Login
Widget

Find out how you can integrate the Ping (ForgeRock) Login Widget with different frameworks and libraries.

Integrate with PingOne Protect for risk evaluations

The Ping (ForgeRock) Login Widget can integrate with PingOne Protect to evaluate the risk involved in a transaction.

Use PingOne Protect in your authentication journeys to help prevent identity fraud by incorporating advanced features
and real-time detection.

Integrate Login Widget into a React app

Learn how to integrate the Ping (ForgeRock) Login Widget into a simple React app that you scaffold using Vite.

Integrate with PingOne Protect for risk evaluations

The Ping (ForgeRock) Login Widget can integrate with PingOne Protect to evaluate the risk involved in a transaction.

Figure 1. A flowchart illustrating how risk predictors evaluate many different data points.

You can instruct the Ping (ForgeRock) Login Widget to use the embedded PingOne Signals SDK to gather information during a
transaction. Your authentication journeys can then gather this information together and request a risk evaluation from PingOne.

emergency_home
PingOne Protect is supported in the following servers:

Advanced Identity Cloud
Use the official PingOne Protect nodes

PingAM 7.5 and later
Use the official PingOne Protect nodes

PingAM 7.2 - 7.4
Use the marketplace PingOne Protect nodes

Important

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1028 Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk

Based on the response, you can choose whether to allow or deny the transaction or perform additional mitigation, such as bot
detection measures.

You can use the audit functionality in PingOne to view the risk evaluations:

Figure 2. Risk evaluation records in the PingOne audit viewer.

Steps

Step 1. Set up the servers

In this step, you set up your PingOne Advanced Identity Cloud or PingAM server, and your PingOne instance to perform
risk evaluations.

For example, you create a worker application in PingOne and configure your server to access it. You also create an
authentication journey that uses the relevant nodes.

Step 2. Configure the Ping (ForgeRock) Login Widget for PingOne Protect

With everything prepared, you can now configure the Ping (ForgeRock) Login Widget to evaluate risk by using PingOne
Protect.

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1029

Step 1. Set up the servers

In this step, you set up your PingOne Advanced Identity Cloud or PingAM server, and your PingOne instance to perform risk
evaluations.

Create a worker application in PingOne

Configure the PingOne Worker service in your server

Configure a journey to perform PingOne Protect risk evaluations

Create a worker application in PingOne

To allow your server to access the PingOne administration API you must create a worker application in PingOne.

The worker application provides the client credentials your server uses to communicate with the PingOne admin APIs using the
OpenID Connect protocol.

To create a worker application in PingOne:

In the PingOne administration console, navigate to Applications › Applications, and then click Add ().

In the Add Application panel:

In Application name, enter a unique identifier for the worker application.

For example, Ping SDK Worker .

Optionally, enter a Description for the application and select an Icon.

These do not affect the operation of the worker application but do help you identify it in the list.

In Application Type, select Worker.

Click Save.

In the application properties panel for the worker application you created:

On the Roles tab, click Grant Roles.

On the Available responsibilities tab, select the Identity Data Admin row, and ensure the environment is correct.

Click Save.

On the Overview tab, ensure your worker application resembles the following image, and then enable it by using
the toggle (1):

1.

2.

3.

1.

2.

1.

2.

3.

4.

3.

1.

2.

3.

4.

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1030 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/r/en-us/pingone/p1_add_app_worker
https://docs.pingidentity.com/r/en-us/pingone/p1_add_app_worker

Figure 1. Example worker application in PingOne

Make a note of the Environment ID, Client ID, and Client Secret values (2).

You need these values in the next step when you Configure the PingOne Worker service in your server.

Configure the PingOne Worker service in your server

After you create a worker application in PingOne, you must configure the PingOne Worker service in your server with the
credentials.

Prerequisites

You need the following values from the PingOne Worker application you created in PingOne:

Client ID

Client ID of the worker application in PingOne.

Example: 6c7eb89a-66e9-ab12-cd34-eeaf795650b2

Client Secret

Client secret of the worker application in PingOne.

5.

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1031

Example: Ch15~o5Hm8N4_eS_m8~ARrV0KQAIQS6d.sJWe8TMXurEb~KWexY_p0gelR

Environment ID

Identifier of the environment that contains the worker application in PingOne.

Example: 3072206d-c6ce-ch15-m0nd-f87e972c7cc3

Register the client secret in the server

You need to make the client secret of the worker application in PingOne available for use in the PingOne worker service.

Advanced Identity Cloud

If you are using Advanced Identity Cloud you will need to create an environment secret to hold the client secret value, as
follows:

In the Advanced Identity Cloud admin UI, go to  Tenant Settings > Global Settings > Environment Secrets &
Variables.

Click the Secrets tab.

Click + Add Secret.

In the Add a Secret modal window, enter the following information:

lightbulb_2
Use the Secret Mask () or Copy to Clipboard () buttons to obtain the value in the PingOne administration
console.

Tip


emergency_home
The PingOne Worker Service requires a configured OAuth2 provider service in your server.

If you are using a self-managed AM server, you must configure the OAuth2 Provider service in a realm to
expose the OAuth 2.0 endpoints and OAuth 2.0 administration REST endpoints..
The OAuth2 provider service is preconfigured in Advanced Identity Cloud.

Important

•

•

1.

2.

3.

4.

Name Enter a secret name. For example, ping-protect-client-secret .

Description (optional) Enter a description of the purpose of the secret.

Value Enter the Client Secret value you obtained when creating the worker application in PingOne.
For example, Ch15~o5Hm8N4_eS_m8~ARrV0KQAIQS6d.sJWe8TMXurEb~KWexY_p0gelR .
The field obscures the secret value by default. You can optionally click the visibility toggle ()
to view the secret value as you enter it.

info
Secret names cannot be modified after the secret has been created.
Note

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1032 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-configure-authz.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-configure-authz.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-configure-authz.html

Click Save to create the variable.

Click View Update, check the details of the new secret, and then click Apply Update.

Advanced Identity Cloud displays a final confirmation page.

Figure 2. Apply updated secrets in Advanced Identity Cloud

Click Apply Now.

Advanced Identity Cloud propagates the new secret and its value to all servers. You must wait until the secrets
have propagated throughout the environment before attempting to use the secret.

The Environment Secrets & Variables page displays the following message while the update is in progress:

5.

6.

7.

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1033

Figure 3. Propagating secrets in progress in Advanced Identity Cloud.

Self-managed AM

For information on adding secret values for use in services in a self-managed AM instance, refer to Create key aliases in
the AM documentation.

Configure the PingOne worker service

To configure the PingOne worker service:

If you are using PingOne Advanced Identity Cloud, in the administration console navigate to Native Consoles > Access
Management.

In the AM admin UI, click Services.

If the PingOne Worker Service is in the list of services, select it.

If you do not yet have a PingOne Worker Service:

Click + Add a Service.

In Choose a service type, select PingOne Worker Service , and then click Create.

On the Secondary Configurations tab, click + Add a Secondary Configuration.

On the New workers configuration page:

Enter a Name for the configuration.

1.

2.

3.

4.

1.

2.

5.

6.

1.

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1034 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/security-guide/configuring-keys.html#creating-new-keys
https://docs.pingidentity.com/pingam/8/security-guide/configuring-keys.html#creating-new-keys

For example, SDK PingOne Worker .

You use this value when you configure an authentication journey that performs risk evaluations.

In Client ID, enter the client ID of the PingOne Worker application you created earlier.

In Client Secret Label Identifier, enter an identifier to create a specific secret label to represent the client secret of
the worker application.

For example, workerAppClientSecret .

The secret label uses the template am.services.pingone.worker.identifier.clientsecret where identifier is
the Client Secret Label Identifier value.

This field can only contain characters a-z , A-Z , 0-9 , and . and can’t start or end with a period.

In Environment ID, enter the environment ID containing the PingOne Worker application you created earlier.

Click Create

On the Workers Configuration page, ensure that the PingOne API Server URL and PingOne Authorization Server URL are
correct for the region of your PingOne servers:

Confirm your configuration resembles the image below, and then click Save changes.

2.

3.

4.

5.

7.

PingOne URLs by region

Region Authorization URL API URL

North America
(Excluding Canada)

https://auth.pingone.com https://api.pingone.com/v1

Canada https://auth.pingone.ca https://api.pingone.ca/v1

Europe https://auth.pingone.eu https://api.pingone.eu/v1

Asia-Pacific https://auth.pingone.asia https://api.pingone.asia/v1

8.

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1035

Figure 4. Example worker application in PingOne

Map the Client Secret Label Identifier to a secret

To make the client secret available to the PingOne Worker Service, you must map the secret to the ID created.

Map secrets in Advanced Identity Cloud

In the Advanced Identity Cloud admin UI, click Native Consoles > Access Management.

In the AM admin UI (native console), go to Realm > Secret Stores.

Click the ESV secret store, then click Mappings.

Click + Add Mapping.

In Secret Label, select the label generated when you entered the Client Secret Label Identifier previously.

For example, am.services.pingone.worker.workerAppClientSecret.clientsecret .

In aliases, enter the name of the ESV secret you created earlier, including the esv- prefix, and then click Add.

For example, esv-ping-protect-client-secret

1.

2.

3.

4.

1.

2.

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1036 Copyright © 2025 Ping Identity Corporation

The result resembles the following:

Click Create.

To learn more about mapping secrets and label identifiers in Advanced Identity Cloud, refer to Secret labels.

Map secrets in self-managed AM

To learn about mapping secrets in self-managed AM, refer to Map and rotate secrets.

You have now configured the PingOne Worker service in your server. You can now Configure a journey to perform PingOne
Protect risk evaluations.

Configure a journey to perform PingOne Protect risk evaluations

To make risk evaluations in PingOne, you must configure an authentication journey in your server.

The following table covers the authentication nodes and callbacks for integrating your authentication journeys with PingOne
Protect.

5.

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1037

https://docs.pingidentity.com/pingoneaic/latest/am-reference/secret-id-mappings.html
https://docs.pingidentity.com/pingoneaic/latest/am-reference/secret-id-mappings.html
https://docs.pingidentity.com/pingam/8/security-guide/secret-mapping.html
https://docs.pingidentity.com/pingam/8/security-guide/secret-mapping.html

In your server, log in as an administrator and create a new authentication journey similar to the following example:

Figure 5. An example PingOne Protect journey

The PingOne Protect Initialize node 1 instructs the SDK to initialize the PingOne Protect Signals API with the configured
properties.

Initialize the PingOne Protect Signals API as early in the journey as possible, before any user interaction.

This enables it to gather sufficient contextual data to make an informed risk evaluation.

The user enters their credentials, which are verified against the identity store.

The PingOne Protect Evaluation node 2 performs a risk evaluation against a risk policy in PingOne.

The example journey continues depending on the outcome:

High

The journey requests that the user respond to a push notification.

Node Callback Description

PingOne Protect Initialization node PingOneProtectInitiateCallback Instruct the embedded PingOne Signals
SDK to start gathering contextual
information.

PingOne Protect Evaluation node PingOneProtectEvaluationCallback Returns contextual information that the
server can send to your PingOne
Protect instance to perform a risk
evaluation.

PingOne Protect Result node Non-interactive Inform the PingOne Protect instance
about the status of the transaction.

•

lightbulb_2
You can initialize the PingOne Protect Signals API whenever you want to start collecting data. This could be at
application startup, or when a particular page or view is visited.
Learn more at initializing data collection.

Tip

•

•

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1038 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectInitiateCallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectInitiateCallback
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectEvaluationCallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectEvaluationCallback
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html

Medium or Low

The risk is not significant, so no further authentication factors are required.

Exceeds Score Threshold

The score returned is higher than the configured threshold and is considered too risky to complete successfully.

Failure

The risk evaluation could not be completed, so the authentication attempt continues to the Failure node.

BOT_MITIGATION

The risk evaluation returned a recommended action to check for the presence of a human, so the journey
continues to a CAPTCHA node.

ClientError

The client returned an error when attempting to capture the data to perform a risk evaluation, so the
authentication attempt continues to the Failure node.

An instance of the PingOne Protect Result node 3 returns the Success result to PingOne, which can be viewed in the
audit console to help with analysis and risk policy tuning.

A second instance of the PingOne Protect Result node 4 returns the Failed result to PingOne, which can be viewed in
the audit console to help with analysis and risk policy tuning.

You have now configured a suitable authentication journey in your server. You can now proceed to Step 2. Configure the Ping
(ForgeRock) Login Widget for PingOne Protect.

Step 2. Configure the Ping (ForgeRock) Login Widget for PingOne Protect

Integrating the Ping (ForgeRock) Login Widget with PingOne Protect enables you to perform risk evaluations during your
customer’s journey.

Complete the following tasks to fully integrate with PingOne Protect:

Initialize data collection

Pause and resume behavioral data capture

Return collected data for a risk evaluation

Initialize data collection

You must initialize the PingOne Signals SDK so that it collects the data needed to evaluate risk.

The earlier you can initialize the PingOne Signals SDK, the more data it can collect to make a risk evaluation.

There are two options for initializing the PingOne Signals SDK in the Ping (ForgeRock) Login Widget:

The Ping (ForgeRock) Login Widget automatically initializes the PingOne Signals SDK on receipt of a
PingOneProtectInitializeCallback callback from a journey you have started.

•

•

1.

2.

3.

1.

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1039

https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html

Manually initialize the PingOne Signals SDK, import the module and pass in any configuration parameters you need, as
follows:

import Widget, { configuration, journey, protect } from '@forgerock/login-widget';

new Widget({ target: widgetEl });

// Start PingOne Protect Signals SDK
await protect.start({
 envId: 3072206d-c6ce-ch15-m0nd-f87e972c7cc3,
 behavioralDataCollection: true,
 consoleLogEnabled: true,
});

The PingOne Signals SDK supports a number of parameters which you can supply yourself, or are contained in the
PingOneProtectInitializeCallback callback.

2.

Parameter
Description

Android iOS JavaScript

envID
Required. Your PingOne environment
identifier.

deviceAttributesToIgnore

Optional. A list of device attributes to ignore
when collecting device signals.
For example, AUDIO_OUTPUT_DEVICES or
IS_ACCEPT_COOKIES .

isBehavioralDataCollection behavioralDataCollection
When true , collect behavioral data.
Default is true .

isConsoleLogEnabled consoleLogEnabled

When true , output SDK log messages in the
developer console.
Default is false .

isLazyMetadata lazyMetadata

When true , calculate metadata on demand
rather than automatically after calling start .
Default is false .

N/A
deviceKeyRsyn

cIntervals

Number of days that device attestation can
rely upon the device fallback key.
Default: 14

N/A disableHub

When true , the client stores device data in
the browser’s localStorage only.
When false the client uses an iframe.
Default is false .

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1040 Copyright © 2025 Ping Identity Corporation

Return collected data for a risk evaluation

To perform risk evaluations, the PingOne server requires the captured data.

There are two options for returning data in the Ping (ForgeRock) Login Widget:

On receipt of a PingOneProtectEvaluationCallback callback within a journey, the Ping (ForgeRock) Login Widget
automatically returns the captured data.

Use the getData() method to manually return the captured data:

import Widget, { configuration, journey, protect } from '@forgerock/login-widget';

new Widget({ target: widgetEl });

// Start PingOne Protect Signals SDK
await protect.start({
 envId: 3072206d-c6ce-ch15-m0nd-f87e972c7cc3,
 behavioralDataCollection: true,
 consoleLogEnabled: true,
});

// Return gathered data to the server
await protect.getData();

N/A disableTags

When true , the client does not collect tag
data.
Tags are used to record the pages the user
visited, forming a browsing history.
Default is false .

N/A enableTrust

When true , tie the device payload to a non-
extractable crypto key stored in the browser
for content authenticity verification.
Default is false .

N/A
externalIdent

ifiers

Optional. A list of custom identifiers that are
associated with the device entity in PingOne
Protect.

N/A hubUrl
Optional. The iframe URL to use for cross-
storage device IDs.

N/A
waitForWindow

Load

When true , initialize the SDK on the load
event, instead of the DOMContentLoaded
event.
Default is true .

1.

2.

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1041

Pause and resume behavioral data capture

The PingOne Protect Signals SDK can capture behavioral data, such as how the user interacts with the app, to help when
performing evaluations.

There are scenarios where you might want to pause the collection of behavioral data. For example, the user might not be
interacting with the app, or you only want to use device attribute data to be considered when performing PingOne Protect
evaluations. You can then resume behavioral data collection when required.

There are two options for pausing and resuming behavioral data capture in the Ping (ForgeRock) Login Widget:

The PingOneProtectEvaluationCallback callback can include a flag to pause or resume behavioral capture, which the
Ping (ForgeRock) Login Widget automatically responds to.

Use the pauseBehavioralData() and resumeBehavioralData() methods to manually pause or resume the capture of
behavioral data:

import Widget, { configuration, journey, protect } from '@forgerock/login-widget';

new Widget({ target: widgetEl });

// Start PingOne Protect Signals SDK
await protect.start({
 envId: 3072206d-c6ce-ch15-m0nd-f87e972c7cc3,
 behavioralDataCollection: true,
 consoleLogEnabled: true,
});

// Return gathered data to the server
await protect.getData();

// Pause behavioral data collection
protect.pauseBehavioralData();

// Resume behavioral data collection
protect.resumeBehavioralData();

Integrate the Ping (ForgeRock) Login Widget into a React app

In this tutorial, you will learn how to integrate the Ping (ForgeRock) Login Widget into a simple React app that you scaffold using
Vite.

You install the Ping (ForgeRock) Login Widget using npm , add an element to the HTML file for mounting the modal form factor,
and wrap the app’s CSS in a layer.

With the app prepared, you then import and instantiate various components of the Ping (ForgeRock) Login Widget to start a
journey. You subscribe to the events the Ping (ForgeRock) Login Widget emits so that the app can respond and display the
appropriate UI.

When you have successfully authenticated a user, you add code to log the user out and invalidate their tokens, as well as update
the UI to alter the button state.

1.

2.

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1042 Copyright © 2025 Ping Identity Corporation

Requirements

Node 18+

NPM 8+

Configure your server

Configure your PingOne Advanced Identity Cloud or self-managed PingAM server by following the steps in the Ping (ForgeRock)
Login Widget Tutorial.

When creating the OAuth 2.0 client, add the URL that you are using to host the app to the Sign-In URLs property.

If your instance has the default Login journey, you can use that instead of creating a new journey as described in the
tutorial.

Create a Vite app

In a terminal window, create a Vite app with React as the template:

npm create vite@latest login-widget-react-demo -- --template react

For more information, refer to Scaffolding Your First Vite Project in the Vite developer documentation.

When completed, change to the new directory, for example login-widget-react-demo , and then install dependencies
with npm :

npm install

Run the app in developer mode:

npm run dev

In a web browser, open the URL output by the previous command to render the app. The URL is usually http://
localhost:5173

1.

2.

•

lightbulb_2
The URL is output to the console when you run the npm run dev command, and defaults to http://
localhost:5173/

Tip

•

1.

2.

3.

4.

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1043

http://localhost:5173/
http://localhost:5173/
http://localhost:5173/
https://vitejs.dev/guide/#scaffolding-your-first-vite-project
https://vitejs.dev/guide/#scaffolding-your-first-vite-project
http://localhost:5173
http://localhost:5173
http://localhost:5173

Figure 1. Example Vite + React app

Install the Ping (ForgeRock) Login Widget

In a new terminal window, install the Ping (ForgeRock) Login Widget using npm :

npm install @forgerock/login-widget

Prepare the HTML

In your preferred IDE, open the directory where you created the Vite app, and then open the index.html file.

To implement the modal form factor, create a root element to contain the Ping (ForgeRock) Login Widget.

Add <div id="widget-root"></div> toward the bottom of the <body> element but before the <script> tag:

lightbulb_2
Use a different browser for development testing than the one you use to log into PingOne Advanced Identity Cloud or
PingAM.
This prevents admin user and test user sessions colliding and causing unexpected authentication failures.

Tip

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1044 Copyright © 2025 Ping Identity Corporation

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <link rel="icon" type="image/svg+xml" href="/vite.svg" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Vite + React</title>
 </head>
 <body>
 <div id="root"></div>
 <!-- Widget mount point -->
 <div id="widget-root"></div>
 <script type="module" src="/src/main.jsx"></script>
 </body>
</html>

Prepare the CSS

You should wrap the app’s CSS using @layer . This helps control the CSS cascade.

To wrap the app’s CSS, in your IDE, open src/index.css and src/App.css and wrap them both with the following code:

@layer app {
 /* existing styles */
 #root {
 max-width: 1280px;
 margin: 0 auto;
 padding: 2rem;
 text-align: center;
 }

 .logo {
 height: 6em;
 padding: 1.5em;
 will-change: filter;
 transition: filter 300ms;
 }
 /* ... */
}

You can then specify the order of the various layers as follows:

<style>
 @layer app;
 /* List the Widget layers last */
 @layer 'fr-widget.base';
 @layer 'fr-widget.utilities';
 @layer 'fr-widget.components';
 @layer 'fr-widget.variants';
</style>

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1045

Import and configure the Ping (ForgeRock) Login Widget

In your IDE, open the top-level application file, often called App.jsx .

Import the Widget class, the configuration module, and the CSS:

import Widget, { configuration } from '@forgerock/login-widget';
import '@forgerock/login-widget/widget.css';

Add a call to the configuration method within your App function component and save off the return value to a config
variable for later use.

This internally prepares the Widget for use.

function App() {
 const [count, setCount] = useState(0);

 // Initiate all the Widget modules
 const config = configuration();

 // ...

Instantiate and mount the Ping (ForgeRock) Login Widget

To continue, you need to import useEffect from the React library. This is to control the execution of a number of statements
you are going to write.

After importing useEffect , write it into the component with an empty dependency array:

import React, { useEffect, useState } from 'react';

// ...

function App() {

 // ...

 useEffect(() => {}, []);

 // ...

Now that you have the useEffect written, follow these steps:

Instantiate the Widget class within useEffect

In the arguments, pass an object with a target property that specifies the DOM element you created in an earlier step

info
The empty dependency array is to tell React this has no dependencies at this point and should only run once.

Note

1.

2.

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1046 Copyright © 2025 Ping Identity Corporation

Assign its return value to a widget variable

Return a function that calls widget.$destroy()

useEffect(() => {
 const widget = new Widget({ target: document.getElementById('widget-root') });

 return () => {
 widget.$destroy();
 };
}, []);

In your browser, the app doesn’t look any different. This is because the Widget, by default, is invisible at startup.

To ensure it is working as expected, inspect the DOM in the browser developer tools.

Open the <div id="widget-root"> element in the DOM, and you should see the Ping (ForgeRock) Login Widget mounted within
it:

3.

4.

info
The reason for the returned function is for proper clean up when the React component unmounts.
If it remounts, you do not get two widgets added to the DOM.

Note

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1047

Figure 2. Instantiated and mounted modal form factor

Controlling the component

An invisible Ping (ForgeRock) Login Widget is not all that useful, so your next task is to pull in the component module to manage
the component’s events.

Add the component module to the list of imports from the @forgerock/login-widget

Call the component function just under the configuration function

Assign its return value to a componentEvents variable:

import Widget, { component, configuration } from '@forgerock/login-widget';

// ...

function App() {
 // ...

 const config = configuration();
 const componentEvents = component();

 // ...

1.

2.

3.

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1048 Copyright © 2025 Ping Identity Corporation

Now that you have a reference to the component events observable, you can trigger an event such as open , and you can also
listen for events.

Before calling the open method, repurpose the existing count is 0 button within the App component.

Within the button’s onClick handler, change the setCount function to componentEvents.open

Change the button text to read "Login"

The result resembles the following:

<button
 onClick={() => {
 componentEvents.open();
 }}>
 Login
</button>

You can now revisit your test browser and click the Login button. The modal opens and displays a "spinner" animating on repeat.

This is expected, because the Ping (ForgeRock) Login Widget does not yet have any information to render.

Click the button in the top-right to close the modal. The modal should be dismissed as expected.

Now that you have the modal mounted and functional, move on to the next step which configures the Ping (ForgeRock) Login
Widget to be able to call the authorization server to get authentication data.

Calling the authorization server

Before the Ping (ForgeRock) Login Widget can connect you need to use the config variable you created earlier.

Call its set method within the exiting useEffect , and provide the configuration values for your server:

useEffect(() => {

 config.set({
 forgerock: {
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 3000,
 },
 },
 });

 const widget = new Widget({ target: document.getElementById('widget-root')});

 // ...

Now that you have the Ping (ForgeRock) Login Widget configured, add the journey module to the list of imports so that you can
start the authentication flow:

1.

2.

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1049

import Widget, {
 component,
 configuration,
 journey,
} from '@forgerock/login-widget';

Execute the journey function and assign its returned value to a journeyEvents variable. Do this underneath the other existing
"event" variables:

import Widget, { component, configuration, journey } from '@forgerock/login-widget';

// ...

function App() {
 // ...

 const config = configuration();
 const componentEvents = component();
 const journeyEvents = journey();

 // ...

This new observable provides access to journey events. Within the Login button’s onClick handler add the start method.

Now, when you open the modal, you also call start to request the first authentication step from the server.

<button onClick={() => {
 journeyEvents.start();
 componentEvents.open();
 }>
 Login
</button>

You are now capable of authenticating a user. With an existing user, authenticate as that user and see what happens.

If successful, you’ll notice the modal dismisses itself but your app is not capturing anything from this action. Proceed to the next
step to capture user data.

Authenticating a user

There are multiple ways to capture the event of a successful login and access the user information.

In this guide, you use the journeyEvents observable created previously.

Within the existing useEffect function:

Call the subscribe method and assign its return value to an unsubscribe variable

Pass in a function that logs the emitted events to the console

Call the unsubscribe function within the return function of useEffect

1.

2.

3.

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1050 Copyright © 2025 Ping Identity Corporation

// ...

useEffect(() => {
 // ...

 const widget = new Widget({ target: document.getElementById('widget-root') });

 const journeyEventsUnsub = journeyEvents.subscribe((event) => {
 console.log(event);
 });

 return () => {
 widget.$destroy();
 journeyEventsUnsub();
 };
}, []);

Revisit your app in the test browser, but remove all of the browser’s cookies and Web Storage to ensure you have a fresh start.

Once you have deleted all the cookies and storage, refresh the browser and try to log in your test user.

You will notice in the developer tools console that a lot of events are emitted.

Initially, you may not have much need for all this data, but over time, this information might become more valuable to you.

To narrow down all of this information, capture just one piece of the event: the user response after successfully logging in.

To do that, you can add a conditional, as follows:

Add an if condition within the subscribe callback function that tests for the existence of the user response.

const journeyEventsUnsub = journeyEvents.subscribe((event) => {
 if (event.user.response) {
 console.log(event.user.response);
 }
});

With the above condition, the Ping (ForgeRock) Login Widget only writes out the user information when it’s truthy. This helps
narrow down the information to what is useful right now.

Remove all the cookies and Web Storage again and refresh the page. Try logging in again, and you should see only one log of the
user information when it’s available:

info
Unsubscribing from the observable is important to avoid memory leaks if the component mounts and unmounts
frequently.

Note

lightbulb_2
In Chromium browsers, you can find it under the "Application" tab of the developer tools.
In Firefox and Safari, you can find it under the "Storage" tab.

Tip

•

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1051

Example user.event.response output

{
 email: 'sdk.demo-user@example.com',
 sub: '54c77653-dc88-48fb-ac6b-d5078ebe9fb0',
 subname: '54c77653-dc88-48fb-ac6b-d5078ebe9fb0'
}

Next, repurpose the useState hook that’s already used in the component to save the user information.

Change the zeroth index of the returned value from count to userInfo

Change the first index of the returned value from setCount to setUserInfo

Change the default value passed into the useState from 0 to null

Change the condition from just truthy to userInfo !== event.user.response

Replace the console.log with the setUserInfo function

Add the userInfo variable in the dependency array of the useEffect

The top part of your App function component should resemble the following:

1.

2.

3.

4.

5.

6.

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1052 Copyright © 2025 Ping Identity Corporation

function App() {
 const [userInfo, setUserInfo] = useState(null);

 // Initiate all the Widget modules
 const config = configuration();
 const componentEvents = component();
 const journeyEvents = journey();

 useEffect(() => {
 // Set the Widget's configuration
 config.set({
 forgerock: {
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 3000,
 }
 }
 });

 // Instantiate the Widget and assign it to a variable
 const widget = new Widget({ target: document.getElementById('widget-root') });

 // Subscribe to journey observable and assign unsubscribe function to variable
 const journeyEventsUnsub = journeyEvents.subscribe((event) => {
 if (userInfo !== event.user.response) {
 setUserInfo(event.user.response);
 }
 });

 // Return a function that destroys the Widget and unsubscribes from the journey observable
 return () => {
 widget.$destroy();
 journeyEventsUnsub();
 };
 }, [userInfo]);

 // ...

Now that you have the user data set into the React component, print it out into the DOM.

Replace the paragraph tag containing the text Edit <code>src/App.jsx</code> and save to test HMR with a <pre>
tag

Within the <pre> tag, write a pair of braces: {}

Within these braces, use the JSON.stringify method to serialize the userInfo value

Your JSX should now look like this:

info
The condition comparing userInfo to event.user.response reduces the number of times the setUserInfo is
called as it will now only be called if what is set in the hook is different than what is emitted from the Ping (ForgeRock)
Login Widget.

Note

1.

2.

3.

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1053

<pre>{JSON.stringify(userInfo, null, ' ')}</pre>

After clearing the browser data, try logging the user in and observe the user info get rendered onto the page after success.

Figure 3. User info displaying after successful log in

Logging a user out

The final step is to log the user out, clearing all the user-related cookies, storage, and cache.

To do this, add the user module to the list of imports from the Ping (ForgeRock) Login Widget:

lightbulb_2
The null and ' ' (literal space character) help format the JSON to be more reader-friendly.

Tip

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1054 Copyright © 2025 Ping Identity Corporation

import Widget, {
 configuration,
 component,
 journey,
 user,
} from '@forgerock/login-widget';

Next, configure the app to display the button as a Login button when the user has not yet authenticated and a Logout button
when the user has already logged in:

Wrap the button element with braces containing a ternary, using the falsiness of the userInfo as the condition

When no userInfo exists—the user is logged out—render the Login button

Write a Logout button with an onClick handler to run the user.logout function

The resulting JSX should resemble this:

import Widget, { user, component, configuration, journey } from '@forgerock/login-widget';

// ...

<h1>Vite + React</h1>
<div className="card">
 {
 !userInfo ? (
 <button
 onClick={() => {
 journeyEvents.start();
 componentEvents.open();
 }}>
 Login
 </button>
) : (
 <button
 onClick={() => {
 user.logout();
 }}>
 Logout
 </button>
)
 }
 <pre>{JSON.stringify(userInfo, null, ' ')}</pre>
</div>
// ...

If your app is already reacting to the presence of user info, it should be rendering the Logout button already. Click it and observe
the application reacting.

You should now be able to log a user in and out, with the app reacting to the changes in state.

1.

2.

3.

lightbulb_2
You do not have to add code to reset the userInfo with the setUserInfo function, because you are already
"listening" to events emitted from the user observable nested within the journeyEvents subscribe.

Tip

Ping SDKs Integrating the Ping (ForgeRock) Login Widget

Copyright © 2025 Ping Identity Corporation 1055

Integrating the Ping (ForgeRock) Login Widget Ping SDKs

1056 Copyright © 2025 Ping Identity Corporation

API reference

This page lists the modules that the Ping (ForgeRock) Login Widget provides for use in your apps.

Widget

This is a compiled Svelte class. This is what instantiates the component, mounts it to the DOM, and sets up all the event listeners.

import Widget from '@forgerock/login-widget';

// Instantiate Widget
const widget = new Widget({
 target: widgetRootEl, // REQUIRED; Element mounted in DOM
 props: {
 type: 'modal', // OPTIONAL; "modal" or "inline"; "modal" is default
 },
});

// OPTIONAL; Remove widget from DOM and destroy component listeners
widget.$destroy();

Configuration

The Ping (ForgeRock) Login Widget requires information about the server instance it connects to, as well as OAuth 2.0 client
configuration and other settings.

For information on setting up your server for use with the Ping (ForgeRock) Login Widget, refer to Prerequisites.

To provide these settings, import and use the configuration module and its set() method.

The Ping (ForgeRock) Login Widget uses the same underlying configuration properties as the main SDK.

emergency_home
Call $destroy() if you instantiate the Ping (ForgeRock) Login Widget within a part of your application frequently
created and destroyed.
We strongly encourage you to instantiate the modal form factor of the Ping (ForgeRock) Login Widget high up in your
application code. Instantiate it close to the top-level file in a component that is created once and preserved.

Important

API reference Ping SDKs

1058 Copyright © 2025 Ping Identity Corporation

import { configuration } from '@forgerock/login-widget';

const myConfig = configuration();
myConfig.set({
 forgerock: {
 /**
 * REQUIRED; SDK configuration object
 */
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 3000, // Number (in milliseconds); 3 to 5 seconds should be fine
 },
 /**
 * OPTIONAL, *BUT ENCOURAGED*, CONFIGURATION
 * Remaining config is optional with fallback values shown
 */
 clientId: 'sdkPublicClient', // String; defaults to 'WebLoginWidgetClient'
 realmPath: 'alpha', // String; defaults to 'alpha'
 redirectUri: window.location.href, // URL string; defaults to `window.location.href`
 scope: 'openid profile email address', // String; defaults to 'openid email'
 },
 /**
 * OPTIONAL; Pass custom content
 */
 content: {},
 /**
 * OPTIONAL; Provide link for terms and conditions page
 */
 links: {},
 /**
 * OPTIONAL; Provide style configuration
 */
 style: {},
 /**
 * OPTIONAL; Map HREFs to journeys or trees
 */
 journeys: {},
});

Content configuration options

Use the content configuration element to pass custom text content to the Ping (ForgeRock) Login Widget, replacing its default
values.

Ping SDKs API reference

Copyright © 2025 Ping Identity Corporation 1059

Example content configuration

const myConfig = configuration();

myConfig.set({
 content: {
 "userName": "Identifier",
 "passwordCallback": "Passphrase",
 "nextButton": "Let's go!",
 },
});

Figure 1. Result of example content configuration

For a list of the content you can override, refer to the en-us locale file in the Ping (ForgeRock) Web Login Framework repository.

Links configuration options

Use the links configuration element to set the full canonical URL to your terms and conditions page.

This should be a page hosted on your website or elsewhere within your app. Users are sent to this URL if they click to view the
terms and conditions in the Ping (ForgeRock) Login Widget.

This supports the TermsAndConditionsCallback often used in registration journeys.

Example links configuration

const myConfig = configuration();

myConfig.set({
 links: {
 termsAndConditions: 'https://example.com/terms',
 },
});

API reference Ping SDKs

1060 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/forgerock-web-login-framework/blob/beta/src/locales/us/en/index.json
https://github.com/ForgeRock/forgerock-web-login-framework/blob/beta/src/locales/us/en/index.json

Style configuration options

Use the style configuration element to configure the look and feel of the Ping (ForgeRock) Login Widget. This allows you to
choose the type of labels used or provide a logo for the modal.

Figure 2. Use the style property to control aspects of the display

Key:

Use style/logo to add images for use in dark or light modes

Set style/stage/icon to true to render UI specific to certain stage parameter values. Supported stage values are:

OneTimePassword - enable the Ping (ForgeRock) Login Widget to display one-time password entry forms correctly.

DefaultRegistration - adds UI elements to the display most suitable for user self-registration forms.

DefaultLogin - adds UI elements to the display most suitable for user log in forms.

A section that displays the Page Header and Page Description fields from the page node configuration

To float labels above their respective fields, set style/labels to floating

1.

2.

◦

◦

◦

3.

4.

Ping SDKs API reference

Copyright © 2025 Ping Identity Corporation 1061

Adding logos and enabling icons

const myConfig = configuration();

myConfig.set({
 style: {
 checksAndRadios: 'animated', // OPTIONAL; choices are 'animated' or 'standard'
 labels: 'floating', // OPTIONAL; choices are 'floating' or 'stacked'
 logo: {
 // OPTIONAL; only used with modal form factor
 dark: 'https://example.com/img/white-logo.png', // OPTIONAL; used if theme has a dark variant
 light: 'https://example.com/img/black-logo.png', // REQUIRED if logo property is provided; full URL
 height: 300, // OPTIONAL; number of pixels for providing additional controls to logo display
 width: 400, // OPTIONAL; number of pixels for providing additional controls to logo display
 },
 sections: {
 // OPTIONAL; only used with modal form factor
 header: false, // OPTIONAL; separate the logo section from the rest of the modal
 },
 stage: {
 icon: true, // OPTIONAL; displays generic icons for the provided stages
 },
 },
});

Add a header section

Enabling the header section separates the logo or branding from the journey form.

If you set header: true within the style/sections property, the modal uses a section with a separating line, and extra space:

info
The logo and sections properties only apply to the "modal" form factor and not the "inline".

Note

API reference Ping SDKs

1062 Copyright © 2025 Ping Identity Corporation

Figure 3. Modal form factor with header enabled

By default, the separating section is not enabled:

Ping SDKs API reference

Copyright © 2025 Ping Identity Corporation 1063

Figure 4. Default modal form factor with header disabled

Journeys configuration options

Use the journeys configuration element to map HREF values rendered within the Ping (ForgeRock) Login Widget to start a
journey or authentication tree instead of visiting the URL.

API reference Ping SDKs

1064 Copyright © 2025 Ping Identity Corporation

Figure 5. Example HREF values in a page node

The Ping (ForgeRock) Login Widget listens for click events on elements rendered within its container and compares the HREF to
the configured mappings. If there is a match, it prevents the default action of visiting the URL and starts the journey configured in
the mapping.

Mapping HREF strings to a journey

config.set({
 forgerock: {
 // SDK config
 },
 journeys: {
 forgetCookie: { // Any string, as long as it's not overriding a default mapping
 journey: 'ForgetCookie', // Must match actual journey name in the {fr_server}
 match: ['#/service/ForgetCookie'], // Array of strings that match `HREF` values (case-sensitive)
 }
 }
});

The Ping (ForgeRock) Login Widget has mappings configured internally to handle the links displayed in page nodes by default.
These map the HREF values that are displayed by an out-of-the-box page node to corresponding journeys in an PingOne
Advanced Identity Cloud tenant. You can override the mappings if required or add your own.

Ping SDKs API reference

Copyright © 2025 Ping Identity Corporation 1065

Default HREF strings to journey mappings

forgotPassword: {
 journey: 'ResetPassword',
 match: ['#/service/ResetPassword', '?journey=ResetPassword'],
},
forgotUsername: {
 journey: 'ForgottenUsername',
 match: ['#/service/ForgottenUsername', '?journey=ForgottenUsername'],
},
login: {
 journey: 'Login',
 match: ['#/service/Login', '?journey', '?journey=Login'],
},
register: {
 journey: 'Registration',
 match: ['#/service/Registration', '?journey=Registration'],
},

Component

Use the component module for subscribing to modal and inline form factor events and for opening and controlling the modal
form factor.

Call the component() method and assign the result to a variable to receive the observable. Subscribe to the observable to listen
and react to the state of the Ping (ForgeRock) Login Widget component.

import { component } from '@forgerock/login-widget';

// Initiate the component API
const componentEvents = component();

// Know when the component, both modal and inline has been mounted.
// When using the modal type, you will also receive open and close events.
// The property `reason` will be either "auto", "external", or "user"

const unsubComponentEvents = componentEvents.subscribe((event) => {
 /* Run anything you want */
});

// Open the modal
componentEvents.open();

// Close the modal
componentEvents.close();

// Recommended: call when your UI component is destroyed
unsubComponentEvents();

API reference Ping SDKs

1066 Copyright © 2025 Ping Identity Corporation

Schema for component events

The schema for component events is as follows:

Schema for component events

{
 lastAction: null, // null or the most recent action; one of `close`, `open`, or `mount`
 error: null, // null or object with `code`, `message`, and `step` that failed
 mounted: false, // boolean
 open: null, // boolean for the modal form factor, or null for inline form factor
 reason: null, // string to describe the reason for the event
 type: null, // 'modal' or 'inline'
}

Use the reason value to determine why the modal has closed.

The possible reason values are:

user

The user closed the dialog within the UI

auto

The modal was closed because the user successfully authenticated

external

The application called the close() function

Journey

Use the journey module to manage interaction with authentication and self-service journeys.

Ping SDKs API reference

Copyright © 2025 Ping Identity Corporation 1067

import { journey } from '@forgerock/login-widget';

// Call to start the journey
// Optional config can be passed in, see below for more details
const journeyEvents = journey({
 oauth: true, // OPTIONAL; defaults to true; uses OAuth flow for acquiring tokens
 user: true, // OPTIONAL; default to true; returns user information from `userinfo` endpoint
});

// Start a journey
journeyEvents.start({
 forgerock: {}, // OPTIONAL; configuration overrides
 journey: 'Login', // OPTIONAL; specify the journey or tree you want to use
 resumeUrl: window.location.href, // OPTIONAL; the full URL for resuming a tree
 recaptchaAction: 'myCaptchaTag', // OPTIONAL; tag v3 reCAPTCHAs. Fallback to journey name.
 pingProtect: { // Set manually, or obtain from `PingOneProtectInitializeCallback` callback.
 // REQUIRED; Your {p1_name} environment identifier.
 envId: '3072206d-c6ce-4c19-a366-f87e972c7cc3',
 // OPTIONAL; When `true`, collect behavioral data.
 behavioralDataCollection: true,
 // OPTIONAL; When `true`, output SDK log messages in the developer console.
 consoleLogEnabled: false,
 },
});

// Subscribe to journey events
const unsubJourneyEvents = journeyEvents.subscribe((event) => {
 /* Run anything you want */
});

// Recommended: call when your UI component is destroyed
unsubJourneyEvents();

Schema for journey events

The schema for journey events is as follows:

API reference Ping SDKs

1068 Copyright © 2025 Ping Identity Corporation

Schema for journey events

{
 journey: {
 completed: false, // boolean
 error: null, // null or object with `code`, `message`, and `step` that failed
 loading: false, // boolean
 step: null, // null or object with the last step object from the server
 successful: false, // boolean
 response: null, // null or object if successful containing the success response from the server
 },
 oauth: {
 completed: false, // boolean
 error: null, // null or object with `code` and `message` properties
 loading: false, // boolean
 successful: false, // boolean
 response: null, // null or object with OAuth/OIDC tokens
 },
 user: {
 completed: false, // boolean
 error: null, // null or object with `code` and `message` properties
 loading: false, // boolean
 successful: false, // boolean
 response: null, // null or object with user information driven by OAuth scope config
 },
}

User

Use the user module to access methods for managing users:

user.info

user.tokens

user.logout

The user.info and user.tokens methods requires use of OAuth 2.0. The user.info method also requires a scope value of
openid .

The Ping (ForgeRock) Login Widget is configured to use both requirements by default.

You can use the user.logout method with both OAuth 2.0 and session-based authentication.

•

•

•

Ping SDKs API reference

Copyright © 2025 Ping Identity Corporation 1069

import { user } from '@forgerock/login-widget';

/**
 * User info API
 */
const userEvents = user.info();

// Subscribe to user info changes
const unsubUserEvents = userEvents.subscribe((event) => {
 // Return current, *local*, user info and future state changes
 console.log(event);
});

// Fetch/get fresh user info from the server
userEvents.get(); // New state is returned in your `userEvents.subscribe` callback function

/**
 * User tokens API
 */
const tokenEvents = user.tokens();

// Subscribe to user token changes
const unsubTokenEvents = tokenEvents.subscribe((event) => {
 // Return current, *local*, user tokens and future state changes
 console.log(event);
});

// Return existing user tokens if available and not expired or about to expire
// Otherwise obtain fresh ones from the server
tokenEvents.get(); // State is returned in your `tokenEvents.subscribe` callback function

/**
 * Logout
 * Log user out and clear user data (info and tokens)
 */
user.logout(); // Resets user and emits event to your info and tokens' `.subscribe` callback function

// Recommended: call when your UI component is destroyed
unsubUserEvents();
unsubTokenEvents();

You can use get() with both user.info and user.tokens to obtain the user’s profile or OAuth 2.0 tokens. The get() function
maps to the following methods in the Ping SDK for JavaScript, and support the same parameters:

userEvents.get() = UserManager.getCurrentUser()

tokenEvents.get() = TokenManager.getTokens()

For example, when getting a user’s tokens you can force the Ping (ForgeRock) Login Widget to obtain fresh tokens from the server
as follows:

tokenEvents.get({forceRenew: true});

Refer to the Ping SDK for JavaScript API reference for more information.

•

•

API reference Ping SDKs

1070 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html#getCurrentUser
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html#getCurrentUser
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html#getTokens
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html#getTokens
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html

Schema for user.info events

The schema for user.info events is as follows:

Schema for user.info events

{
 completed: false, // boolean
 error: null, // null or object with `code`, `message`, and `step` that failed
 loading: false, // boolean
 successful: false, // boolean
 response: null, // object returned from the `/userinfo` endpoint
}

Schema for user.tokens events

The schema for user.tokens events is as follows:

Schema for user.tokens events

{
 completed: false, // boolean
 error: null, // null or object with `code`, `message`, and `step` that failed
 loading: false, // boolean
 successful: false, // boolean
 response: null, // object returned from the `/access_token` endpoint
}

Request

The Ping (ForgeRock) Login Widget has an alias to the Ping SDK for JavaScript’s HttpClient.request method, which is a
convenience wrapper around the native fetch . This method will auto-inject the access token into the Authorization header
and manage some of the lifecycle around the token.

import { request } from '@forgerock/login-widget';

const response = await request({ init: { method: 'GET' }, url: 'https://protected.resource.com' });

The full options object:

Ping SDKs API reference

Copyright © 2025 Ping Identity Corporation 1071

{
 bypassAuthentication: false, // Boolean; if true, the access token is not injected into the `Authorization` header
 init: {
 // Options object for `fetch` API: https://developer.mozilla.org/en-US/docs/Web/API/fetch
 },
 timeout: 3000, // Fetch timeout in milliseconds
 url: 'https://protected.resource.com', // String; the URL of the resource

 // Unsupported properties
 authorization: {},
 requiresNewToken: () => {},
}

For more information, refer to the HttpClient reference documentation.

API reference Ping SDKs

1072 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/http-client.HttpClient.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/http-client.HttpClient.html

ForgeRock Authenticator

The ForgeRock Authenticator is an official multi-factor authentication (MFA) application for customers.

The ForgeRock Authenticator supports the following MFA methods:

Time-based one-time passwords (TOTP)

HMAC-based one-time passwords (HOTP)

Push notifications

You can also enable authentication app policies in the ForgeRock Authenticator that prevent operation on rooted devices, for
example.

Download

Download the ForgeRock Authenticator from the following stores:

Develop

As a customer, you can use the Ping (ForgeRock) Authenticator module to integrate the functionality of the ForgeRock
Authenticator into your own apps.

Server support:

 PingOne
 PingOne Advanced Identity Cloud
 PingAM
 PingFederate

SDK support:

 Ping SDK for Android
 Ping SDK for iOS
 Ping SDK for JavaScript

•

•

•



Android

ForgeRock Authenticator on Google Play



iOS

ForgeRock Authenticator on the Apple App Store

ForgeRock Authenticator Ping SDKs

1074 Copyright © 2025 Ping Identity Corporation

https://play.google.com/store/apps/details?id=com.forgerock.authenticator&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.forgerock.authenticator&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.forgerock.authenticator&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.forgerock.authenticator&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.forgerock.authenticator&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.forgerock.authenticator&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.forgerock.authenticator&hl=en&gl=US
https://apps.apple.com/gb/app/forgerock-authenticator/id1038442926
https://apps.apple.com/gb/app/forgerock-authenticator/id1038442926
https://apps.apple.com/gb/app/forgerock-authenticator/id1038442926
https://apps.apple.com/gb/app/forgerock-authenticator/id1038442926
https://apps.apple.com/gb/app/forgerock-authenticator/id1038442926
https://apps.apple.com/gb/app/forgerock-authenticator/id1038442926
https://apps.apple.com/gb/app/forgerock-authenticator/id1038442926

Implement your use cases with the
ForgeRock Authenticator

Find out how to achieve some common use case scenarios using the ForgeRock Authenticator.

Implement MFA using push notifications

In this use case, you authenticate a user with MFA by setting up the ForgeRock Authenticator for push notification.

To receive push notifications when authenticating, end users must register an Android or iOS device running the
ForgeRock Authenticator.

Read more 

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1076 Copyright © 2025 Ping Identity Corporation

Implement MFA using OATH one-time passwords

In this use case you configure your server to require a single-use, one-time password generated by the ForgeRock
Authenticator when users authenticate.

The ForgeRock Authenticator supports time-based and HMAC-based one-time passwords.

Read more 

Secure the Authenticator app using policies

You can distribute the ForgeRock Authenticator to your users so that they can participate in multi-factor authentication
journeys.

To help ensure the security of the app—and therefore your system—you can apply Authenticator app policies.

Read more 

Develop your own use case solutions

As a customer, you can use the Ping (ForgeRock) Authenticator module to integrate the functionality of the ForgeRock
Authenticator into your own Android and iOS apps.

For more information, refer to Ping (ForgeRock) Authenticator module.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1077

Implement MFA using push notifications

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

In this use case, you authenticate a user with MFA by setting up the ForgeRock Authenticator for push notification.

To receive push notifications when authenticating, end users must register an Android or iOS device running the ForgeRock
Authenticator.

The registered device can then be used as an additional factor when authenticating. Your server sends the device a push
notification, which is handled by the ForgeRock Authenticator. In the app, you can allow or deny the request that generated the
push notification and return the response to AM.

How push authentication works

Figure 1. Overview of Push Authentication

The following steps occur as a user completes a push notification journey:

The user provides credentials to enable AM to locate the user profile and determine if they have a registered mobile
device.

The journey prompts the user to register a mobile device if they have not done so already.

The user registers their device by using the ForgeRock Authenticator. The application supports a variety of methods for
responding to push notifications, such as tapping a button, or using biometrics.

Registering a device stores device metadata in the user profile that is required for push notifications. AM uses the
configured ForgeRock Authenticator (Push) service, which supports encrypting the metadata.

Once the user has a registered device, AM creates a push message specific to the device.

1.

2.

3.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1078 Copyright © 2025 Ping Identity Corporation

The message has a unique ID that AM stores while waiting for the response.

AM writes a pending record with the same message ID to the CTS store for redundancy should an individual server go
offline during the authentication process.

AM sends the push message to the registered device.

AM delivers the message through the configured push notification service.

Depending on the registered device, AM uses either Apple Push Notification Services (APNS) or Google Cloud Messaging
(GCM) to deliver the message.

AM begins to poll the CTS for an accepted response from the registered device.

The user responds to the notification through the ForgeRock Authenticator application on the device, for example,
approving or rejecting the notification.

The application responds to the push notification message with the user’s choice.

AM verifies the message is from the correct registered device and has not been tampered with, and marks the pending
record as accepted if valid.

AM detects the accepted record and redirects the user to their profile page, completing the authentication.

Step 1. Enable the ForgeRock Authenticator Push service

In this step you configure your server to operate with the ForgeRock Authenticator. We will use the default settings.

Log in to the Advanced Identity Cloud admin UI as an administrator.

In the left menu pane, select Native Consoles > Access Management.

The realm overview for the Alpha realm displays.

Select  Services, and then click + Add a Service.

In Choose a service type, select ForgeRock Authenticator (Push) Service, and then click Create.

Click Save Changes to accept the default settings.

4.

5.

6.

Advanced Identity Cloud

1.

2.

3.

4.

5.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1079

Log in to the AM admin UI as an administrator.

The realm overview for the Top Level Realm displays.

Select  Services, and then click + Add a Service.

In Choose a service type, select ForgeRock Authenticator (Push) Service, and then click Create.

Click Save Changes to accept the default settings.

Step 2: Create Push service credentials in Backstage

Your server uses an external AWS service to send push notifications. Its configuration requires access keys and other metadata.
As a customer, you have streamlined access to the required metadata:

In a web browser, log in to the Service Credentials page on Backstage.

Under Push Authentication AWS Credentials, click Create.

In Description, enter Push credentials for MFA journey.

In Region, select the location closest to the majority of your users.

Click Create.

The Create New AWS Credential screen displays the settings you must add to your server.

Click Download as JSON.

This downloads a file in JSON format containing all the values for you to store securely:

Self-managed PingAM server

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1080 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/account/profile/service-credentials
https://backstage.forgerock.com/account/profile/service-credentials

Example of a downloaded JSON file with push service credential values

{
 "id": "uzW8...rwJC",
 "provider": "AWS",
 "creationTimestamp": "2023-10-18T17:02:00.882Z",
 "createdBy": "admin.user",
 "updateTimestamp": null,
 "updatedBy": null,
 "description": "Push credentials for MFA journey",
 "supportKey": null,
 "validUntil": null,
 "writable": true,
 "region": "eu-west-1",
 "accessKeyId": "AKIA...6N74",
 "accessKeySecret": "uVjT...uu+k",
 "applicationArns": {
 "APNS": "arn:aws:sns:eu-west-1:1234:app/APNS/rgBO...n4RA",
 "GCM": "arn:aws:sns:eu-west-1:1234:app/GCM/rgBO...n4RA"
 }
}

Click Close.

Step 3: Configure the Push Notification service in your server

In this step you configure your server with the settings it needs to be able to send push notifications to mobile devices.

You will need the AWS service credentials obtained in the previous step.

emergency_home
It is vital that you have a copy of these values, especially the accessKeySecret value, as it is not stored on
Backstage.

Important

7.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1081

Log in to the Advanced Identity Cloud admin UI as an administrator.

In the left menu pane, select Native Consoles > Access Management.

The realm overview for the Alpha realm displays.

Select  Services, and then click + Add a Service.

In Choose a service type, select Push Notification Service.

Open the JSON file you obtained in the previous step:

{
 "id": "uzW8...rwJC",
 "provider": "AWS",
 "creationTimestamp": "2023-10-18T17:02:00.882Z",
 "createdBy": "admin.user",
 "updateTimestamp": null,
 "updatedBy": null,
 "description": "Push credentials for MFA journey",
 "supportKey": null,
 "validUntil": null,
 "writable": true,
 "region": "eu-west-1",
 "accessKeyId": "AKIA...6N74", (1)
 "accessKeySecret": "uVjT...uu+k", (2)
 "applicationArns": {
 "APNS": "arn:aws:sns:eu-west-1:1234:app/APNS/rBO...n4A", (3)
 "GCM": "arn:aws:sns:eu-west-1:1234:app/GCM/rBO...n4A" (4)
 }
}

Enter the fields from the JSON file into the fields that display:

Advanced Identity Cloud

1.

2.

3.

4.

5.

6.

Field in Advanced Identity
Cloud admin UI

Field in JSON file Description

SNS Access Key ID ① accessKeyId The generated Key ID; the "accessKeyId"
key in the JSON.

SNS Access Key Secret ② accessKeySecret The generated Secret; the
"accessKeySecret" key in the JSON.

SNS Endpoint for APNS ③ APNS The generated APNS value; the
"applicationArns/APNS" key in the JSON.
The Apple Push Notification Service (APNS)
endpoint that SNS uses to send push
notifications to iOS devices.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1082 Copyright © 2025 Ping Identity Corporation

Click Create, and then click Save Changes.

Field in Advanced Identity
Cloud admin UI

Field in JSON file Description

SNS Endpoint for GCM ④ GCM The generated GCM value; the
"applicationArns/GCM" key in the JSON.
The Google Cloud Messaging (GCM) endpoint
that SNS uses to send push notifications to
Android devices.

info
Do not enter the quotes that surround the JSON values.

Note

7.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1083

Log in to the AM admin UI as an administrator.

The realm overview for the Top Level Realm displays.

Select  Services, and then click + Add a Service.

In Choose a service type, select Push Notification Service.

Open the JSON file you obtained in the previous step:

{
 "id": "uzW8...rwJC",
 "provider": "AWS",
 "creationTimestamp": "2023-10-18T17:02:00.882Z",
 "createdBy": "admin.user",
 "updateTimestamp": null,
 "updatedBy": null,
 "description": "Push credentials for MFA journey",
 "supportKey": null,
 "validUntil": null,
 "writable": true,
 "region": "eu-west-1",
 "accessKeyId": "AKIA...6N74", (1)
 "accessKeySecret": "uVjT...uu+k", (2)
 "applicationArns": {
 "APNS": "arn:aws:sns:eu-west-1:1234:app/APNS/rBO...n4A", (3)
 "GCM": "arn:aws:sns:eu-west-1:1234:app/GCM/rBO...n4A" (4)
 }
}

Enter the fields from the JSON file into the fields that display:

Self-managed PingAM server

1.

2.

3.

4.

5.

Field in AM admin UI Field in JSON file Description

SNS Access Key ID ① accessKeyId The generated Key ID; the "accessKeyId" in
the JSON.

SNS Access Key Secret ② accessKeySecret The generated Secret; the
"accessKeySecret" in the JSON.

SNS Endpoint for APNS ③ APNS The generated APNS value; the
"applicationArns/APNS" key in the JSON.
The Apple Push Notification Service (APNS)
endpoint that SNS uses to send push
notifications to iOS devices.

SNS Endpoint for GCM ④ GCM The generated GCM value; the
"applicationArns/GCM" key in the JSON.
The Google Cloud Messaging (GCM) endpoint
that SNS uses to send push notifications to
Android devices.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1084 Copyright © 2025 Ping Identity Corporation

Click Create, and then click Save Changes.

Step 4: Create a push registration and authentication journey

In this step you create an authentication journey that registers a device running the ForgeRock Authenticator to the user’s profile
if they have not done so already, then send a push notification to that device.

The journey then polls until it receives a response or timeout from the device. It verifies the returned data and completes the
authentication journey if valid.

Choose whether you are creating the journey in PingOne Advanced Identity Cloud or a self-managed PingAM server, and follow
the instructions to create the required authentication journey:

info
Do not enter the quotes that surround the JSON values.

Note

6.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1085

In the Advanced Identity Cloud admin UI

Select the realm that will contain the authentication journey.

Select Journeys, and click + New Journey.

Enter a name for your tree in Name page; for example, MFAwithPush

In Identity Object, select the identity type that will be authenticating, for example group Alpha realm -

Users .

Click Save.

The authentication journey designer page is displayed with the default Start, Failure, and Success nodes.

Add the following nodes to the designer area:

Page node

Password Collector node

Username Collector node

Data Store Decision node

Push Sender node

Push Registration node or Combined MFA Registration node [1]

Push Wait node

Push Result Verifier node

Connect the nodes as shown:

Figure 2. Connect the nodes to identify the user, send a push notification, and very the result.

In the Push Sender node, select the type of push notification the journey sends to the ForgeRock Authenticator:

Advanced Identity Cloud

1.

1.

2.

3.

4.

5.

2.

◦

◦

◦

◦

◦

◦

◦

◦

3.

4.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1086 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-result-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-result-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html

Tap to Accept

Requires the user to tap to accept.

Display Challenge Code

Requires the user to select one of three numbers displayed on their device. This selected number must
match the code displayed in the browser for the request to be verified.

Use Biometrics to Accept

Requires the user’s biometric authentication to process the notification.

For information on how these options appear in the ForgeRock Authenticator, refer to Authenticate using a push
notification.

Save your changes.5.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1087

In the AM admin UI:

Select the realm that will contain the authentication tree.

Select Authentication > Trees, and click + Create Tree.

Enter a name for your tree in the New Tree page; for example, MFAwithPush , and click Create.

The authentication tree designer page is displayed with the default Start, Failure, and Success nodes.

Add the following nodes to the designer area:

Page node

Password Collector node

Username Collector node

Data Store Decision node

Push Sender node

Push Registration node or Combined MFA Registration node [1]

Push Wait node

Push Result Verifier node

Connect the nodes as shown:

Figure 3. Connect the nodes to identify the user, send a push notification, and very the result.

In the Push Sender node, select the type of push notification the journey sends to the ForgeRock Authenticator:

Tap to Accept

Requires the user to tap to accept.

Self-managed PingAM server

1.

1.

2.

3.

2.

◦

◦

◦

◦

◦

◦

◦

◦

3.

4.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1088 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-result-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-result-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html

Display Challenge Code

Requires the user to select one of three numbers displayed on their device. This selected number must
match the code displayed in the browser for the request to be verified.

Use Biometrics to Accept

Requires the user’s biometric authentication to process the notification.

For information on how these options appear in the ForgeRock Authenticator, refer to Authenticate using a push
notification.

Save your changes.

The tree you create is a simple example for the purposes of demonstrating a basic push authentication journey. In a production
environment, you could include additional nodes, such as:

Get Authenticator App node

Provides links to download the ForgeRock Authenticator for Android and iOS.

MFA Registration Options node

Provides options for users to register a multi-factor authentication device, get the authenticator app, or skip the
registration process.

Opt-out Multi-Factor Authentication node

Sets an attribute in the user’s profile which lets them skip multi-factor authentication.

Recovery Code Display node

Lets a user view recovery codes to use in case they lose or damage the authenticator device they register.

Recovery Code Collector Decision node

Lets a user enter their recovery codes to authenticate in case they have lost or damaged their registered authenticator
device.

Retry Limit Decision node

Lets a journey loop a specified number of times, for example, in case the user’s device is experiencing connectivity issues,
for example.

Step 5: Authenticate using a push notification

After creating the journey, you can register the ForgeRock Authenticator, and use it to respond to the push notificaiton message:

If you have not already done so, create a demo user in your server:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

5.

1.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1089

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-get-authenticator-app.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-get-authenticator-app.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-opt-out-multi-factor.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-opt-out-multi-factor.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-display.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-display.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-retry-limit-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-retry-limit-decision.html

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

In an incognito browser window, browse to the journey you created in the previous step:

Advanced Identity Cloud

https://openam-forgerock-sdks.forgeblocks.com/am/XUI/?

realm=alpha&authIndexType=service&authIndexValue=MFAwithPush

Self-managed PingAM server

https://openam.example.com:8443/openam/XUI/?

realm=alpha&authIndexType=service&authIndexValue=MFAwithPush

The journey asks for your credentials:

1.

2.

3.

4.

▪

▪

▪

▪

▪

5.

1.

2.

3.

▪

▪

▪

4.

2.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1090 Copyright © 2025 Ping Identity Corporation

Sign in with the username and password of your demo user.

If you have not yet registered the ForgeRock Authenticator, the journey displays a QR code:

3.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1091

In the ForgeRock Authenticator, click the blue plus icon to register the account on the device:4.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1092 Copyright © 2025 Ping Identity Corporation

In the Add Account menu that appears, select Scan QR Code:5.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1093

Scan the QR code on screen using the ForgeRock Authenticator:6.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1094 Copyright © 2025 Ping Identity Corporation

When the ForgeRock Authenticator registers the account it notifies your server, which then initiates the configured push
notification.

In the ForgeRock Authenticator, complete the authentication as requested:

If the journey is configured with the default Push Type setting, Tap to Accept , tap the Accept button:

7.

◦

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1095

Figure 4. Tap the Accept button.

If the journey is configured with a Push Type setting of Display Challenge Code , tap the number in the
ForgeRock Authenticator that matches the number displayed by the journey:

◦

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1096 Copyright © 2025 Ping Identity Corporation

Figure 5. Tap the number in the app that matches the one displayed by the journey.

If the journey is configured with a Push Type setting of Use Biometrics to Accept , tap the Accept button, and
then use your devices biometric capabilities to complete authentication:

◦

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1097

Figure 6. Tap Accept, then use a biometric method to authenticate.

After you successfully complete the required response, the browser displays the user’s profile page.

Next steps

You can add support for MFA using push notifications to your own Android and iOS applications, by using the Ping (ForgeRock)
Authenticator module.

For more information, refer to Integrate MFA using push notifications.

1. Use the combined MFA registration node if you intend to also add OATH one-time passwords as an MFA method.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1098 Copyright © 2025 Ping Identity Corporation

Implement MFA using OATH one-time passwords

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

In this use case you configure your server to require a single-use, one-time password generated by the ForgeRock Authenticator
when users authenticate.

Overview

The ForgeRock Authenticator supports one-time password (OTP) authentication as defined in the OATH standard protocols.

The following methods for generating one-time passwords are supported:

HMAC-based one-time passwords (HOTP)

As described in RFC 4226, HOTP authentication generates the one-time password (OTP) every time the user requests a
new password on their device.

The device tracks the number of times the user requests a new one-time password with a counter. The user may be
further in the counter on their device than the server.

Your server resynchronizes the counter when the user finally logs in. To accommodate this, you set the number of
passwords a user can generate before their device cannot be resynchronized.

For example, if you set the HOTP Window Size to 50 and someone presses the button 30 times in the ForgeRock
Authenticator to generate a new password, the counter in your server will review the passwords until it reaches the one-
time password entered by the user.

If, however, someone presses the button 51 times, you will need to reset the counter to match the number on the device’s
counter before the user can log in.

HOTP authentication does not check earlier passwords, so if the user attempts to reset the counter on their device, they
will not be able to log in until you reset the counter on the server to match their device.

Time-based one-time passwords (TOTP)

As described in (RFC 6238), TOTP authentication constantly generates a new one-time password based on a time interval
you specify.

The TOTP Time Step Interval setting configures how often a new password is generated by the ForgeRock Authenticator.

Use the TOTP Time Steps setting to provide a margin in case the time varies between your server and the device running
the ForgeRock Authenticator. For example, set this to 1 to accept either the previous, the current, or the next password
as valid.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1099

https://en.wikipedia.org/wiki/Initiative_for_Open_Authentication
https://en.wikipedia.org/wiki/Initiative_for_Open_Authentication
https://www.rfc-editor.org/info/rfc4226
https://www.rfc-editor.org/info/rfc4226
https://www.rfc-editor.org/info/rfc6238
https://www.rfc-editor.org/info/rfc6238

Step 1. Create an OATH registration and authentication journey

In this step you create an authentication journey that registers a device running the ForgeRock Authenticator to the user’s profile
if they have not done so already, then requests a one-time password from the device.

Choose whether you are creating the journey in PingOne Advanced Identity Cloud or a self-managed PingAM server, and follow
the instructions to create the required authentication journey:

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1100 Copyright © 2025 Ping Identity Corporation

In the Advanced Identity Cloud admin UI

Select the realm that will contain the authentication journey.

Select Journeys, and click + New Journey.

Enter a name for your tree in Name page; for example, MFAwithOATH

In Identity Object, select the identity type that will be authenticating, for example group Alpha realm -

Users .

Click Save.

The authentication journey designer page is displayed with the default Start, Failure, and Success nodes.

Add the following nodes to the designer area:

Page node

Platform Password node

Platform Username node

Data Store Decision node

OATH Token Verifier node

OATH Registration node or Combined MFA Registration node [1]

Connect the nodes as shown:

Figure 1. Connect the nodes to identify the user, then verify their OATH token.

Ensure that the OATH Token Verifier node and the OATH Registration node or Combined MFA Registration
node are using the same value for OATH Algorithm.

In this example, select TOTP .

Save your changes.

Advanced Identity Cloud

1.

1.

2.

3.

4.

5.

2.

◦

◦

◦

◦

◦

◦

3.

4.

5.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1101

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html

In the AM admin UI:

Select the realm that will contain the authentication tree.

Select Authentication > Trees, and click + Create Tree.

Enter a name for your tree in the New Tree page; for example, MFAwithOATH , and click Create.

The authentication tree designer page is displayed with the default Start, Failure, and Success nodes.

Add the following nodes to the designer area:

Page node

Password Collector node

Username Collector node

Data Store Decision node

OATH Token Verifier node

OATH Registration node or Combined MFA Registration node [1]

Connect the nodes as shown:

Figure 2. Connect the nodes to identify the user, then verify their OATH token.

Ensure that the OATH Token Verifier node and the OATH Registration node or Combined MFA Registration
node are using the same value for OATH Algorithm.

In this example, select TOTP .

Save your changes.

Self-managed PingAM server

1.

1.

2.

3.

2.

◦

◦

◦

◦

◦

◦

3.

4.

5.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1102 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html

The tree you create is a simple example for the purposes of demonstrating a basic OATH authentication journey. In a production
environment, you could include additional nodes, such as:

Get Authenticator App node

Provides links to download the ForgeRock Authenticator for Android and iOS.

MFA Registration Options node

Provides options for users to register a multi-factor authentication device, get the authenticator app, or skip the
registration process.

Opt-out Multi-Factor Authentication node

Sets an attribute in the user’s profile which lets them skip multi-factor authentication.

Recovery Code Display node

Lets a user view recovery codes to use in case they lose or damage the authenticator device they register.

Recovery Code Collector Decision node

Lets a user enter their recovery codes to authenticate in case they have lost or damaged their registered authenticator
device.

Retry Limit Decision node

Lets a journey loop a specified number of times, for example, to allow a user to retry entering their OATH token.

Step 2. Authenticate using a one-time password

After creating the journey, you can register the ForgeRock Authenticator, and use it to generate and authenticate with a single-
use, one-time password:

If you have not already done so, create a demo user in your server:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

1.

1.

2.

3.

4.

▪

▪

▪

▪

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1103

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-get-authenticator-app.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-get-authenticator-app.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-opt-out-multi-factor.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-opt-out-multi-factor.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-display.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-display.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-retry-limit-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-retry-limit-decision.html

Password = Ch4ng3it!

Click Save.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

In an incognito browser window, browse to the journey you created in the previous step:

Advanced Identity Cloud

https://openam-forgerock-sdks.forgeblocks.com/am/XUI/?

realm=alpha&authIndexType=service&authIndexValue=MFAwithOATH

Self-managed PingAM server

https://openam.example.com:8443/openam/XUI/?

realm=alpha&authIndexType=service&authIndexValue=MFAwithOATH

The journey asks for your credentials:

▪

5.

1.

2.

3.

▪

▪

▪

4.

2.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1104 Copyright © 2025 Ping Identity Corporation

Sign in with the username and password of your demo user.

If you have not yet registered the ForgeRock Authenticator, the journey displays a QR code:

3.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1105

In the ForgeRock Authenticator, click the blue plus icon to register the account on the device:4.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1106 Copyright © 2025 Ping Identity Corporation

In the Add Account menu that appears, select Scan QR Code:5.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1107

Scan the QR code on screen using the ForgeRock Authenticator:6.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1108 Copyright © 2025 Ping Identity Corporation

When the ForgeRock Authenticator registers the account, in your browser, click Next to continue the journey.

The journey requests the one-time password:

7.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1109

Enter the verification code from the ForgeRock Authenticator.8.

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1110 Copyright © 2025 Ping Identity Corporation

If you enter a valid one-time password, the browser displays the user’s profile page.

Next steps

You can add support for MFA using one-time passwords to your own Android and iOS applications, by using the Ping (ForgeRock)
Authenticator module.

For more information, refer to Integrate MFA using OATH one-time passwords.

1. Use the combined MFA registration node if you intend to add Push notifications as an MFA method.

lightbulb_2
If the animated timer indicates the one-time password is close to expiry, wait for the app to generate a new
one.

Tip

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1111

Secure the Authenticator app using policies

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

You can distribute the ForgeRock Authenticator app to your users so that they can participate in multi-factor authentication
journeys. To help ensure the security of the app—and therefore your system—you can enable Authenticator app policies.

The Combined MFA Registration node can apply authenticator app policies during registration of client devices.

These policies can perform checks on the client device. For example, that the device has not been rooted or jailbroken, or verify
the use of biometrics on the device.

If the conditions of the policy are not met, the account cannot be registered in the Authenticator app. If the conditions of the
policies applied to the account are breached anytime after successful registration, the account is locked, and MFA is blocked:

Available policies

The Authenticator app supports the following policies by default:

Implement your use cases with the ForgeRock Authenticator Ping SDKs

1112 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html

Require biometrics

Policy name: biometricAvailable

Require the device uses biometric sensors to unlock the operating system.

Device tampering detection

Policy name: deviceTampering

Require the device has not been tampered with, for example, if it has root access or is jailbroken.

This policy applies if the tampering likelihood score returned by the device to the Authenticator app exceeds the provided
score parameter, which is a number between 0 and 1.0 . The higher the score, the more likely it is that the device has
been tampered with.

Enable Authenticator app policies

Use the JSON Authenticator Policies property in the Combined MFA Registration node to enable policies.

Specify the policies and their parameters to apply to the device being registered in JSON format, as follows:

{
 "policyName" : { policyParameters | empty }
}

Example:

{
 "biometricAvailable": { },
 "deviceTampering": {
 "score": 0.8
 }
}

Next steps

You can add support for app policies in your own Android and iOS applications, by using the Ping (ForgeRock) Authenticator
module.

For more information, refer to Integrate authenticator app policies.

Ping SDKs Implement your use cases with the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1113

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html

Troubleshoot the ForgeRock Authenticator

Multi-factor authentication requires you to register a device, which is used as an additional factor when you log in to AM.

The following table summarizes different tasks related to devices used for multi-factor authentication:

Recover after replacing a lost device

If you register a device with AM and then lose it, you must authenticate to AM using a recovery code. After deleting the lost
device, you can register a new device.

Access the list of recovery codes you saved when registering the lost device.

If you did not save the recovery codes when you registered the device, contact your administrator to remove the device
from your user profile instead of following these steps.

Begin to sign in as you normally would.

When prompted to use a multi-factor option, click the Use Recovery Code link.

Enter the recovery code when prompted.

Because recovery codes are valid for a single use only, remove the code you used from your list.

AM lets you sign in to access your profile page.

Under Dashboard > Authentication Devices, click the context menu button for the lost device, and click Delete.

Register your new device by signing out, then accessing the protected resource that requires MFA.

Recover after a device becomes out of sync

A device that generates one-time passwords can get out of sync with the OATH authentication service in some cases. If you
repeatedly enter valid one-time passwords that appear to be valid passwords, but AM rejects the passwords as unauthorized,
your device is likely out of sync.

To resynchronize your device, you must authenticate with a recovery code, and register the device again. Follow the steps in
Recover after replacing a lost device.

Task Resources

Recover user accounts
Learn how to recover a user account when the user has lost
their registered device, or when their device has become out
of sync with AM.

Recover after replacing a lost device
Recover after a device becomes out of sync

Reset registered devices
In some scenarios, for example, when users are not able to
access their recovery codes, you may need to reset their
registered devices to allow them to register again.

Reset registered devices over REST

•
•

•

1.

2.

3.

4.

5.

Ping SDKs Troubleshoot the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1115

If you did not save the recovery codes when you registered the device, contact your administrator to remove the device from your
user profile instead.

Reset registered devices over REST

As described in Recover after replacing a lost device, a user who has lost a mobile phone registered with AM can register a
replacement device by authenticating using a recovery code, deleting their existing device, and then registering a new device.

Additional support is required for users who lose mobile devices but did not save their recovery codes when they initially
registered the device, and for users who have used up all their recovery codes.

AM provides a REST API to reset a device profile by deleting information about a user’s registered device. Both the user and
administrator accounts can use the REST API to reset a device profile. Administrators can:

Provide authenticated users with a self-service page that calls the REST API to reset their devices.

Call the REST API themselves to reset a user’s device profiles.

Call the REST API themselves to reset a device that is out of sync, where the HOTP counter exceeds the HOTP threshold
window and requires a reset.

Reset OATH devices

To reset a user’s OATH device profile, perform an HTTP POST to /users/{user}/devices/2fa/oath?_action=reset .

When making a REST API call, specify the realm in the path component of the endpoint.

Authenticate the request with the SSO cookie token belonging to an administrator.

The following example resets the OATH devices for a user in the alpha realm.

In PingOne Advanced Identity Cloud, use the _ID property of the user, not their username. The demo users' _id in this
example is 014c54bd-6078-4639-8316-8ce0e7746fa4 .

Reset OATH device

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--header "<session-cookie-name>: AQIC5w…2NzEz*" \
--data '{}' \
'https://<tenant-env-fqdn>/am/json/realms/root/realms/alpha/users/014c54bd-6078-4639-8316-8ce0e7746fa4/
devices/2fa/oath?_action=reset'

•

•

•

Advanced Identity Cloud

Troubleshoot the ForgeRock Authenticator Ping SDKs

1116 Copyright © 2025 Ping Identity Corporation

The following example resets the OATH device of a user named demo in a realm called mySubrealm :

Reset OATH device

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--header "iplanetDirectoryPro: AQIC5w…2NzEz*" \
--data '{}' \
'https://openam.example.com:8443/openam/json/realms/root/realms/mySubrealm/users/demo/devices/2fa/oath?
_action=reset'

Result

{
 "result":true
}

The reset action deletes the OATH device profile, which by default has a limit of one profile per device, and sets the Select to
Enable Skip option to its default value of Not Set .

Reset push devices

To reset push devices over REST, perform an HTTP POST to /users/{user}/devices/2fa/push?_action=reset .

When making a REST API call, specify the realm in the path component of the endpoint.

Authenticate the request with the SSO cookie token belonging an administrator.

Self-managed PingAM server

Ping SDKs Troubleshoot the ForgeRock Authenticator

Copyright © 2025 Ping Identity Corporation 1117

The following example resets the push devices for a user in the alpha realm.

In PingOne Advanced Identity Cloud, use the _ID property of the user, not their username. The demo users' _id in this
example is 014c54bd-6078-4639-8316-8ce0e7746fa4 .

Reset push device

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--header "<session-cookie-name>: AQIC5w…2NzEz*" \
--data '{}' \
'https://<tenant-env-fqdn>/am/json/realms/root/realms/alpha/users/014c54bd-6078-4639-8316-8ce0e7746fa4/
devices/2fa/push?_action=reset'

The following example resets the push device of a user named demo in a realm called mySubrealm :

Reset push device

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--header "iplanetDirectoryPro: AQIC5w…2NzEz*" \
--data '{}' \
'https://openam.example.com:8443/openam/json/realms/root/realms/mySubrealm/users/demo/devices/2fa/push?
_action=reset'

Result

{
 "result":true
}

Advanced Identity Cloud

Self-managed PingAM server

Troubleshoot the ForgeRock Authenticator Ping SDKs

1118 Copyright © 2025 Ping Identity Corporation

Ping (ForgeRock) Authenticator module

The Ping (ForgeRock) Authenticator module helps you build the functionality of the ForgeRock Authenticator application into your
own Android and iOS apps.

The module supports:

Time-based one-time passwords (TOTP)

HMAC-based one-time passwords (HOTP)

Push notifications

Topics

Server support:

 PingOne
 PingOne Advanced Identity Cloud
 PingAM
 PingFederate

SDK support:

 Ping SDK for Android
 Ping SDK for iOS
 Ping SDK for JavaScript

•

•

•

Getting started

Learn how to get started with the Ping
(ForgeRock) Authenticator module in your

Android and iOS app projects.



Use cases

Discover how to integrate some common use
case scenarios into your applications by using
the Ping (ForgeRock) Authenticator module.



Ping (ForgeRock) Authenticator module Ping SDKs

1120 Copyright © 2025 Ping Identity Corporation

API Reference

Browse API reference documentation for the
Ping (ForgeRock) Authenticator module.



Ping SDKs Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1121

Getting started with the Ping (ForgeRock)
Authenticator module

Refer to the following topics to set up and get started with the Ping (ForgeRock) Authenticator module in your Android and iOS
app projects:

Set up your Ping (ForgeRock) Authenticator module project

Learn how to configure compile options, add module dependencies, and declare the permissions required to run the Ping
(ForgeRock) Authenticator module in your Android and iOS apps.

Initialize the Ping (ForgeRock) Authenticator module

After setting up your project, find out how to start the Ping (ForgeRock) Authenticator module so you can begin
implementing your MFA use cases.

Optional tasks

Customize the storage client

Optionally, implement and register your own StorageClient interface to override the default storage mechanisms.

For example, you could use an SQLite database or other storage destination.

Set up your Ping (ForgeRock) Authenticator module project

Android

Set compile options

The Ping SDK for Android requires at least Java 8 (v1.8). Configure the compile options in your project to use this version, or
newer.

For example, to specify Java 17, in your build.gradle file, add the following code at the top level:

kotlin {
 jvmToolchain {
 languageVersion.set(JavaLanguageVersion.of(17))
 }
}

Add module dependencies

Add the following dependency to use the Ping (ForgeRock) Authenticator module in your Android applications:

dependencies {
 ...
 implementation 'org.forgerock:forgerock-authenticator:4.8.1'
}

Ping SDKs Getting started with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1123

Additional dependencies you may require:

Request notification permissions

To process push notifications successfully on Android 13 (API level 33) and later, the app must request the new Notification
runtime permission for sending non-exempt notifications from an app.

Declare the permission

To request the new notification permission from your app, update your app to target Android 13 (API level 33) and declare
POST_NOTIFICATIONS in your app’s manifest file, as in the following code snippet:

<manifest ...>
 <uses-permission android:name="android.permission.POST_NOTIFICATIONS"/>
 <application ...>
 ...
 </application>
</manifest>

iOS

Install the Ping (ForgeRock) Authenticator module using CocoaPods

CocoaPods is a dependency manager for iOS projects, and is a simple way to integrate the Ping (ForgeRock) Authenticator
module into your application.

If you do not already have CocoaPods, install the latest version.

In a terminal window, run the following command to create a new Podfile:

pod init

Add the following lines to your Podfile:

pod 'FRAuthenticator'

Run the following command to install pods:

pod install

Feature Dependency

Push notifications com.google.firebase:firebase-messaging:20.2.0

1.

2.

3.

4.

Getting started with the Ping (ForgeRock) Authenticator module Ping SDKs

1124 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/guide/topics/ui/notifiers/notification-permission
https://developer.android.com/guide/topics/ui/notifiers/notification-permission
https://developer.android.com/guide/topics/ui/notifiers/notification-permission
https://cocoapods.org/
https://cocoapods.org/
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/syntax/podfile.html
https://guides.cocoapods.org/syntax/podfile.html

Install the Ping (ForgeRock) Authenticator module using Swift Package Manager (SPM)

With your project open in Xcode, select File > Add Package Dependencies.

In the search bar, enter the Ping SDK for iOS repository URL: https://github.com/ForgeRock/forgerock-ios-sdk .

Select the forgerock-ios-sdk package, and then click Add Package.

In the Choose Package Products dialog, ensure that the FRAuthenticator library is added to your target project:

Figure 1. Adding the 'FRAuthenticator' module to an iOS project.

Click Add Package.

In your project, import the module:

// Import the Ping (ForgeRock) Authenticator module
import FRAuthenticator

Initialize the Ping (ForgeRock) Authenticator module

Android

Start the module

To use the features of the Ping (ForgeRock) Authenticator module, add code similar to the following to your application:

FRAClient fraClient = new FRAClient.FRAClientBuilder()
 .withContext(this)
 .start();

1.

2.

3.

4.

5.

6.

Ping SDKs Getting started with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1125

iOS

Start the module

To use the features of the Ping (ForgeRock) Authenticator module in your iOS app, first import the FRAuthenticator :

import FRAuthenticator

And secondly, add code similar to the following to your application:

FRAClient.start()

Customize the storage client

The Ping (ForgeRock) Authenticator module lets you customize the storage client and manages all data through that client.

Android

The Ping (ForgeRock) Authenticator module offers a default storage client that uses SecuredSharedPreferences , an encrypted
storage mechanism built on Android SharedPreferences. It is available in the forgerock-core module.

SecuredSharedPreferences stores and manages all shared secret account information and notifications.

The Authenticator module lets you customize the StorageClient . You can implement the StorageClient interface, and register
your own StorageClient in the module.

You can implement your custom storage client in any location you choose, for example you could use the SQLite-based
EncryptedSharedPreferences.

The Ping (ForgeRock) Authenticator module uses your storage client and manages all data through that client.

To customize the StorageClient , implement the following interfaces:

emergency_home
For maximum compatibility with devices from different manufacturers we highly recommend that you implement
your own custom storage client.
The default client that is built on SharedPreferences can behave unpredictably on devices from certain
manufacturers that customize the Android operating system.
For example, you might not be able to access the registered PUSH or OATH accounts.

Important

Getting started with the Ping (ForgeRock) Authenticator module Ping SDKs

1126 Copyright © 2025 Ping Identity Corporation

https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/androidx/security/crypto/EncryptedSharedPreferences
https://developer.android.com/reference/androidx/security/crypto/EncryptedSharedPreferences

public interface StorageClient {
 /**
 * Get the Account object with its id
 * @param accountId The account unique ID
 * @return The account object.
 */
 Account getAccount(String accountId);
 /**
 * Get all accounts stored in the system.
 * @return The complete list of accounts.
 */
 List<Account> getAllAccounts();
 /**
 * Delete the Account that was passed in.
 * @param account The account object to delete.
 * @return boolean as result of the operation
 */
 boolean removeAccount(Account account);
 /**
 * Add or Update the Account to the storage system.
 * @param account The Account to store or update.
 * @return boolean as result of the operation
 */
 boolean setAccount(Account account);
 /**
 * Get the mechanisms associated with an account.
 * @param account The Account object
 * @return The list of mechanisms for the account.
 */
 List<Mechanism> getMechanismsForAccount(Account account);
 /**
 * Get the mechanism by UUID.
 * @param mechanismUID The uniquely identifiable UUID for the mechanism
 * @return The mechanism object.
 */
 Mechanism getMechanismByUUID(String mechanismUID);
 /**
 * Delete the mechanism uniquely identified by an id.
 * @param mechanism The mechanism object to delete.
 * @return boolean as result of the operation
 */
 boolean removeMechanism(Mechanism mechanism);
 /**
 * Add or update the mechanism to the storage system.
 * If the owning Account is not yet stored, store that as well.
 * @param mechanism The mechanism to store or update.
 * @return boolean as result of the operation
 */
 boolean setMechanism(Mechanism mechanism);
 /**
 * Get all notifications for within the mechanism.
 * @param mechanism The mechanism object
 * @return The list of notifications for the mechanism.
 */
 List<PushNotification> getAllNotificationsForMechanism(Mechanism mechanism);
 /**
 * Delete the pushNotification uniquely identified by an id.
 * @param pushNotification The pushNotification object to delete.
 */
 boolean removeNotification(PushNotification pushNotification);

Ping SDKs Getting started with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1127

 /**
 * Add or update the pushNotification to the storage system.
 * @param pushNotification The pushNotification to store.
 * @return boolean as result of the operation
 */
 boolean setNotification(PushNotification pushNotification);
 /**
 * Whether the storage system currently contains any data.
 * @return True if the storage system is empty, false otherwise.
 */
 boolean isEmpty();
}

After implementing your custom StorageClient , register it to FRAClient as follows:

// Initiate your custom StorageClient
StorageClient customStorageClient = CustomStorageClient()

// Register it to FRAClient
FRAClient fraClient = new FRAClient.FRAClientBuilder()
 .withContext(this)
 .withStorage(customStorageClient)
 .start();

iOS

The ForgeRock Authenticator default storage client utilizes both Apple’s Keychain Service, and Secure Enclave.

This means that the Ping (ForgeRock) Authenticator module safely stores all shared secrets, account information, and
notifications.

You can also customize the StorageClient . You can implement the StorageClient protocol, and register your own
StorageClient with the Ping (ForgeRock) Authenticator module.

For example, you could customize StorageClient to use SQLite, CoreData, or any other storage destination.

The Ping (ForgeRock) Authenticator module uses your storage client and manages all data through that client.

To customize StorageClient you must implement the following interfaces:

lightbulb_2
For each method of getting an Account , Mechanism , or PushNotification object, your StorageClient should only
be responsible for retrieving the objects, and not any other object associated with it.
For example, when retrieving Account objects, the StorageClient should not be responsible for retrieving
Mechanism and PushNotification objects. All object mapping and associations are handled by the Ping (ForgeRock)
Authenticator module itself.

Tip

warning
You must register the StorageClient before you start the Ping SDK.
The StorageClient used by FRAClient cannot be changed after the Ping SDK starts.

Warning

Getting started with the Ping (ForgeRock) Authenticator module Ping SDKs

1128 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_secure_enclave
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_secure_enclave

/// StorageClient protocol represents predefined interfaces and protocols for FRAuthenticator's storage method.
public protocol StorageClient {

 /// Stores Account object into Storage Client and returns discardable Boolean result of operation.
 /// - Parameter account: Account object to store.
 @discardableResult func setAccount(account: Account) -> Bool

 /// Removes Account object from Storage Client, and returns discardable Boolean result of operation.
 /// - Parameter account: Account object to remove.
 @discardableResult func removeAccount(account: Account) -> Bool

 /// Retrieves Account object with its unique identifier.
 /// - Parameter accountIdentifier: String value of Account's unique identifier.
 func getAccount(accountIdentifier: String) -> Account?

 /// Retrieves all Account objects stored in Storage Client.
 func getAllAccounts() -> [Account]

 /// Stores Mechanism object into Storage Client, and returns discardable Boolean result of operation.
 /// - Parameter mechanism: Mechanism object to store.
 @discardableResult func setMechanism(mechanism: Mechanism) -> Bool

 /// Removes Mechanism object from Storage Client, and returns discardable Boolean result of operation.
 /// - Parameter mechanism: Mechanism object to remove.
 @discardableResult func removeMechanism(mechanism: Mechanism) -> Bool

 /// Retrieves all Mechanism objects stored in Storage Client.
 /// - Parameter account: Account object that is associated with Mechanism(s).
 func getMechanismsForAccount(account: Account) -> [Mechanism]

 /// Retrieves Mechanism object with given Mechanism UUID.
 /// - Parameter uuid: UUID of Mechanism.
 func getMechanismForUUID(uuid: String) -> Mechanism?

 /// Stores PushNotification object into Storage Client, and returns discardable Boolean result of operation.
 /// - Parameter notification: PushNotification object to store.
 @discardableResult func setNotification(notification: PushNotification) -> Bool

 /// Removes PushNotification object from Storage Client, and returns discardable Boolean result of operation.
 /// - Parameter notification: PushNotification object to remove.
 @discardableResult func removeNotification(notification: PushNotification) -> Bool

 /// Retrieves all Notification objects from Storage Client with given Mechanism object.
 /// - Parameter mechanism: Mechanism object that is associated with Notification(s).
 func getAllNotificationsForMechanism(mechanism: Mechanism) -> [PushNotification]

 /// Returns whether or not StorageClient has any data stored.
 @discardableResult func isEmpty() -> Bool
}

lightbulb_2
For each method of getting an Account , Mechanism , or PushNotification object, your StorageClient should only
be responsible for retrieving the objects, and not any other object associated with it.
For example, when retrieving Account objects, the StorageClient should not be responsible for retrieving
Mechanism and PushNotification objects. All object mapping and associations are handled by the Ping (ForgeRock)
Authenticator module itself.

Tip

Ping SDKs Getting started with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1129

After implementing your custom StorageClient , register it with your FRAClient as follows:

// Initiate your custom StorageClient
let customStorageClient = CustomStorageClient()
// Register it with your FRAClient
FRAClient.setStorage(storage: customStorageClient)
// Initiate the SDK
FRAClient.start()

warning
You must register the StorageClient before you start the Ping SDK.
Once the SDK starts, the StorageClient used by FRAClient cannot be changed.

Warning

Getting started with the Ping (ForgeRock) Authenticator module Ping SDKs

1130 Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping
(ForgeRock) Authenticator module

Find out how to integrate some common use case scenarios into your applications by using the Ping (ForgeRock) Authenticator
module.

Integrate MFA using push notifications

In this use case, you integrate the ability to authenticate a user with push notifications into your app.

To receive push notifications when authenticating, end users must register an Android or iOS device running your app
built with the Ping (ForgeRock) Authenticator module.

Read more 

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1132 Copyright © 2025 Ping Identity Corporation

Integrate MFA using OATH one-time passwords

In this use case you integrate the ability to generate a single-use, one-time password into your application by using the
Ping (ForgeRock) Authenticator module.

The Ping (ForgeRock) Authenticator module supports time-based and HMAC-based one-time passwords.

Read more 

Integrate authenticator app policies

You can build and distribute your own authenticator app to your users so that they can participate in multi-factor
authentication journeys, by using the Ping (ForgeRock) Authenticator module.

To help ensure the security of your app—and therefore your system—you can enable authenticator app policies.

Read more 

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1133

Integrate MFA using push notifications

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

This use case explains how to integrate support for push authentication into your Android or iOS projects that use the Ping
(ForgeRock) Authenticator module.

Tasks

Step 1. Configure Push notifications for Android

In this step, you configure Google Firebase Cloud Messaging (FCM), which handles sending the push notifications to
Android devices.

You create a service account that provides access to the service for third-parties.

Step 2. Configure Push notifications for iOS

In this step, you configure Apple Push Notification service (APNS), which handles sending the push notifications to iOS
devices.

You create a key that provides access to the service for third-parties.

Step 3. Configure Push notifications in AWS

In this step, you use the service account and key created in the previous steps to set up Amazon Simple Notification
Service (SNS) to be able to route push notification messages to Android and iOS devices.

You also create a service account and associated access token to provide access to the service to your server.

Configure a server for push notifications

In this step, you configure your server to connect to SNS so that it can send out push notifications.

You also create an authentication journey that will register your client application as an MFA device, and send out push
notifications.

Step 5: Configure the app for push notifications

In this step, you configure your application projects to use either Firebase Cloud Messaging or the Apple Push Notification
service.

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1134 Copyright © 2025 Ping Identity Corporation

https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/docs/cloud-messaging
https://developer.apple.com/documentation/usernotifications
https://developer.apple.com/documentation/usernotifications
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/

Step 6. Configure the Ping (ForgeRock) Authenticator module for push notifications

In this final step, you add the code to your application that obtains the unique device code required to ensure push
notifications reach their intended audience.

You also add code that leverages the Ping (ForgeRock) Authenticator module to handle the push registration and
authentication journey you created earlier.

Step 1. Configure Push notifications for Android

In this step, you configure Google Firebase Cloud Messaging (FCM), which handles sending the push notifications to Android
devices.

You create service account that provides access to the service for third-parties.

Prerequisites

A Google cloud account, with access to the Firebase console.

An Android application into which you want to integrate push notifications.

Create a project in Google Firebase

Log in to the Google Firebase console.

Click Add project.

Enter a name for the project, for example sdk-authenticator-push , and then click Continue.

Disable Google Analytics for the project, and then click Create project.

When your Firebase project is ready, click Continue.

Add your Android app to the Firebase project

Log in to the Google Firebase console.

In the left menu, in Project Overview, click the gear icon () and then click Project settings.

•

•

lightbulb_2
For development purposes, you can download the Ping (ForgeRock) Authenticator module sample app from
GitHub.

Tip

1.

2.

3.

4.

5.

1.

2.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1135

https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/docs/cloud-messaging
https://console.firebase.google.com/
https://console.firebase.google.com/
https://github.com/ForgeRock/sdk-sample-apps/tree/main/android/java-authenticator
https://github.com/ForgeRock/sdk-sample-apps/tree/main/android/java-authenticator
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/

Figure 1. Opening the project settings panel in the Firebase console.

In Your apps, click Add app.

Click the Android icon ().

In the Register app section:

In Android package name, enter the package of the app into which you are integrating push notifications.

For example, org.forgerock.authenticator.sample .

In App nickname, enter a user-friendly name for the app.

For example, Authenticator Push Sample .

Click Register app.

In the Download and then add config file section:

Click Download google-services.json, and keep the file somewhere safe.

You will need the file when configuring your application to access Firebase Cloud Messaging in a later step.

Click Next.

In the Add Firebase SDK section, click Next.

You will add the Firebase SDKs to your application in a later step.

In the Next steps section, click Continue to the console.

Create a key for the Firebase service account

Log in to the Google Firebase console.

In the left menu, in Project Overview, click the gear icon () and then click Project settings.

3.

4.

5.

1.

2.

3.

6.

1.

2.

7.

8.

1.

2.

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1136 Copyright © 2025 Ping Identity Corporation

https://console.firebase.google.com/
https://console.firebase.google.com/

Figure 2. Opening the project settings panel in the Firebase console.

On the Cloud Messaging tab, click Manage service accounts.

The link opens the Google Cloud IAM & Admin page, and displays the service accounts automatically generated when you
created the Firebase project:

Figure 3. Google Cloud console showing the generated Firebase service account.

In the Actions column, click the vertical ellipsis icon () next to the service account, and then click Manage keys.

On the Keys page, click Add key, and then click Create new key.

Select JSON, and then click Create.

The page generates a key for the Firebase service account, and downloads the JSON file.

You will upload this file when you configure Push notifications in AWS.

Step 2. Configure Push notifications for iOS

In this step, you configure Apple Push Notification service (APNS), which handles sending the push notifications to iOS devices.

You create a key that provides access to the service for third-parties.

3.

4.

5.

6.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1137

https://developer.apple.com/documentation/usernotifications
https://developer.apple.com/documentation/usernotifications

Prerequisites

An Apple developer Admin account.

Developer accounts cannot create the required keys.

An iOS application in XCode configured with the Push Notifications capability.

You can add capabilities when creating an iOS app project, or add them to an existing project. Refer to Adding capabilities
to your app in the Apple developer documentation.

Register a new key for APNs

With an admin account, log in to the Apple Developer console.

Navigate to Program resources > Certificates, IDs & Profiles > Keys.

Next to the Keys label, click the Add icon ().

Enter a Key Name.

For example, APNs key for Push .

Select Apple Push Notifications service (APNs).

Click Continue.

Check the details of the key, and then click Register.

On the Download Your Key page:

Make a note of the 10-character Key ID.

For example, YCH15BO820 .

Click Download and keep a copy of the .p8 file safe.

Click Done.

You will upload the .p8 file and use the key ID when you configure Push notifications in AWS.

Step 3. Configure Push notifications in AWS

In this step, you use the service account and key created in the previous steps to set up Amazon Simple Notification Service (SNS)
 to be able to route push notification messages to Android and iOS devices.

•

•

lightbulb_2
For development purposes, you can download the Ping (ForgeRock) Authenticator module sample app from
GitHub.

Tip

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

emergency_home
You cannot download or view the key again, so ensure you have a local copy.

Important

9.

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1138 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/xcode/adding-capabilities-to-your-app/
https://developer.apple.com/documentation/xcode/adding-capabilities-to-your-app/
https://developer.apple.com/documentation/xcode/adding-capabilities-to-your-app/
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-frexamples/FRAuthenticatorExample
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-frexamples/FRAuthenticatorExample
https://developer.apple.com/account
https://developer.apple.com/account
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/

You also create a service account and associated access token to provide access to the service to your server.

Set up AWS for Android push notifications

Log in to the AWS console: https://console.aws.amazon.com/console/home

In the search bar, enter SNS , and then select Simple Notification Service from the list of results.

In the left menu, navigate to Mobile › Push notifications.

In the Platform applications panel, click Create platform application.

On the Create platform application page:

In Application name, enter a name for the platform application.

For example, Android_Push_Messaging .

In Push notification platform, select Firebase Cloud Messaging (FCM).

The page displays the Firebase Cloud Messaging Credentials section.

In Authentication method, select Token.

The page displays additional fields.

In Service JSON, click Choose file, and navigate to the JSON file that you downloaded from Firebase when
you created a Firebase key previously.

Click Create platform application.

The page creates the application and displays the details pane:

Figure 1. An Android platform application in AWS, showing the ARN.

1.

2.

lightbulb_2
Click the star icon () to pin the service to the toolbar in the AWS console.

Tip

3.

4.

5.

1.

2.

1.

2.

3.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1139

https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home

Make a note of the ARN value. You need this value when you Configure a server for push notifications.

Set up AWS for iOS push notifications

Log in to the AWS console: https://console.aws.amazon.com/console/home

In the search bar, enter SNS , and then select Simple Notification Service from the list of results.

In the left menu, navigate to Mobile › Push notifications.

In the Platform applications panel, click Create platform application.

On the Create platform application page:

In Application name, enter a name for the platform application.

For example, iOS_Push_Messaging .

In Push notification platform, select Apple iOS/VoIP/MacOS.

The page displays the Apple credentials section.

In the Apple credentials section:

In Push service, select iOS.

In Authentication method, select Token.

The page displays additional fields.

In Signing key, click Choose file, and navigate to the .p8 file that you downloaded from Apple when you
registered a new key for APNs.

After selecting the file, the page populates the Signing key text field with the private key from the .p8 file.

In Signing key ID, enter the 10-digit ID of the key you created when you registered a new key for APNs.

For example, YUGX2BO820 .

In Team ID, enter the ID of your team in the Apple Developer Program.

In Bundle ID, enter the bundle ID of the iOS application you are adding push notifications to.

For example, com.forgerock.authenticator.sample .

Click Create platform application.

The page creates the application and displays the details pane:

6.

1.

2.

lightbulb_2
Click the star icon () to pin the service to the toolbar in the AWS console.

Tip

3.

4.

5.

1.

2.

3.

1.

2.

3.

4.

5.

lightbulb_2
You can view your Team ID on the Membership details page in the Apple developer console.

Tip

6.

4.

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1140 Copyright © 2025 Ping Identity Corporation

https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://developer.apple.com/account#MembershipDetailsCard
https://developer.apple.com/account#MembershipDetailsCard

Figure 2. An iOS platform application in AWS, showing the ARN.

Make a note of the ARN value. You need this value when you Configure a server for push notifications.

Create a service account with access to the ARN endpoints

Log in to the AWS console: https://console.aws.amazon.com/console/home

In the search bar, enter IAM , and then select IAM from the list of results.

In the left menu, navigate to Access management › Users.

Click Create user.

In User name, enter a name for the user account that the access key will represent.

For example, sns_arn_user .

Click Next.

In Permissions options, select Attach policies directly.

The page displays additional fields.

In Permissions policies, in the search bar, enter SNSFull , and then select the checkbox next to AmazonSNSFullAccess .

6.

1.

2.

lightbulb_2
Click the star icon () to pin the service to the toolbar in the AWS console.

Tip

3.

4.

5.

6.

7.

8.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1141

https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home

Figure 3. Adding the SNS permission policy to a user in AWS IAM.

Click Next, review the details of the account, and then click Create user.

Create an access token for the service account

Log in to the AWS console: https://console.aws.amazon.com/console/home

In the search bar, enter IAM , and then select IAM from the list of results.

In the left menu, navigate to Access management › Users, and then click the service account you created previously.

In the Summary pane, click Create access key.

On the Access key best practices & alternatives page:

In Use case, select Third-party service

Under Confirmation, select the I understand the above recommendation and want to proceed to create an
access key checkbox.

Click Next.

9.

1.

2.

lightbulb_2
Click the star icon () to pin the service to the toolbar in the AWS console.

Tip

3.

4.

5.

1.

2.

3.

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1142 Copyright © 2025 Ping Identity Corporation

https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home

In Description tag value, enter the purpose of the access key.

For example, server access to SNS ARN endpoints

Click Create access key.

Make a note of the provided values:

Access Key ID.

For example, AKIAXOSPRCH15LEES

Secret access key.

For example, 9eF7EcWMZzChI51BBHkLeElXk8R3XHv7/n7QSiwoUFJ

Click Done.

Step 4. Configure an PingOne Advanced Identity Cloud or PingAM server for push notifications

In this step, you configure your server to connect to SNS so that it can send out push notifications.

You also create an authentication journey that will register your client application as an MFA device, and send out push
notifications.

Add the Authenticator (Push) service

In this step you configure your server to operate with the Ping (ForgeRock) Authenticator module.

Log in to the Advanced Identity Cloud admin UI as an administrator.

In the left menu pane, select Native Consoles > Access Management.

The realm overview for the Alpha realm displays.

Select  Services, and then click + Add a Service.

In Choose a service type, select ForgeRock Authenticator (Push) Service, and then click Create.

Click Save Changes to accept the default settings.

6.

7.

8.

1.

2.

lightbulb_2
Click Download .csv file to download a file containing the values for safe-keeping.

Tip

9.

Advanced Identity Cloud

1.

2.

3.

4.

5.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1143

Log in to the AM admin UI as an administrator.

The realm overview for the Top Level Realm displays.

Select  Services, and then click + Add a Service.

In Choose a service type, select ForgeRock Authenticator (Push) Service, and then click Create.

Click Save Changes to accept the default settings.

Connect your server to Amazon SNS

In this step you configure your server with the settings it needs to be able to contact Amazon SNS to send push notifications to
mobile devices.

Self-managed PingAM server

1.

2.

3.

4.

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1144 Copyright © 2025 Ping Identity Corporation

Log in to the Advanced Identity Cloud admin UI as an administrator.

In the left menu pane, select Native Consoles > Access Management.

The realm overview for the Alpha realm displays.

Select  Services, and then click + Add a Service.

In Choose a service type, select Push Notification Service.

In SNS Access Key ID, enter the Access key ID value of the access token you created previously.

For example, AKIAXOSPRCH15LEES .

In SNS Access Key Secret, enter the Access key value from the access token you created previously.

For example, 9eF7EcWMZzChI51BBHkLeElXk8R3XHv7/n7QSiwoUFJ .

In SNS Endpoint for APNS, enter the iOS ARN endpoint generated by Amazon SNS.

For example, arn:aws:sns:eu-west-1:123412341234:app/APNS/iOS_Push_Messaging .

In SNS Endpoint for GCM, enter the Android ARN endpoint generated by Amazon SNS.

For example, arn:aws:sns:eu-west-1:123412341234:app/GCM/Android_Push_Messaging .

Click Create, and then click Save Changes.

Advanced Identity Cloud

1.

2.

3.

4.

5.

lightbulb_2
If you downloaded the CSV file when you created the access key, the first value in the file is the Access
Key ID.

Tip

6.

lightbulb_2
If you downloaded the CSV file when you created the access key, the second value in the CSV file is the
Secret access key.

Tip

7.

8.

9.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1145

Log in to the AM admin UI as an administrator.

The realm overview for the Top Level Realm displays.

Select  Services, and then click + Add a Service.

In Choose a service type, select Push Notification Service.

In SNS Access Key ID, enter the Access key ID value of the access token you created previously.

For example, AKIAXOSPRCH15LEES .

In SNS Access Key Secret, enter the Access key value from the access token you created previously.

For example, 9eF7EcWMZzChI51BBHkLeElXk8R3XHv7/n7QSiwoUFJ .

In SNS Endpoint for APNS, enter the iOS ARN endpoint generated by Amazon SNS.

For example, arn:aws:sns:eu-west-1:123412341234:app/APNS/iOS_Push_Messaging .

In SNS Endpoint for GCM, enter the Android ARN endpoint generated by Amazon SNS.

For example, arn:aws:sns:eu-west-1:123412341234:app/GCM/Android_Push_Messaging .

Click Create, and then click Save Changes.

Create a push registration and authentication journey

In this step you create an authentication journey that registers a device running an app built with the Ping (ForgeRock)
Authenticator module to the user’s profile if they have not done so already, then send a push notification to that device.

The journey then polls until it receives a response or timeout from the device. It verifies the returned data and completes the
authentication journey if valid.

Choose whether you are creating the journey in PingOne Advanced Identity Cloud or a self-managed PingAM server, and follow
the instructions to create the required authentication journey:

Self-managed PingAM server

1.

2.

3.

4.

lightbulb_2
If you downloaded the CSV file when you created the access key, the first value in the file is the Access
Key ID.

Tip

5.

lightbulb_2
If you downloaded the CSV file when you created the access key, the second value in the CSV file is the
Secret access key.

Tip

6.

7.

8.

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1146 Copyright © 2025 Ping Identity Corporation

In the Advanced Identity Cloud admin UI

Select the realm that will contain the authentication journey.

Select Journeys, and click + New Journey.

Enter a name for your tree in Name page; for example, MFAwithPush

In Identity Object, select the identity type that will be authenticating, for example group Alpha realm -

Users .

Click Save.

The authentication journey designer page is displayed with the default Start, Failure, and Success nodes.

Add the following nodes to the designer area:

Page node

Password Collector node

Username Collector node

Data Store Decision node

Push Sender node

Push Registration node or Combined MFA Registration node [1]

Push Wait node

Push Result Verifier node

Connect the nodes as shown:

Figure 1. Connect the nodes to identify the user, send a push notification, and very the result.

In the Push Sender node, select the type of push notification the journey sends to the ForgeRock Authenticator:

Advanced Identity Cloud

1.

1.

2.

3.

4.

5.

2.

◦

◦

◦

◦

◦

◦

◦

◦

3.

4.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1147

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-result-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-result-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html

Tap to Accept

Requires the user to tap to accept.

Display Challenge Code

Requires the user to select one of three numbers displayed on their device. This selected number must
match the code displayed in the browser for the request to be verified.

Use Biometrics to Accept

Requires the user’s biometric authentication to process the notification.

For information on how these options appear in the ForgeRock Authenticator, refer to Authenticate using a push
notification.

Save your changes.5.

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1148 Copyright © 2025 Ping Identity Corporation

In the AM admin UI:

Select the realm that will contain the authentication tree.

Select Authentication > Trees, and click + Create Tree.

Enter a name for your tree in the New Tree page; for example, MFAwithPush , and click Create.

The authentication tree designer page is displayed with the default Start, Failure, and Success nodes.

Add the following nodes to the designer area:

Page node

Password Collector node

Username Collector node

Data Store Decision node

Push Sender node

Push Registration node or Combined MFA Registration node [1]

Push Wait node

Push Result Verifier node

Connect the nodes as shown:

Figure 2. Connect the nodes to identify the user, send a push notification, and very the result.

In the Push Sender node, select the type of push notification the journey sends to the ForgeRock Authenticator:

Tap to Accept

Requires the user to tap to accept.

Self-managed PingAM server

1.

1.

2.

3.

2.

◦

◦

◦

◦

◦

◦

◦

◦

3.

4.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1149

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-result-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-result-verifier.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html

Display Challenge Code

Requires the user to select one of three numbers displayed on their device. This selected number must
match the code displayed in the browser for the request to be verified.

Use Biometrics to Accept

Requires the user’s biometric authentication to process the notification.

For information on how these options appear in the ForgeRock Authenticator, refer to Authenticate using a push
notification.

Save your changes.

The tree you create is a simple example for the purposes of demonstrating a basic push authentication journey. In a production
environment, you could include additional nodes, such as:

Get Authenticator App node

Provides links to download the ForgeRock Authenticator for Android and iOS.

MFA Registration Options node

Provides options for users to register a multi-factor authentication device, get the authenticator app, or skip the
registration process.

Opt-out Multi-Factor Authentication node

Sets an attribute in the user’s profile which lets them skip multi-factor authentication.

Recovery Code Display node

Lets a user view recovery codes to use in case they lose or damage the authenticator device they register.

Recovery Code Collector Decision node

Lets a user enter their recovery codes to authenticate in case they have lost or damaged their registered authenticator
device.

Retry Limit Decision node

Lets a journey loop a specified number of times, for example, in case the user’s device is experiencing connectivity issues,
for example.

1. Use the combined MFA registration node if you intend to also add OATH one-time passwords as an MFA method.

Step 5: Configure the app for push notifications

In this step, you configure your application projects to use either Firebase Cloud Messaging or the Apple Push Notification service.

5.

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1150 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-get-authenticator-app.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-get-authenticator-app.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-opt-out-multi-factor.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-opt-out-multi-factor.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-display.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-display.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-recovery-code-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-retry-limit-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-retry-limit-decision.html

Enabling push notification support in an Android app

In Android Studio, open your authenticator app project and switch to the Project view.

Copy the google-services.json file that you downloaded from the Firebase console into the app-level root directory of
your authenticator app:

Figure 1. Adding the google-services.json to the app root in Android Studio.

To make the file available to the app, add the Google services Gradle plugin (com.google.gms.google-services) as a
dependency to your project.

In your root-level Gradle file:

1.

2.

3.

1.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1151

build.gradle.kts

plugins {
 id("io.github.gradle-nexus.publish-plugin") version "1.1.0"
 id("org.sonatype.gradle.plugins.scan") version "2.4.0"
 id("org.jetbrains.dokka") version "1.9.10"
 id("com.android.application") version "8.3.2" apply false
 id("com.android.library") version "8.3.2" apply false
 id("org.jetbrains.kotlin.android") version "1.9.22" apply false
 // ...

 // Add the dependency for the Google services Gradle plugin
 id("com.google.gms.google-services") version "4.4.2" apply false
}

build.gradle

plugins {
 id 'io.github.gradle-nexus.publish-plugin' version '1.1.0'
 id 'org.sonatype.gradle.plugins.scan' version '2.4.0'
 id 'org.jetbrains.dokka' version '1.9.10'
 id 'com.android.application' version '8.3.2' apply false
 id 'com.android.library' version '8.3.2' apply false
 id 'org.jetbrains.kotlin.android' version '1.9.22' apply false
 // ...

 // Add the dependency for the Google services Gradle plugin
 id 'com.google.gms.google-services' version '4.4.2' apply false
}

In your app-level Gradle file:

Kotlin

Groovy

2.

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1152 Copyright © 2025 Ping Identity Corporation

build.gradle.kts

plugins {
 id("com.android.library")
 id("com.adarshr.test-logger")
 id("maven-publish")
 id("signing")
 id("kotlin-android")
 // ...

 // Add the Google services Gradle plugin
 id("com.google.gms.google-services")
}

build.gradle

plugins {
 id 'com.android.library'
 id 'com.adarshr.test-logger'
 id 'maven-publish'
 id 'signing'
 id 'kotlin-android'
 // ...

 // Add the Google services Gradle plugin
 id 'com.google.gms.google-services'
}

Switch to the Android view in Android Studio, and add the following code to the authenticator application manifest file.

Insert the code inside the <application> tag.

AndroidManifest.xml

<service
 android:name=".controller.FcmService"
 android:exported="false">
 <intent-filter>
 <action android:name="com.google.firebase.MESSAGING_EVENT" />
 </intent-filter>
</service>

Kotlin

Groovy

4.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1153

Enabling push notification support to an iOS app

In Xcode, open your authenticator app project.

In the left menu, select the project root folder.

In the project pane, under Targets, click your application, then click the Signing & Capabilities tab.

Confirm that the application has the Push Notifications capability:

Figure 2. Checking for the Push Notifications capability in Xcode.

With an admin account, log in to the Apple Developer console.

Navigate to Program resources > Certificates, IDs & Profiles > Identifiers.

Click the name of the application to which you are adding push notification support.

On the Capabilities tab, ensure Push Notifications is selected.

Step 6. Configure the Ping (ForgeRock) Authenticator module for push notifications

In this step, you add the code to your application that obtains the unique device token required to ensure push notifications
reach their intended audience.

1.

2.

3.

4.

5.

6.

7.

8.

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1154 Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/account
https://developer.apple.com/account

You also add code that leverages the Ping (ForgeRock) Authenticator module to handle the push registration and authentication
journey you created earlier.

Prerequisites

To complete the procedures on this page, you must set up your application to use the Ping (ForgeRock) Authenticator module:

Configuring an Android app to use the Ping (ForgeRock) Authenticator module

Configuring an iOS app to use the Ping (ForgeRock) Authenticator module

Register a device token to receive notifications

The Ping (ForgeRock) Authenticator module uses an Apple or Google service to receive push notifications sent from your server
via Amazon SNS.

Each instance of your application requires a unique device registration token to receive these push notifications.

Use the registerForRemoteNotifications() method to register the token:

// Retrieve the FCM token
FirebaseMessaging.getInstance().getToken()
 .addOnCompleteListener(task -> {
 if (!task.isSuccessful()) {
 Log.e(TAG, "getInstanceId failed", task.getException());
 return;
 }

 // Get new Instance ID token
 fcmToken = task.getResult();
 Log.v("FCM token:", fcmToken);

 // Register the token with the SDK to enable Push mechanisms
 try {
 fraClient.registerForRemoteNotifications(fcmToken);
 } catch (AuthenticatorException e) {
 Log.e(TAG,"Error registering FCM token: ", e);
 }
 });

•

•

Android

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1155

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[UIApplication.LaunchOptionsKey: Any]?) -> Bool {
 // Register Push Notification for your app in AppDelegate.swift
 let center = UNUserNotificationCenter.current()
 center.requestAuthorization(options: [.alert, .sound, .badge]) { (granted, error) in }
 application.registerForRemoteNotifications()
 return true
}

func application(_ application: UIApplication, didRegisterForRemoteNotificationsWithDeviceToken deviceToken:
Data) {
 // Upon successful registration and receiving device token from APNs, register the token to the
Authenticator module
 FRAPushHandler.shared.application(application, didRegisterForRemoteNotificationsWithDeviceToken:
deviceToken)
}

func application(_ application: UIApplication, didFailToRegisterForRemoteNotificationsWithError error: Error)
{
 // Upon receiving an error from APNs, notify Authenticator module to properly update the status
 FRAPushHandler.shared.application(application, didFailToRegisterForRemoteNotificationsWithError: error)
}

Updating device tokens for existing accounts

Under certain circumstances the client operating system issues a new device token that your app should use for receiving push
notifications.

The Ping SDKs for Android and iOS provide methods for updating the device token associated with accounts it has registered to
receive Push notifications. These methods will also contact the PingAM server or PingOne Advanced Identity Cloud tenant that
registered the device to update the device token it has stored in the user’s profile.

Retrieving the existing device token

The Ping SDKs for Android and iOS automatically persist the device token, making it easier to update it when necessary.

Android

Use the FRAClient.getPushDeviceToken() method to retrieve the PushDeviceToken object, that contains the token and
its issuance timestamp. If no token is available, it returns null .

iOS

Use the FRAPushHandler.deviceToken property that returns the current device token, or nil if it is not available.

iOS

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1156 Copyright © 2025 Ping Identity Corporation

Updating existing accounts with a new device token

If your app has existing accounts registered for push notifications and the operating system issues a new device token you must
update both the accounts in the app and their respective servers with the updated token.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1157

Implement the onNewToken method within a custom FirebaseMessagingService subclass to receive the updated token.

The Ping SDK for Android provides the following methods to facilitate updating accounts and the server with the new
device token:

FRAClient.updateDeviceToken(String fcmToken, FRAListener<Void> listener)

This method updates the device token for all accounts registered to receive push notifications.

Updating all accounts registered for push notifications

fraClient.updateDeviceToken(token, new FRAListener<Void>() {
 @Override
 public void onSuccess(Void result) {
 //DeviceToken is updated successfully
 }

 @Override
 public void onException(Exception e) {
 //Failed to update DeviceToken
 }
});

FRAClient.updateDeviceTokenForMechanism(String deviceToken, PushMechanism

pushMechanism, FRAListener<Void> listener)

This method updates the device token for a single account registered to receive push notifications.

Updating a single account registered for push notifications

fraClient.updateDeviceTokenForMechanism(token, pushMechanism, new FRAListener<Void>() {
 @Override
 public void onSuccess(Void result) {
 //DeviceToken is updated successfully
 }

 @Override
 public void onException(Exception e) {
 //Failed to update DeviceToken
 }
});

Android

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1158 Copyright © 2025 Ping Identity Corporation

If iOS issues a new device token it triggers the didRegisterForRemoteNotificationsWithDeviceToken application
method.

The AppDelegate methods in the FRAPushHandler class stores issued device tokens locally, and automatically updates
local registered accounts, and contacts the relevant server to update the user profiles with the new device token.

AppDelegate method automatically updates local and remote accounts

FRAPushHandler.application(_ application: UIApplication, didRegisterForRemoteNotificationsWithDeviceToken
deviceToken: Data)

The Ping SDK for iOS provides the following methods to manually update accounts and the server with the new device
token:

FRAPushHandler.updateDeviceToken(deviceToken: String, onSuccess: SuccessCallback,

onFailure: ErrorCallback)

This method updates the device token for all accounts registered to receive push notifications.

Updating all accounts registered for push notifications

FRAPushHandler.instance.updateDeviceToken(deviceToken: deviceTokenString, onSuccess: {
 // DeviceTokens updated successfully
}) { (error) in
 // Failed to update DeviceTokens with following error: \(error.localizedDescription)
}

FRAPushHandler.updateDeviceToken(mechanism: PushMechanism, deviceToken: String,

onSuccess: SuccessCallback, onFailure: ErrorCallback)

This method updates the device token for a single account registered to receive push notifications.

Updating a single account registered for push notifications

FRAPushHandler.instance.updateDeviceToken(mechanism: pushMechanism, deviceToken: deviceTokenString,
onSuccess: {
 // DeviceToken updated successfully
}) { (error) in
 // Failed to update DeviceToken with following error: \(error.localizedDescription)
}

iOS

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1159

Handle registration of the app for push notifications

The first time you authenticate to your authentication tree, you are asked to register a device by scanning a QR code.

After capturing the URI, register the authentication mechanism in your app:

fraClient.createMechanismFromUri("qrcode_scan_result", new FRAListener<Mechanism>() {

 @Override
 public void onSuccess(Mechanism mechanism) {
 // called when device enrollment was successful.
 }

 @Override
 public void onFailure(final MechanismCreationException e) {
 // called when device enrollment has failed.
 }
});

guard let fraClient = FRAClient.shared else {
 print("FRAuthenticator SDK is not initialized")
 return
}

fraClient.createMechanismFromUri(uri: url, onSuccess: { (mechanism) in
 // Method call occurs when device enrollment is successful.
}, onError: { (error) in
 // Method call occurs when device enrollment fails.
})

Handle push notifications from the server

Your app that uses the Ping (ForgeRock) Authenticator module needs to respond to incoming push notifications, and ask the user
to either accept or reject the authentication.

emergency_home
Your application must implement a QR code scanning mechanism. The QR code contains the URI used for registering
the device, although you could also offer a method for entering the URI manually.

Important

Android

iOS

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1160 Copyright © 2025 Ping Identity Corporation

Receive FCM Push notifications by using FirebaseMessagingService#onMessageReceived .

To handle RemoteMessage , use the FRAClient.handleMessage() method:

public void onMessageReceived(final RemoteMessage message) {
 PushNotification notification = fraClient.handleMessage(message);
}

Receive Apple push notifications by using the
application(_:didReceiveRemoteNotification:fetchCompletionHandler:) method in AppDelegate .

To handle RemoteNotification , use the FRAPushHandler.shared.application(:didReceiveRemoteNotification)
method.

The method returns a PushNotification object, which contains the accept and deny methods to handle the
authentication request:

func application(_ application: UIApplication, didReceiveRemoteNotification userInfo: [AnyHashable : Any],
fetchCompletionHandler completionHandler: @escaping (UIBackgroundFetchResult) -> Void) {

 // Once you receive the remote notification, handle it with FRAPushHandler to get the PushNotification
object.
 // If RemoteNotification does not contain the expected payload structured from {am_name}, the
Authenticator module does not return the PushNotification object.
 if let notification = FRAPushHandler.shared.application(application, didReceiveRemoteNotification:
userInfo) {
 // With the PushNotification object, you can either accept or deny
 notification.accept(onSuccess: {

 }) { (error) in

 }
 }
}

Obtain values from the push notification payload

The pushNotification class provide the following methods for obtaining values from the payload received in the push
notification:

Android

iOS

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1161

Android method iOS method Description

getCustomPayload() customPayload Returns a JSON string containing the values
specified in the Custom Payload Attributes
property of the Push Sender node.

getMessage() message Returns the string specified in the User Message
property of the Push Sender node, such as Login
attempt from Demo at ForgeRock .

getContextInfo() contextInfo Returns a JSON string containing additional context
information when the Share Context info property
is enabled in the Push Sender node.
Possible attributes in the JSON string are as follows:

location

userAgent

remoteIp

Ensure you check these attributes for null values,
as they depend on being able to be collected by the
Device Profile Collector node.
Example:

{
 "location": {
 "latitude": 51.4517076,
 "longitude": -2.5950234
 },
 "userAgent": "Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_15_7) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/100.0.4896.127
Safari/537.36",
 "remoteIp": "198.51.100.23"
}

•
•
•

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1162 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html#_properties
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html#_properties
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html#_properties
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html#_properties
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html#_properties
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html#_properties
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-profile-collector.html

Handle different push notification types

Use code similar to the following to determine which push type was requested in the payload:

if (notification.getPushType() == PushType.CHALLENGE) {
 notification.accept(choice, listener);
} else if (notification.getPushType() == PushType.BIOMETRIC) {
 notification.accept(null, null, true, activity, listener);
} else {
 notification.accept(listener);
}

Android method iOS method Description

getPushType() pushType Returns a PushType enum value that specifies the
type of push notification to present to the user.
This value is based on the configuration of the Push
Type property in the Push Sender node.
Possible values are:

PushType.default
Requires the user to tap to accept.

PushType.challenge
Requires the user to select one of three
numbers displayed on their device.
This selected number must match the code
displayed in the browser for the request to
be verified.

PushType.biometric
Requires the user’s biometric authentication
to process the notification.

getNumbersChallenge() numbersChallengeArray Returns an array of integers that matches those
displayed on the login screen and populates the
numbersChallenge attribute, if the Push Type
property in the Push Sender node is set to
Display Challenge Code.

timeAdded timeAdded Returns the timestamp of when the authentication
server generated the push authentication payload.

Android

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1163

https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Enums/PushType.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Enums/PushType.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html#_properties
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html#_properties
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html#_properties
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-sender.html#_properties

if notification.pushType == .challenge {
 notification.accept(
 challengeResponse: "34",
 onSuccess: successCallback,
 onError: errorCallback
)
} else if notification.pushType == .biometric {
 notification.accept(
 title: "title",
 allowDeviceCredentials: true,
 onSuccess: successCallback,
 onError: errorCallback
)
} else {
 notification.accept(
 onSuccess: successCallback,
 onError: errorCallback
)
}

Handle the default push type

The PushNotification class or object provides an accept method for handling a PushType.default authentication request:

pushNotification.accept(new FRAListener<Void>() {

 @Override
 public void onSuccess(Void result) {
 // called when accepting the push authentication request was successful.
 }

 @Override
 public void onFailure(final PushAuthenticationException e) {
 // called when denying the push authentication request, or it has failed.
 }
});

iOS

Android

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1164 Copyright © 2025 Ping Identity Corporation

pushNotification.accept(onSuccess: {
 // called when accepting the push authentication request was successful.
}, onError: { (error) in
 // called when denying the push authentication request, or it has failed.
})

Handle the challenge push type

For PushType.challenge authentication requests, use the following accept method that receives the challenge as a parameter:

public final void accept(
 @NonNull String challengeResponse,
 @NonNull FRAListener<Void> listener
) {}

public func accept(
 challengeResponse: String,
 onSuccess: @escaping SuccessCallback,
 onError: @escaping ErrorCallback
) {}

Handle the biometric push type

For PushType.biometric authentication requests, use the following accept method that processes the biometric authentication
request:

iOS

Android

iOS

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1165

@RequiresApi(Build.VERSION_CODES.M)
public final void accept(
 String title,
 String subtitle,
 boolean allowDeviceCredentials,
 @NonNull AppCompatActivity activity,
 @NonNull FRAListener<Void> listener
) {}

public func accept(
 title: String,
 allowDeviceCredentials: Bool,
 onSuccess: @escaping SuccessCallback,
 onError: @escaping ErrorCallback
) {}

More information

Refer to the following links for information on some of the interfaces and objects used in this topic:

Integrate MFA using OATH one-time passwords

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

Android

iOS

Android iOS

PushNotification PushNotification

PushMechanism PushMechanism

PushType PushType

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1166 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-push-notification/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-push-notification/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Classes/PushNotification.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Classes/PushNotification.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-push-mechanism/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-push-mechanism/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Classes/PushMechanism.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Classes/PushMechanism.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-push-type/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-push-type/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Enums/PushType.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Enums/PushType.html

This topic explains how to integrate support for OATH one-time passwords into your projects that use the Ping (ForgeRock)
Authenticator module.

Prerequisites

To integrate OATH one-time passwords into your application that uses the Ping (ForgeRock) Authenticator module, ensure you
have completed the following tasks first:

Configure your server to request a one-time password during the authentication journey.

Refer to Create an OATH registration and authentication journey.

Integrate the Ping (ForgeRock) Authenticator module into your app.

Refer to Set up your Ping (ForgeRock) Authenticator module project.

Start the Ping (ForgeRock) Authenticator module in your app.

Refer to Initialize the Ping (ForgeRock) Authenticator module.

Sample apps

You can find example source code for integrating one-time passwords in the sample authenticator application repositories on
GitHub:

Step 1. Register your app

The first time you authenticate you are asked to register a device by scanning a QR code.

Your application must implement a QR code scanning mechanism. The QR code contains the URI used for registering the device,
although you could also offer a method for entering the URI manually.

After obtaining the URI, register the authentication mechanism in your app:

1.

2.

3.



Android

ForgeRock Authenticator sample for Android.



iOS

ForgeRock Authenticator sample for iOS.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1167

https://github.com/ForgeRock/sdk-sample-apps/tree/main/android/java-authenticator/authenticator
https://github.com/ForgeRock/sdk-sample-apps/tree/main/android/java-authenticator/authenticator
https://github.com/ForgeRock/sdk-sample-apps/tree/main/android/java-authenticator/authenticator
https://github.com/ForgeRock/sdk-sample-apps/tree/main/android/java-authenticator/authenticator
https://github.com/ForgeRock/sdk-sample-apps/tree/main/android/java-authenticator/authenticator
https://github.com/ForgeRock/sdk-sample-apps/tree/main/android/java-authenticator/authenticator
https://github.com/ForgeRock/sdk-sample-apps/tree/main/android/java-authenticator/authenticator
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-frexamples/FRAuthenticatorExample
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-frexamples/FRAuthenticatorExample
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-frexamples/FRAuthenticatorExample
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-frexamples/FRAuthenticatorExample
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-frexamples/FRAuthenticatorExample
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-frexamples/FRAuthenticatorExample
https://github.com/ForgeRock/sdk-sample-apps/tree/main/iOS/uikit-frexamples/FRAuthenticatorExample

Register the OATH mechanism by implementing the FRAClient.createMechanismFromUri() method, and use
FRAListener to receive the newly created mechanism:

fraClient.createMechanismFromUri("qrcode_scan_result", new FRAListener<Mechanism>() {

 @Override
 public void onSuccess(Mechanism mechanism) {
 // called when device enrollment was successful.
 }

 @Override
 public void onFailure(final MechanismCreationException e) {
 // called when device enrollment has failed.
 }
});

Implement FRAClient.shared in your ViewController , or View to receive the Mechanism object:

guard let fraClient = FRAClient.shared else {
 print("FRAuthenticator SDK is not initialized")
 return
}

fraClient.createMechanismFromUri(uri: url, onSuccess: { (mechanism) in
 // Method call occurs when device enrollment is successful.
}, onError: { (error) in
 // Method call occurs when device enrollment fails.
})

Step 2. Generate one-time passwords

With the OATH mechanisms now registered, your app can obtain the current, and next tokens, as an OathTokenCode object:

OathTokenCode token = oath.getOathTokenCode();
String otp = token.getCurrentCode();

Android

iOS

Android

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1168 Copyright © 2025 Ping Identity Corporation

do {
 // Generate OathTokenCode
 let code = try mechanism.generateCode()
 // Update UI with generated code
 codeLabel?.text = code.code
} catch {
 // Handle errors for generating OATH code
}

More information

Refer to the following links for information on some of the interfaces and objects used in this topic:

Integrate authenticator app policies

Applies to:

 Ping SDK for Android

 Ping SDK for iOS

 Ping SDK for JavaScript

You can build and distribute your own authenticator app to your users so that they can participate in multi-factor authentication
journeys. To help ensure the security of your app—and therefore your system—you can enable authenticator app policies.

This topic explains how to integrate support for authenticator app policies into your projects that use the Ping (ForgeRock)
Authenticator module.

Prerequisites

To integrate app policies into your application that uses the Ping (ForgeRock) Authenticator module, ensure you have completed
the following tasks first:

Configure your server to apply app policies.

Refer to Secure the Authenticator app using policies.

iOS

Android iOS

OathMechanism OathMechanism

createMechanismFromUri createMechanismFromUri

1.

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1169

https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-oath-mechanism/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-oath-mechanism/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Classes/OathMechanism.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Classes/OathMechanism.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-f-r-a-client/create-mechanism-from-uri.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-f-r-a-client/create-mechanism-from-uri.html
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Classes/FRAClient.html#/s:15FRAuthenticator9FRAClientC22createMechanismFromUri3uri9onSuccess0H5Errory10Foundation3URLV_yAA0D0Ccys0J0_pctF
https://docs.pingidentity.com/sdks/latest/_attachments/ios/api-reference/FRAuthenticator/Classes/FRAClient.html#/s:15FRAuthenticator9FRAClientC22createMechanismFromUri3uri9onSuccess0H5Errory10Foundation3URLV_yAA0D0Ccys0J0_pctF

Integrate the Ping (ForgeRock) Authenticator module into your app.

Refer to Set up your Ping (ForgeRock) Authenticator module project.

Start the Ping (ForgeRock) Authenticator module in your app.

Refer to Initialize the Ping (ForgeRock) Authenticator module.

Step 1. Handle policies on the client

Policies are associated with an account registered in your authenticator app.

The Account class has the following attributes for handling app policies:

1 Use the public isLocked method to determine whether the account is currently locked or not

You can use the lockAccount and unlockAccount methods to manage registered accounts. To lock an account, you need to
provide the policy that has been breached, as follows:

// Reference to the authenticator object:
FRAClient fraClient = FRAClient.builder()
 .withContext(context)
 .start();

// Reference to the "Device tampering detection" policy:
FRAPolicy policy = new DeviceTamperingPolicy();

// Lock the account:
boolean result = fraClient.lockAccount(account, policy);

2.

3.

Attribute Type Visibility Description

lockingPolicy String Public The policy that caused the account to become locked. Only
the first policy that was breached is listed.

policies String Public A JSON string containing the policy names to apply, as
configured in the combined MFA node.

lock Boolean Private 1 Whether the account is currently locked or not.

Android

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1170 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-account/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-authenticator/forgerock-authenticator/org.forgerock.android.auth/-account/index.html

// Create the authenticator object:
FRAClient.start()

// Reference to the "Device tampering detection" policy:
let policy = DeviceTamperingPolicy()

// Lock the account:
let result = try FRAClient.lockAccount(account: account, policy: policy)

Step 2. Create custom policies

You can extend the new abstract class FRAPolicy to create new policies that you can attach to accounts.

In the class, implement the evaluate method which returns true when policy conditions are met or false if the conditions are
breached. For example, if the tampered score exceeds the specified value, the evaluator would return false .

static class AppIsUpToDatePolicy extends FRAPolicy {
 @Override
 public String getName() {
 return "appIsUpToDate";
 }

 @Override
 public boolean evaluate(Context context) {
 // Policy condition logic here
 return true; // policy conditions met
 // return false; // policy conditions breached - lock account
 }
}

iOS

Android

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1171

class AppIsUpToDatePolicy: FRAPolicy {

 public var name: String = "appIsUpToDate"

 public var data: Any?

 public func evaluate() -> Bool {
 // Policy condition logic here
 return true // policy conditions met
 // return false // policy conditions breached - lock account
 }
}

To have the SDK evaluate your new policy, create a policy evaluator, as follows:

Use FRAPolicyEvaluator.FRAPolicyEvaluatorBuilder and its methods withPolicies and withPolicy to pass
policies to the evaluator:

FRAPolicyEvaluator policyEvaluator = new FRAPolicyEvaluator.FRAPolicyEvaluatorBuilder()
 .withPolicies(FRAPolicyEvaluator.DEFAULT_POLICIES)
 .withPolicy(new AppIsUpToDatePolicy())
 .build();

Use the FRAPolicyEvaluator.registerPolicies() method to pass policies to the evaluator.

Note that the default built-in policies are always evaluated.

To keep any existing registered policies on the account, specify the shouldOverride: false parameter:

let policyEvaluator = FRAPolicyEvaluator()
try policyEvaluator.registerPolicies(policies: [AppIsUpToDatePolicy()], shouldOverride: false)

iOS

Android

iOS

Implement your use cases with the Ping (ForgeRock) Authenticator module Ping SDKs

1172 Copyright © 2025 Ping Identity Corporation

Pass the policy evaluator when building your authenticator client:

FRAClient.builder()
 .withContext(context.getApplicationContext())
 .withPolicyEvaluator(policyEvaluator)
 .start();

try FRAClient.setPolicyEvaluator(policyEvaluator: policyEvaluator)
FRAClient.start()

If the policy evaluator fails, the SDK automatically locks the account.

Locked accounts block certain methods, including FRAClient.updateAccount , PushMechanism.accept and
OATHMechanism.getNextOathToken . Calling these methods on a locked account throws an AccountLockException .

info
FRAPolicyEvaluator.DEFAULT_POLICIES includes both of the default built-in policies BiometricAvailablePolicy and
DeviceTamperingPolicy.

Note

Android

iOS

Ping SDKs Implement your use cases with the Ping (ForgeRock) Authenticator module

Copyright © 2025 Ping Identity Corporation 1173

API reference

Browse API reference documentation for the Ping (ForgeRock) Authenticator module:



Android

ForgeRock Authenticator API reference for
Android.



iOS

ForgeRock Authenticator API reference for iOS.

Ping SDKs API reference

Copyright © 2025 Ping Identity Corporation 1175

Token Vault

Token Vault provides an additional layer of security for storing and using OAuth 2.0 and OpenID Connect 1.0 tokens in your
JavaScript single-page applications (SPAs).

Implemented as a plugin for the Ping SDK for JavaScript, Token Vault provides a feature called origin isolation.

Web applications can only access data that gets stored within the matching origin - the unique combination of protocol (usually
HTTPS), hostname, and port number.

By storing OAuth 2.0 and OpenID Connect 1.0 tokens under a different origin than your main application, you are isolating these
tokens from malicious code.

Your main app uses the Ping SDK for JavaScript as usual to request tokens and access protected resources, however the Token
Vault intercepts these requests and manages related tokens in the isolated origin.

As your main app does not get access to the contents of the isolated tokens, they are protected from being exposed or reused in
attacks such as cross-site scripting.

Token Vault components

Token Vault consists of two main components:

Server support:

 PingOne
 PingOne Advanced Identity Cloud
 PingAM
 PingFederate

SDK support:

 Ping SDK for Android
 Ping SDK for iOS
 Ping SDK for JavaScript

error
Intended audience
Token Vault is complex to set up.
It is designed for situations that demand the highest level of client-side security for OAuth 2.0 token management.
Token Vault might be suitable in these scenarios:

Your industry has compliance or regulatory requirements, such as those for financial or government
organizations
You need to run untrusted, third-party code in your main application, such as from external advertisers, or
other embedded applications

Due to the complexity of deployment, we recommend considering alternative solutions if your use case does not
absolutely require the high level of client-side security that the Token Vault offers.
Alternative solutions include:

Reduced Access Token lifetimes, without using refresh tokens
Reduced idle timeouts on sessions with user-event-driven "keep-alive" requests
Reduction or elimination of third-party code
Usage of a server-side Backend For Frontend (BFF) approach for storing tokens

Caution

•

•

•
•
•
•

Ping SDKs Token Vault

Copyright © 2025 Ping Identity Corporation 1177

Token Vault Proxy

The Token Vault Proxy is responsible for:

Receiving and storing tokens in responses from your authorization server

Redacting responses from your authorization server that contain token values, before passing the redacted
response to your application

Attaching stored tokens to requests that match the configured list of endpoints that require authorization

The Token Vault Proxy is embedded into your main application by using an inline frame, or iframe. An embedded iframe
has a parent-child relationship with the main app, and the two can communicate with one another as long as they share
the same parent domain, such as example.com .

To enable isolation, however, the origins must be different. For example, if your main app is served from https://
sdkapp.example.com , the Token Vault Proxy could be served from https://proxy.example.com .

Token Vault Interceptor

The Token Vault Interceptor is implemented as a service worker on your main app and intercepts requests to URLs that
match a configured list.

These URLs are your protected resources and therefore require authorization to access. The Token Vault Interceptor
captures these requests and passes them to the Token Vault Proxy iframe to add the relevant tokens.

The Token Vault Interceptor is also responsible for capturing OAuth 2.0 calls from the SDK to the authorization server and
routing them through the Token Vault Proxy. The Token Vault Proxy forwards these requests to the authorization server
and stores the returned tokens inside its own origin away from your main app.

Token Vault flow

The following diagram gives a simplified high-level overview of how the Token Vault isolates tokens away from your main
application:

•

•

•

Token Vault Ping SDKs

1178 Copyright © 2025 Ping Identity Corporation

When your app uses the Ping SDK to request tokens from your authorization server it uses the Authorization Code Flow
with PKCE. The last step in this flow is a call to the /access_token endpoint.

The Token Vault Interceptor captures this call to the /access_token endpoint.

The Token Vault Interceptor forwards the call to the Token Vault Proxy to handle instead of going directly to your
authorization server.

The Token Vault Proxy completes the authorization code flow and captures the tokens from the response. It stores the
tokens securely in its origin, which is different from your main app but shares the parent domain. The Token Vault Proxy
can attach these stored tokens to any future calls routed through it that require authorization.

The Token Vault Proxy then returns a redacted version of the response body. This ensures the main app never receives or
stores the tokens.

JavaScript SPA

ForgeRock Token Vault

Overview of origin isolation using ForgeRock Token Vault

Web App

SPA:
https://sdkapp.example.com SDK

Token Vault Interceptor

Service worker:
https://sdkapp.example.com

Token Vault Proxy

iframe:
https://proxy.example.com Resource Server

1) Get tokens

SDK starts
OAuth 2.0
authorization
code flow

2)
Intercept call to
access_token
endpoint

3) Pass call to iframe

Capture tokens in
response from
ForgeRock AS

4) Return redacted response body

5) Return response

6)
GET
/protected-resource

Intercept call
to resource on
capture list

7)
Route request
through iframe

Attach tokens

8)
GET
/protected-resource

9) Receive response

10) Return /protected-resource

1.

2.

3.

4.

Ping SDKs Token Vault

Copyright © 2025 Ping Identity Corporation 1179

https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-authz-grant-pkce.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-authz-grant-pkce.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-authz-grant-pkce.html

Example of a redacted response body

{
 "accessToken": "REDACTED",
 "idToken": "eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg",
 "refreshToken": "REDACTED",
 "tokenExpiry": 1690712227226,
}

The SDK makes the redacted response available to your application.

Your app can now make requests for protected resources that require authorization.

If the protected resource matches a value on the configured list then the Token Vault Interceptor routes the request
through the Token Vault Proxy.

The Token Vault Proxy attaches the tokens it has stored in its own origin to the request and sends the request to the
resource server.

If the request has valid authorization bearer tokens attached, the resource server returns the protected content.

The protected resource is returned to the main app.

If the tokens were invalid or expired in the previous step, the main app receives a 400 error instead. In this case your app
must restart the authorization code flow.

5.

6.

7.

8.

9.

10.

Token Vault Ping SDKs

1180 Copyright © 2025 Ping Identity Corporation

Getting started

Get started with the Token Vault:

Configure your Authorization Server

You need to set up your PingOne Advanced Identity Cloud or PingAM instance with an OAuth 2.0 client and suitable CORS
configuration.

Configure an OAuth 2.0 client

Follow the instructions below to create the public OAuth 2.0 client the Token Vault requires:

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

Configure the authorization server

Learn how to set up your PingOne Advanced
Identity Cloud or PingAM instance with an OAuth

2.0 client and suitable CORS configuration.



Prepare for Token Vault

Discover how to integrate the Token Vault into
your app and make some necessary changes to

your environment.



Implement Token Vault code

Find out about the three main components to
configure when implementing the Token Vault.



Access a protected resource via Token
Vault

Implement origin isolation by accessing a
resource through the Token Vault.



1.

Getting started Ping SDKs

1182 Copyright © 2025 Ping Identity Corporation

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

2.

3.

4.

5.

6.

7.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

1.

2.

Ping SDKs Getting started

Copyright © 2025 Ping Identity Corporation 1183

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

In addition to the instructions above, perform the following steps:

Add the fully-qualified URL where you will host the Token Vault Proxy.

For example, https://proxy.example.com .

Add this value to either the Redirection URIs (self-managed PingAM) or the Sign-in URLs (PingOne Advanced Identity
Cloud) property.

Enable refresh tokens in your authorization server:

Add refresh_token to either the Advanced > Response Types (self-managed PingAM) or the Access > Response
Types (PingOne Advanced Identity Cloud) property.

Ensure Refresh Token is added to either the Advanced > Grant Types (self-managed PingAM) or the Sign On >
Grant Types (PingOne Advanced Identity Cloud) property.

Configure CORS

Follow the instructions below to configure CORS to allow the Token Vault to connect to your server:

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingOne Advanced Identity Cloud,
you can configure CORS to allow browsers from trusted domains to access PingOne Advanced Identity Cloud protected resources.
For example, you might want a custom web application running on your own domain to get an end-user’s profile information
using the PingOne Advanced Identity Cloud REST API.

The Ping SDK for JavaScript samples and tutorials use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different domain for hosting SDK applications, ensure you add them to the CORS configuration as accepted
origin domains.

To update the CORS configuration in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

At the top right of the screen, click your name, and then select Tenant settings.

On the Global Settings tab, click Cross-Origin Resource Sharing (CORS).

3.

4.

5.

6.

1.

2.

1.

2.

info
Generally, we do not recommend the use of OAuth 2.0 refresh tokens with typical web-based applications, but
using the Token Vault mitigates a number of the security concerns with using refresh tokens, so they can be
enabled to allow refreshing the access tokens without user intervention.

Note

1.

2.

3.

Getting started Ping SDKs

1184 Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Perform one of the following actions:

If available, click ForgeRockSDK.

If you haven’t added any CORS configurations to the tenant, click + Add a CORS Configuration, select Ping SDK,
and then click Next.

Add https://localhost:8443 and any DNS aliases you use to host your Ping SDK for JavaScript applications to the
Accepted Origins property.

Complete the remaining fields to suit your environment.

This documentation assumes the following configuration, required for the tutorials and sample applications:

Click Save CORS Configuration.

Cross-origin resource sharing (CORS) lets user agents make cross-domain server requests. In PingAM, you can configure CORS
to allow browsers from trusted domains to access PingAM protected resources. For example, you might want a custom web
application running on your own domain to get an end-user’s profile information using the PingAM REST API.

The Ping SDK for JavaScript samples and tutorials all use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

4.

◦

◦

5.

6.

Property Values

Accepted Origins https://localhost:8443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

Enable Caching True

Max Age 600

Allow Credentials True

lightbulb_2
Click Show advanced settings to be able to edit all available fields.

Tip

7.

Ping SDKs Getting started

Copyright © 2025 Ping Identity Corporation 1185

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

If you are using a different URL for hosting SDK applications, ensure you add them to the CORS configuration as accepted origin
domains.

To enable CORS in PingAM, and create a CORS filter to allow requests from your configured domain names, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to Configure > Global Services > CORS Service > Configuration, and set the Enable the CORS filter property to
true .

On the Secondary Configurations tab, click Click Add a Secondary Configuration.

In the Name field, enter ForgeRockSDK .

in the Accepted Origins field, enter any DNS aliases you use for your SDK apps.

This documentation assumes the following configuration:

Click Create.

PingAM displays the configuration of your new CORS filter.

On the CORS filter configuration page:

Ensure Enable the CORS filter is enabled.

Set the Max Age property to 600

Ensure Allow Credentials is enabled.

1.

2.

emergency_home
If this property is not enabled, CORS headers are not added to responses from PingAM, and CORS is disabled
entirely.

Important

3.

4.

5.

Property Values

Accepted Origins https://localhost:8443

Accepted Methods GET

POST

Accepted Headers accept-api-version

x-requested-with

content-type

authorization

if-match

x-requested-platform

iPlanetDirectoryPro [1]

ch15fefc5407912 [2]

Exposed Headers authorization

content-type

6.

7.

1.

2.

3.

Getting started Ping SDKs

1186 Copyright © 2025 Ping Identity Corporation

Click Save Changes.

In addition to the instructions above, perform the following steps:

Add the origins where you will host your main application and the Token Vault Proxy.

For example, https://sdkapp.example.com and https://proxy.example.com , or when testing locally http://
localhost:5173 and http://localhost:5174 .

Add these values to the Accepted origins property.

1. Cookie name value in PingAM servers.
2. In PingOne Advanced Identity Cloud tenants, go to Tenant Settings > Global Settings > Cookie to find this dynamic cookie
name value.

Prepare for Token Vault

To integrate the Token Vault into your app you need to make some changes to your environment.

Install the Token Vault

Install the Token Vault by using npm:

npm install @forgerock/token-vault

Configure your module bundler

You need to implement the Token Vault Interceptor component as a service worker in your main application.

To maximize cross-browser compatibility, we recommend that the Token Vault Interceptor is unified and down-levelled into a
single output file.

To achieve this, you should create a separate bundler configuration dedicated to the Token Vault Interceptor. This configuration
should produce a single file without using ES Module syntax. For example, Webpack version 5 and earlier can do this by default.

In addition, the Token Vault Proxy needs to have its own module bundler configuration as it must be separate from your main
application.

Configure your web servers

You must serve the Token Vault Proxy from a different origin than your main application, but using the same parent domain.

To achieve this, we recommend that the Token Vault Proxy uses a dedicated web server. Your main application can then embed
the Token Vault Proxy within an iframe to implement origin isolation for your tokens.

In addition, you must configure the web server for the main application to avoid rewriting incoming URLs. The redirections back
to your app from the authorization server contain query parameters that must be preserved and read by the SDK.

8.

•

lightbulb_2
If you are testing locally, you can use different port numbers to ensure the origins differ.

Tip

Ping SDKs Getting started

Copyright © 2025 Ping Identity Corporation 1187

URL rewriting can cause timeout issues related to /authorize requests. For example, even though it succeeds and redirects back
to your app with the code and state query parameters, the request to /access_token is not made. This can be caused by your
web server rewriting the URL after receipt to only / and stripping the query parameters. This can cause the OAuth 2.0 flow to fail
to resolve correctly leading to failures.

Structure your codebase

To help you integrate the Token Vault into your apps successfully, we recommend a codebase structure such as the following,
which uses the Vite development environment:

root
├── .env (1)
├── package.json (2)
├── app/ (3)
| ├── public/
| | └── <static files>
| ├── src/
| | ├── main.js
| | └── <app files>
| ├── interceptor/ (4)
| | └── interceptor.js
| ├── index.html
| ├── package.json
| ├── vite.config.js (5)
| └── vite.interceptor.config.js (6)
└── proxy/ (7)
 ├── src/
 | └── proxy.js
 ├── index.html
 ├── package.json
 └── vite.config.js (8)

The structure of some of these files might resemble the following:

1 You could store shared configuration properties in an .env file
2 You could use npm workspaces

3 Main app folder
4 Separate Token Vault Interceptor code from your main app code
5 Vite configuration file to build your main app
6 Dedicated Vite configuration file to build the Token Vault Interceptor
7 Separate folder for the Token Vault Proxy
8 Separate Vite configuration to build the Token Vault Proxy

Getting started Ping SDKs

1188 Copyright © 2025 Ping Identity Corporation

https://vitejs.dev/
https://vitejs.dev/
https://vitejs.dev/
https://docs.npmjs.com/cli/v9/using-npm/workspaces?v=true
https://docs.npmjs.com/cli/v9/using-npm/workspaces?v=true

<!DOCTYPE html>
<html lang="en">
 <head></head>

 <body>
 <!-- Root div for mounting app -->
 <div id="root"></div>

 <!-- Root div for mounting Token Vault Proxy (iframe) -->
 <div id="token-vault"></div>

 <!-- Import main app -->
 <script type="module" src="/src/main.js"></script>
 </body>
</html>

import { Config, TokenManager } from '@forgerock/javascript-sdk';
import { client } from '@forgerock/token-vault';

const register = client({ /* global config */ });

register.interceptor();
register.proxy(document.getElementById('token-vault'));

const tokenVaultStore = register.store();

Config.set({ /* {sdk_name} config */});

import { interceptor } from '@forgerock/token-vault';

interceptor({ /* config */ });

index.html

main.js

interceptor.js

Ping SDKs Getting started

Copyright © 2025 Ping Identity Corporation 1189

import { proxy } from '@forgerock/token-vault';

proxy({ /* config */ });

Next steps

When you have set up your project, you can proceed to Implement Token Vault code.

Implement Token Vault code

There are three main components to configure when implementing the Token Vault. It is important the configuration is consistent
between these components. To achieve this, you could add your shared configuration to a .env file in the root of your project.

In the following examples, the configuration uses literal values to help understand the values required.

Implement main app code

This configuration should be within your app’s index or main file.

Initialize the Token Vault client:

proxy.js

Getting started Ping SDKs

1190 Copyright © 2025 Ping Identity Corporation

app/src/main.js

import { Config, TokenManager } from '@forgerock/javascript-sdk';
import { client } from '@forgerock/token-vault';

/**
 * This factory function takes in a config object and returns
 * the necessary methods to setup the iframe ("proxy"), the
 * service worker ("interceptor"), and the token store replacement
 * API ("store").
 */
const register = client({
 app: {
 origin: 'https://app.example.com',
 },
 interceptor: {
 file: '/interceptor.js',
 },
 proxy: {
 origin: 'https://proxy.example.com',
 },
});

/**
 * Sets up the service worker for intercepting fetch requests
 */
register.interceptor({
 /* optional interceptor worker config */
});

/**
 * Injects the iframe into the DOM to setup the proxy
 * Make sure to pass in the required, real DOM element as the zeroeth argument
 */
register.proxy(document.getElementById('token-vault'), {
 /* optional proxy config */
});

/**
 * Creates the store replacement for the SDK
 */
const tokenVaultStore = register.store({
 /* optional store config */
});

In the same file, configure the SDK:

Ping SDKs Getting started

Copyright © 2025 Ping Identity Corporation 1191

app/src/main.js

Config.set({
 clientId: 'ForgeRockSDKClient',
 redirectUri: location.href,
 scope: 'openid profile email address',
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 5000,
 },
 realmPath: 'alpha',
 // Replace the default token store with Token Vault's store
 tokenStore: tokenVaultStore,
});

Implement Token Vault Interceptor code

This configuration should be within the Service Worker’s entry file, which is separate from your main application code.

This is also the file to which your client() method config object property of interceptor.file method references.

Reference this file in your main application when calling the client() method, as the interceptor.file property.

Example configuration is as follows:

app/interceptor/interceptor.js

import { interceptor } from '@forgerock/token-vault';

interceptor({
 interceptor: {
 // Use either fully qualified URLs
 // Or end with a single asterisk as a wildcard
 urls: [/* Your protected endpoint URLs */],
 },
 forgerock: {
 // MUST match what you configured in your main app
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 5000,
 },
 realmPath: 'alpha',
 },
});

lightbulb_2
The interceptor.urls array accepts a /* ending to match any request from a particular root domain and path. This
means you do not have to list each and every unique protected endpoint that your app might use.
For example, https://backend.example.com/resources/protected/*
This is not a full glob-pattern feature - just a single trailing wildcard.

Tip

Getting started Ping SDKs

1192 Copyright © 2025 Ping Identity Corporation

Implement Token Vault Proxy code

This configuration should be within the Token Vault Proxy entry file.

Example configuration is as follows:

proxy/src/proxy.js

import { proxy } from '@forgerock/token-vault';

proxy({
 app: {
 // This MUST match the origin where your main app runs
 origin: 'https://app.example.com',
 },
 forgerock: {
 // MUST match the config in your main app and interceptor
 clientId: 'ForgeRockSDKClient',
 redirectUri: location.href,
 scope: 'openid profile email address',
 serverConfig: {
 baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
 timeout: 5000,
 },
 realmPath: 'alpha',
 },
});

Build the code

The Token Vault requires more complex building and bundling configuration than a regular JavaScript app that uses the SDK
because it requires three different bundles:

The main application

The Token Vault Interceptor (Service Worker)

The Token Vault Proxy (iframe)

You can often use a default configuration for the main application and the Token Vault Proxy when using any of the popular
bundlers, such as Webpack or Vite

The Token Vault Interceptor requires a specific build configuration to ensure maximum compatibility with various browsers.

Bundling the Interceptor

To provide the best cross-browser support, the Token Vault Interceptor requires a dedicated bundle configuration so that it
results in a single-file output, down-leveled to at least ES2020 without any ES Module syntax.

We recommend using a separate vite.interceptor.config.js or webpack.interceptor.config.js for the Token Vault
Interceptor, as well as a build separate command that consumes this separate configuration file.

1.

2.

3.

Ping SDKs Getting started

Copyright © 2025 Ping Identity Corporation 1193

If you are using Webpack, its defaults are good for bundling the Token Vault Interceptor.

Next steps

After you implement the code to enable the Token Vault, you can update your app to obtain tokens using origin isolation.

Access resources using Token Vault

After you complete the set up of the Token Vault successfully, you can use the Ping SDK for JavaScript or any HTTP or fetch
library to request protected resources.

With the exception of refreshing tokens, and configuration of the token storage mechanism, using the Ping SDK for JavaScript
with the Token Vault is almost entirely transparent.

The Token Vault manages token lifecycle automatically. If you enable refresh tokens in your OAuth 2.0 client, the Token Vault
automatically refreshes access tokens.

Request tokens

Use the TokenManager class from the SDK as usual to request tokens and have them safely stored within the Token Vault Proxy:

import { TokenManager } from '@forgerock/javascript-sdk';

const tokens = TokenManager.getTokens();

console.log(tokens); // Refresh & Access Token values will be redacted

You can verify the tokens are stored under the origin of the Token Vault Proxy, not the origin of your main app, by using the
developer tools in your browser.

The response your app and the SDK receive contains redacted values. This is expected behavior and increases security.

For example:

{
 "accessToken": "REDACTED",
 "idToken": "eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg",
 "refreshToken": "REDACTED",
 "tokenExpiry": 1690712227226,
}

lightbulb_2
If you are using Vite, you might achieve the best results with bundling into an Immediately Invoked Function
Expression (IIFE).

Tip

Getting started Ping SDKs

1194 Copyright © 2025 Ping Identity Corporation

https://vitejs.dev/config/build-options.html#build-lib
https://vitejs.dev/config/build-options.html#build-lib
https://vitejs.dev/config/build-options.html#build-lib

Make requests

Use the native fetch API or any HTTP request library that emits a fetch event.

For example, you could use the HttpClient module provided in the Ping SDK for JavaScript.

The Token Vault Interceptor routes any of these requests that matches its configuration through the Token Vault Proxy so that
the relevant tokens get attached before reaching your resource server.

Revoke tokens

To remove tokens and log the user out, use the FRUser class as usual:

import { FRUser } from '@forgerock/javascript-sdk';

FRUser.logout();

This destroys the user’s session, revokes tokens on the server, and removes tokens from the Token Vault Proxy.

Use convenience methods

The tokenVaultStore object provides some convenience functions for use in your apps.

These methods are useful as your main app does not have any direct access to the tokens in the Token Vault.

The has method

Use the has method to determine whether the Token Vault has relevant tokens stored.

The method returns an object with a hasTokens property and a boolean value. It does not return the tokens.

const tokenVaultStore = register.store();

const { hasTokens } = tokenVaultStore.has();

console.log(hasTokens); // logs `true` or `false`

The refresh method

Use the refresh method to manually request that the Token Vault refreshes its tokens.

info
This method reflects the presence of tokens but does not validate those tokens. They may have expired or were
revoked by the server.
To validate the tokens use the UserManager.getCurrentUser method. You can consider the tokens valid if the
method returns user data.

Note

Ping SDKs Getting started

Copyright © 2025 Ping Identity Corporation 1195

The Token Vault attempts to refresh tokens automatically when required, but you can use this refresh method to force a
refresh of the tokens, if needed.

The method returns an object with a refreshTokens property with a boolean value.

const tokenVaultStore = register.store();

const { refreshTokens } = tokenVaultStore.refresh();

console.log(refreshTokens); // logs `true` or `false`

Getting started Ping SDKs

1196 Copyright © 2025 Ping Identity Corporation

Build advanced token security in a
JavaScript single-page app

This tutorial covers the advanced development required for implementing the Token Vault with the Ping SDK for JavaScript.

First, why advanced token security?

In JavaScript Single Page Applications (or SPA), OAuth/OIDC Tokens (referred to from here on as tokens) are typically stored by
using the browser’s Web Storage API: localStorage or sessionStorage .

The security mechanism the browser uses to ensure data doesn’t leak out to unintended actors is through the Same-Origin Policy
. In short, only JavaScript running on the exact same origin, that is scheme, domain, and port, can access the stored data.

For example, if an SPA running on https://auth.example.com/login stores data, JavaScript running on the following will be
able to access it:

https://auth.example.com/users : origins match, regardless of path

https://auth.example.com?status=abc : origins match, regardless of query parameters

The following will NOT be able to access the data:

http://auth.example.com : uses a different scheme, http vs. https

https://auth.examples.com : uses a different domain; notice the plurality

https://example.com : does not include the sub-domain

https://auth.example.com:8000 : uses a different port

For the majority of web applications, this security model can be sufficient.

In most JavaScript applications, the code running on the app’s origin can usually be trusted; hence, the browser’s Web Storage API
is sufficient as long as good security practices are in place.

However, in applications that are high-value targets, such as apps required to run untrusted, third-party code, or apps that have
elevated scrutiny due to regulatory or compliance needs, the Same-Origin Policy may not be enough to protect the stored tokens.

Examples of situations where the Same-Origin Policy may not be sufficient include government agencies, financial organizations,
or those that store sensitive data, such as medical records. The web applications of these entities may have enough inherent risk
to offset the complexity of a more advanced token security implementation.

There are two solutions that can increase token security:

Backend for Frontend (BFF)

Origin Isolation

The Backend for Frontend (BFF) pattern

One solution that is quite common is to avoid storing high-value secrets within the browser in the first place. This can be done
with a dedicated Backend for Frontend, or BFF. Yeah, it’s a silly initialism.

•

•

•

•

•

•

1.

2.

Build advanced token security in a JavaScript single-page app Ping SDKs

1198 Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/

This is increasingly becoming a common pattern for apps made with common meta-frameworks, such as Next, Nuxt, SvelteKit,
and so on. The server component of these frameworks can store the tokens on the front end’s behalf using in-memory stores or
just writing the token into an HTTPOnly cookie, and requests that require authorization can be proxied through the accompanying
server where the tokens are accessible. Therefore, no token needs to be stored on the front end, eliminating the risk.

You can read more about the arguments in favor of, and against, this design in the Hacker News discussion on the blog post
titled "SPAs are Dead".

If, on the other hand, you are not in the position to develop, deploy and maintain a full backend, you have an alternative choice
for securing your tokens: Origin Isolation.

Origin Isolation

Origin Isolation is a concept that introduces an alternative to BFF, and provides a more advanced mechanism for token security.

The concept is to store tokens in a different and dedicated origin related to the main application. To do this, two web servers are
needed to respond to two different origins: one is your main app, and the second is an iframed app dedicated to managing
tokens.

For more information, refer to the patent: Transparently using origin isolation to protect access tokens.

This particular design means that if your main application gets compromised, the malicious code running in your main app’s
origin still has no access to the tokens stored in the alternative origin.

You’ll still need a web server of some kind to serve the files necessary to handle requests to this alternative origin, but being that
only static files are served, the options are much simpler and lightweight.

This solution, which is implemented by using the Token Vault is the focus of this tutorial.

What is Token Vault?

Token Vault is a codified implementation of Origin Isolation. For more information, refer to Token Vault in the documentation.

It is a plugin available to customers that use the Ping SDK for JavaScript to enable OAuth 2.0 or OIDC token request and
management in their apps. These apps can remain largely unmodified to take advantage of Token Vault.

What you will learn

We will use an existing React JS, to-do sample application similar to what we built in another guide as a starting point for
implementing Token Vault. This represents a realistic web application that has an existing implementation of the Ping SDK for
JavaScript. Unlike the previous tutorial, we’ll start with a fully working app and focus on adding Token Vault.

This tutorial focuses on OAuth 2.0 and OIDC authorization and token management. Authentication-related concerns, such as
login and registration journeys are handled outside the app. We call this approach OIDC login.

info
Even though your main app doesn’t need much modification, additional build and server requirements are necessary,
which introduces complexity and added maintenance to your system.
We recommend that you only integrate Token Vault into an app if heightened security measures are a requirement of
your system.

Note

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1199

https://news.ycombinator.com/item?id=26728596
https://news.ycombinator.com/item?id=26728596
https://news.ycombinator.com/item?id=26728596
https://patents.justia.com/patent/11689528
https://patents.justia.com/patent/11689528

To demonstrate Token Vault integration, we will be using a simplified, non-production-ready, to-do app. This to-do app represents
a Single Page Application (SPA) with nothing more than React Router added to the stack for routing and redirection.

Using this tutorial

This is a hands-on tutorial. We are providing the web app and resource server for you. You can find the repo on GitHub to follow
along.

All you’ll need is your own PingOne Advanced Identity Cloud or PingAM. If you don’t have access to either, reach out to a
representative today, and we’ll be happy to get you started.

There are two ways to use this guide:

Follow along by building portions of the app yourself: continue by ensuring you can meet the requirements below.

Just curious about the code implementation details: skip to Implementing the Token Vault.

Requirements

Knowledge requirements

JavaScript and the npm ecosystem of modules

The command line interface, such as Shell or Bash

Core Git commands, including clone and checkout

React and basic React conventions

Context API: the concept for managing global state

Build systems/bundlers and development servers: We use basic Vite configuration and commands

Technical requirements

Admin access to an instance of PingOne Advanced Identity Cloud or self-managed PingAM

Node.js >= 16

Check your version with node -v

npm >= 8

Check your version with npm -v

emergency_home
This is not a guide on how to build a React app
How you architect or construct React apps is outside the scope of this guide.
It’s also worth noting that there are many React-based frameworks and generators for building web applications, such
as Next.js, Remix, and Gatsby.
What is best is highly contextual to the product and user requirements for any given project.

Important

1.

2.

1.

2.

3.

4.

5.

6.

•

•

•

Build advanced token security in a JavaScript single-page app Ping SDKs

1200 Copyright © 2025 Ping Identity Corporation

Authorization server setup

Step 1. Configure CORS (Cross-Origin Resource Sharing)

Due to the fact that pieces of our system will be running on different origins (scheme, domain, and port), we need to configure
CORS in the server to allow our web app to make requests. Use the following values:

Allowed Origins: http://localhost:5173 http://localhost:5175

Allowed Methods: GET POST

Allowed headers: accept-api-version authorization content-type x-requested-with

Allow credentials: enable

Rather than domain aliases and self-signed certificates, we will use localhost as that is a trusted domain by default. The main
application will be on the 5173 port, and the proxy will be on the 5175 port. Because the proxy also make calls to the PingAM
server, its origin must also be allowed.

lightbulb_2
If you’ve already completed the previous tutorial for React JS or Angular, then you may already have most of this setup
within your server. We’ll call out the newly introduced data points to ensure you don’t miss the configuration.

Tip

•

•

•

•

info
Service Workers are not compatible with self-signed certificates, regardless of tool or creation method.
Certificates from a system-trusted, valid Certificate Authority (CA) are required or direct use of localhost . Self-signed
certificates lead to a fetch error similar to the following:

Failed to register a ServiceWorker for scope ('https://example.com:8000/') with script ('https://
example.com:8000/sw.js'):
An unknown error occurred when fetching the script

Note

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1201

http://localhost:5173
http://localhost:5173
http://localhost:5175
http://localhost:5175

Figure 1. Example CORS configuration in PingOne Advanced Identity Cloud

For more information about CORS configuration, refer to the following:

Configure CORS in PingAM

Configure CORS in PingOne Advanced Identity Cloud.

Step 2. Create two OAuth 2.0 clients

Within the server, create two OAuth 2.0 clients: one for the React web app and one for the Node.js resource server.

Why two? It’s conventional to have one OAuth 2.0 client per app in the system. For this case, a public OAuth 2.0 client for the
React app provides our app with OAuth 2.0 or OIDC tokens. The Node.js server validates the user’s Access Token shared via the
React app using its own confidential OAuth 2.0 client.

Public OAuth 2.0 client settings

Client name/ID: CentralLoginOAuthClient

Client type: Public

Secret: <leave empty>

Scopes: openid profile email

•

•

•

•

•

•

Build advanced token security in a JavaScript single-page app Ping SDKs

1202 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/security-guide/enable-cors-support.html
https://docs.pingidentity.com/pingam/8/security-guide/enable-cors-support.html
https://docs.pingidentity.com/pingoneaic/latest/tenants/configure-cors.html
https://docs.pingidentity.com/pingoneaic/latest/tenants/configure-cors.html

Grant types: Authorization Code Refresh Token

Implicit consent: enabled

Redirection URLs/Sign-in URLs: http://localhost:5173/login

Response types: code id_token refresh_token

Token authentication endpoint method: none

Confidential OAuth 2.0 client settings

Client name/ID: RestOAuthClient

Client type: Confidential

Secret: <alphanumeric string> (treat it like a password)

Default scope: am-introspect-all-tokens

Grant types: Authorization Code

Token authentication endpoint method: client_secret_basic

•

•

•

•

•

info
The client name and redirection/sign-in URL values have changed from the previous tutorial, as well as the Refresh
Token grant and response type values.

Note

•

•

•

•

•

•

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1203

http://localhost:5173/login
http://localhost:5173/login

Figure 2. Example OAuth 2.0 client from PingOne Advanced Identity Cloud

Select the environment you are using for more information on configuring OAuth 2.0 clients:

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

Click + Custom Application.

Select OIDC - OpenId Connect as the sign-in method, and then click Next.

Select Native / SPA as the application type, and then click Next.

In Name, enter a name for the application, such as Public SDK Client .

In Owners, select a user that is responsible for maintaining the application, and then click Next.

1.

2.

3.

4.

5.

6.

7.

Build advanced token security in a JavaScript single-page app Ping SDKs

1204 Copyright © 2025 Ping Identity Corporation

In Client ID, enter sdkPublicClient , and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

On the Sign On tab:

In Sign-In URLs, enter the following values:

In Grant Types, enter the following values:

Authorization Code

Refresh Token

In Scopes, enter the following values:

openid profile email address

Click Show advanced settings, and on the Authentication tab:

In Token Endpoint Authentication Method, select none .

In Client Type, select Public .

Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:

Log in to the PingAM admin UI as an administrator.

In the left panel, click  Services.

In the list of services, click OAuth2 Provider.

On the Core tab, ensure Issue Refresh Tokens is enabled.

On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Click Save Changes.

lightbulb_2
When trying out the SDKs, you could select the demo user you created previously.

Tip

8.

9.

1.

emergency_home
Also add any other domains where you host SDK applications.

Important

2.

3.

10.

1.

2.

3.

11.

1.

2.

3.

4.

5.

6.

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1205

Step 3. Create a test user

Create a test user, or identity, in your server within the realm you will be using.

Select the environment you are using for instructions on how to create a demo user:

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:

Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Identities > Manage.

Click + New Alpha realm - User.

Enter the following details:

Username = demo

First Name = Demo

Last Name = User

Email Address = demo.user@example.com

Password = Ch4ng3it!

Click Save.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:

Log in to the PingAM admin UI as an administrator.

Navigate to  Identities, and then click + Add Identity.

Enter the following details:

User ID = demo

Password = Ch4ng3it!

Email Address = demo.user@example.com

Click Create.

1.

2.

3.

4.

◦

◦

◦

◦

◦

5.

1.

2.

3.

◦

◦

◦

4.

Build advanced token security in a JavaScript single-page app Ping SDKs

1206 Copyright © 2025 Ping Identity Corporation

Local project setup

Step 1. Installing the project

First, clone the forgerock-sample-web-react-ts repo to your local computer, cd (change directory) into the project folder, check
out the branch for this guide, and install the needed dependencies:

git clone https://github.com/cerebrl/forgerock-sample-web-react-ts
cd forgerock-sample-web-react-ts
git checkout blog/token-vault-tutorial/start
npm install

Step 2. Create an .env file

First, open the .env.example file in the root directory. Copy this file and rename it .env . Add your relevant values to this new
file as it provides all the important configuration settings to your applications.

Here’s a hypothetical example .env file:

Example of a populated .env file

.env

System settings
VITE_AM_URL=https://openam-forgerock-sdks.forgeblocks.com/am/ # Needs to be your {fr_server}
VITE_APP_URL=http://localhost:5173
VITE_API_URL=http://localhost:5174
VITE_PROXY_URL=http://localhost:5175 # This will be our Token Vault Proxy URL

{am_name} settings
VITE_AM_JOURNEY_LOGIN=Login # Not used with Centralized Login
VITE_AM_JOURNEY_REGISTER=Registration # Not used with Centralized Login
VITE_AM_TIMEOUT=50000
VITE_AM_REALM_PATH=alpha
VITE_AM_WEB_OAUTH_CLIENT=CentralLoginOAuthClient
VITE_AM_WEB_OAUTH_SCOPE=openid email profile

{am_name} settings for your API (todos) server
(does not need VITE prefix)
AM_REST_OAUTH_CLIENT=RestOAuthClient
AM_REST_OAUTH_SECRET=6MWE8hs46k68g9s7fHOJd2LEfv # Don't use; this is just an example

lightbulb_2
There’s also a branch that represents the completion of this guide. If you get stuck, you can check out the blog/
token-vault-tutorial/complete branch from GitHub.

Tip

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1207

https://github.com/cerebrl/forgerock-sample-web-react-ts
https://github.com/cerebrl/forgerock-sample-web-react-ts

We are using Vite for our client apps' build system and development server, so by using the VITE_ prefix, Vite automatically
includes these environment variables in our source code. Here are descriptions for some of the values:

VITE_AM_URL : This should be your server and the URL almost always ends with /am/

VITE_APP_URL , VITE_API_URL , and VITE_PROXY_URL : These will be the URLs you use for your locally running apps

VITE_AM_REALM_PATH : The realm of your server. Likely, alpha if using PingOne Advanced Identity Cloud or root if using
a self-managed PingAM server

VITE_REST_OAUTH_CLIENT and VITE_REST_OAUTH_SECRET : This is the OAuth 2.0 client you configure in your server to
support the REST API server

Build and run the project

Now that everything is set up, build and run the to-do app project. Open two terminal windows and use the following commands
in the root directory of the SDK repo:

First terminal window

Start the React app
npm run dev:react

This dev:react command uses Vite restarts on any change to a dependent file. This also applies to the dev:proxy we will build
shortly.

Second terminal window

Start the Rest API
npm run dev:api

This dev:api command runs a basic Node server with no "watchers." This should not be relevant as you won’t have to modify
any of its code. If a change is made within the todo-api-server workspace or an environment variable it relies on, a restart
would be required.

Open the app in browser

In a different browser than the one you are using to administer the server, visit the following URL: http://localhost:5173 . For
example, you could use Edge for the app development and Chrome for the server administration.

A home page should be rendered explaining the purpose of the project. It should look like the example below, but it might be a
dark variant if you have the dark theme/mode set in your OS:

•

•

•

•

info
We use npm workspaces to manage our multiple sample apps but understanding how it works is not relevant to this
tutorial.

Note

Build advanced token security in a JavaScript single-page app Ping SDKs

1208 Copyright © 2025 Ping Identity Corporation

http://localhost:5173
http://localhost:5173

Figure 3. To-do app home page

If you encounter errors, here are a few tips:

Visit http://localhost:5174/healthcheck in the same browser you use for the React app; ensure it responds with
"OK"

Check the terminal that has the dev:react command running for error output

Ensure you are not logged into the server within the same browser as the sample app; log out if you are and use a
different browser

Click the Sign in link in the header or in the Getting started section to sign in to the app with your test user. After successfully
authenticating, you should see the app respond to the existence of the valid tokens.

Open your browser’s developer tools to inspect its localStorage . You should see a single origin with an object containing
tokens:

•

•

•

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1209

http://localhost:5174/healthcheck
http://localhost:5174/healthcheck

Figure 4. To-do app home page when logged in as a user

Install Token Vault module

Install the Token Vault npm module within the root of the app:

npm install @forgerock/token-vault

This npm module is used throughout multiple applications in our project, so installing it at the root rather than at the app or
workspace level is a benefit.

Implement the Token Vault Proxy

Step 1. Scaffold the Proxy

Next, we’ll need to create a third application, the Token Vault Proxy.

Follow this structure when creating the new directory and its files:

Build advanced token security in a JavaScript single-page app Ping SDKs

1210 Copyright © 2025 Ping Identity Corporation

 root
 ├── todo-api-server/
 ├── todo-react-app/
+ └─┬ token-vault-proxy/
+ ├─┬ src/
+ │ └── index.ts
+ ├── index.html
+ ├── package.json
+ └── vite.config.ts

Step 2. Add the npm workspace

To ease some of the dependency management and script running, add this new "workspace" to our root package.json , and
then add a new script to our scripts :

Root package.json file

@@ package.json @@

@@ collapsed @@

 "scripts": {
 "clean": "git clean -fdX -e \"!.env\"",
 "build:api": "npm run build --workspace todo-api-server",
 "build:react": "npm run build --workspace todo-react-app",
+ "build:proxy": "npm run build --workspace token-vault-proxy",
 "dev:api": "npm run dev --workspace todo-api-server",
 "dev:react": "npm run dev --workspace todo-react-app",
+ "dev:proxy": "npm run dev --workspace token-vault-proxy",
 "dev:server": "npm run dev --workspace todo-api-server",
 "lint": "eslint --ext ts,tsx --report-unused-disable-directives --max-warnings 0",
 "serve:api": "npm run serve --workspace todo-api-server",
- "serve:react": "npm run serve --workspace todo-react-app"
+ "serve:react": "npm run serve --workspace todo-react-app",
+ "serve:proxy": "npm run serve --workspace token-vault-proxy"
 },

@@ collapsed @@

 "workspaces": [
 "todo-api-server"
- "todo-react-app"
+ "todo-react-app",
+ "token-vault-proxy",
]

Step 3. Setup the supporting files

Create a new directory at the root named token-vault-proxy , then create a package.json file:

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1211

Token Vault Proxy package.json file

@@ token-vault-proxy/package.json @@

+ {
+ "name": "token-vault-proxy",
+ "private": true,
+ "version": "1.0.0",
+ "description": "The proxy for Token Vault",
+ "main": "index.js",
+ "scripts": {
+ "dev": "vite",
+ "build": "vite build",
+ "serve": "vite preview --port 5175"
+ },
+ "dependencies": {},
+ "devDependencies": {},
+ "license": "MIT"
+ }

Now, create the Vite config file:

Token Vault Proxy Vite configuration file

@@ token-vault-proxy/vite.config.ts @@

+ import { defineConfig, loadEnv } from 'vite'; (1)
+
+ // https://vitejs.dev/config/
+ export default defineConfig(({ mode }) => { (2)
+ const env = loadEnv(mode, `${process.cwd()}/../`); (3)
+ const port = Number(new URL(env.VITE_APP_URL).port); (4)
+
+ return { (5)
+ envDir: '../', // Points to the `.env` created in the root dir
+ root: process.cwd(),
+ server: {
+ port,
+ strictPort: true,
+ },
+ };
+ });

What does the above do? Good question! Let’s review it:

1 We import helper functions from vite
2 Using defineConfig, we pass in a function, as opposed to an object, because we want to calculate values at runtime
3 The parameter mode helps inform Vite how the config is being executed, useful when you need to calculate env variables
4 Then, extract the port out of our app’s configured origin, which should be 5175
5 Finally, use this data to construct the config object and return it

Build advanced token security in a JavaScript single-page app Ping SDKs

1212 Copyright © 2025 Ping Identity Corporation

Now, create the index.html file. This file can be overly simple as all you need is the inclusion of the JavaScript file that will be our
proxy:

Token Vault Proxy index.html file

@@ token-vault-proxy/index.html @@

+ <!DOCTYPE html>
+ <html>
+ <p>Proxy is OK</p>
+ <script type="module" src="src/index.ts"></script>
+ </html>

If you’re not familiar with how Vite works, seeing the .ts extension may look a bit odd in an HTML file but don’t worry. Vite uses
this to find entry files, and it rewrites the actual .js reference for us.

Step 4. Create and configure the Proxy

Let’s create and configure the Token Vault Proxy according to our needs. First, create the src directory and the index.ts file
within it.

Token Vault Proxy index.ts file

@@ src/index.ts @@

+ import { proxy } from '@forgerock/token-vault';
+
+ // Initialize the token vault proxy
+ proxy({
+ app: {
+ origin: new URL(import.meta.env.VITE_APP_URL).origin, (1)
+ },
+ forgerock: { (2)
+ clientId: import.meta.env.VITE_AM_WEB_OAUTH_CLIENT,
+ scope: import.meta.env.VITE_AM_WEB_OAUTH_SCOPE,
+ serverConfig: {
+ baseUrl: import.meta.env.VITE_AM_URL,
+ },
+ realmPath: import.meta.env.VITE_AM_REALM_PATH,
+ },
+ proxy: { (3)
+ urls: [`${import.meta.env.VITE_API_URL}/*`],
+ }
+ });

The configuration above represents the minimum needed to create the Token Vault Proxy:

1 We need to declare the app’s origin, as that’s the only source to which the Proxy will respond.
2 We have the configuration in order for the Proxy to call out to the server effectively for token lifecycle management.
3

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1213

Step 5. Build and verify the Proxy

With everything set up, build the proxy app and verify it’s being served correctly.

npm run dev:proxy

Once the script finishes its initial build and runs the server, you can now check the app and ensure it’s running. Go to http://
localhost:5175 in your browser. You should see "Proxy is OK" printed on the screen, and there should be no errors in the
Console or Network tab of your browser’s dev tools.

Figure 5. Proxy viewed directly in browser

Implement the Token Vault Interceptor

Step 1. Create the Token Vault Interceptor build config

Since the Token Vault Interceptor is a Service Worker, it needs to be bundled separately from your main application code. To do
this, write a new Vite config file within the todo-react-app directory/workspace named vite.interceptor.config.ts .

We do not recommend trying to use the same configuration file for both your app and Interceptor.

Finally, there’s the Proxy’s urls array that acts as an allow-list to ensure only valid URLs are proxied with the appropriate
tokens.

Build advanced token security in a JavaScript single-page app Ping SDKs

1214 Copyright © 2025 Ping Identity Corporation

http://localhost:5175
http://localhost:5175
http://localhost:5175

 root
 ├── ...
 ├─┬ todo-react-app/
 │ ├── ...
 │ ├── vite.config.ts
+ │ └── vite.interceptor.config.ts

Now that you have the new Vite config for the Interceptor, import the defineConfig method and pass it the appropriate
configuration.

Token Vault Interceptor vite.interceptor.config.ts file

@@ todo-react-app/vite.interceptor.config.ts @@

+ import { defineConfig } from 'vite';
+
+ // https://vitejs.dev/config/
+ export default defineConfig({
+ build: {
+ emptyOutDir: false,
+ rollupOptions: {
+ input: 'src/interceptor/index.ts',
+ output: {
+ dir: 'public', // Treating this like a static asset is important
+ entryFileNames: 'interceptor.js',
+ format: 'iife', // Very important for better browser support
+ },
+ },
+ },
+ envDir: '../', // Points to the `.env` created in the root dir
+ });

In the above, we provide the Token Vault Interceptor source file as the input, and then explicitly tell Vite to bundle it as an IIFE
(Immediately Invoked Function Expression) and save the output to this app’s public directory. This means the Token Vault
Interceptor will be available as a static asset at the root of our web server.

It is important to know that bundling it as an IIFE and configuring the output to the public directory is intentional and important.
Bundling as an IIFE removes any module system from the file, which is vital to supporting all major browsers within the Service
Worker context. Outputting it to the public directory like a static asset is also important. It allows the scope of the Service Worker
to also be available at the root.

For more information, refer to Service Worker scopes on MDN.

Step 2. Create the new Token Vault Interceptor file

Let’s create the new Token Vault Interceptor source file that is expected as the entry file to our new Vite config.

info
Rather than passing a function into defineConfig , we are passing a plain config object.
This is because we don’t need any variables at runtime, like env values.

Note

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1215

https://developer.mozilla.org/en-US/docs/Glossary/IIFE
https://developer.mozilla.org/en-US/docs/Glossary/IIFE
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerContainer/register
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerContainer/register

 root
 ├─┬ todo-react-app
 │ ├─┬ src/
+ │ │ ├─┬ interceptor/
+ │ │ │ └── index.ts
 │ │ └── ...
 │ ├── ...
 │ └── vite.interceptor.config.ts

Step 3. Import and initialize the interceptor module

Configure your Token Vault Interceptor with the following variables from your .env file.

Token Vault Interceptor index.ts source file

@@ todo-react-app/src/interceptor/index.ts @@

+ import { interceptor } from "@forgerock/token-vault";
+
+ interceptor({
+ interceptor: {
+ urls: [`${import.meta.env.VITE_API_URL}/*`], (1)
+ },
+ forgerock: { (2)
+ serverConfig: {
+ baseUrl: import.meta.env.VITE_AM_URL,
+ timeout: import.meta.env.VITE_AM_TIMEOUT,
+ },
+ realmPath: import.meta.env.VITE_AM_REALM_PATH,
+ },
+ });

The above only covers the minimal configuration needed, but it’s enough to get a basic Interceptor started.

Step 4. Build the Interceptor

Now that we have the dedicated Vite config and the Token Vault Interceptor entry file created, add a dedicated build command to
the package.json within the todo-react-app workspace.

1

The urls array represents all the URLs you’d like intercepted and proxied through the Token Vault Proxy in order for the
Access Token to be added to the outbound request. This should only be for requesting your "protected resources."
The wildcard (*) can be used if you want a catch-all for endpoints of a certain origin or root path. Full glob patterns are not
supported, so a URL value can only end with * .

2 The configuration here must match the configuration in the main app. This is easily enforced by using the .env file

Build advanced token security in a JavaScript single-page app Ping SDKs

1216 Copyright © 2025 Ping Identity Corporation

React app package.json file

@@ todo-react-app/package.json @@

@@ collapsed @@

 "scripts": {
- "dev": "vite",
+ "dev": "npm run build:interceptor && vite",
- "build": "vite build",
+ "build": "npm run build:interceptor && vite build",
+ "build:interceptor": "vite build -c ./vite.interceptor.config.ts",
 "serve": "vite preview --port 5173"
 },

@@ collapsed @@

It’s worth noting that the Token Vault Interceptor will only be rebuilt at the start of the command and not rebuilt after any change
thereafter as there’s no watch command used here for the Token Vault Interceptor itself. Once this portion of code is correctly
set up, it should rarely change, so this should be fine.

Your main app will still be rebuilt and "hot-reloading" will take place.

Enter npm run build:interceptor -w todo-react-app to run the new command you just wrote above in the todo-react-app
workspace. You can see the resulting interceptor.js built and placed into your public directory.

 root
 ├─┬ todo-react-app
 │ ├─┬ public/
 │ │ ├── ...
+ │ │ ├── interceptor.js

Step 5. Ensure interceptor.js is accessible

Since we haven’t implemented the Token Vault Interceptor yet in the main app, we can’t really test it; however, we can at least
make sure the file is accessible in the browser as we expect. To do this, run the following command:

npm run dev:react

After the command starts the server, using your browser, visit http://localhost:5173/interceptor.js .

You should plainly see the fully built JavaScript file. Ensure it does not have any import statements and looks complete. It should
contain more code than just the original source file you wrote above.

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1217

http://localhost:5173/interceptor.js
http://localhost:5173/interceptor.js

Figure 6. Raw JavaScript of Interceptor

Implement the Token Vault Client

Now that we have all the separate pieces set up, wire it all together with the Token Vault Client plugin.

Step 1. Add HTML element to index.html

When we initiate the Token Vault Proxy, it needs a real DOM element to mount to. The easiest way to ensure we have a proper
element is to add it to the index.html directly.

Build advanced token security in a JavaScript single-page app Ping SDKs

1218 Copyright © 2025 Ping Identity Corporation

React app index.html file

@@ todo-react-app/index.html @@

@@ collapsed @@

 <body>
 <!-- Root div for mounting React app -->
 <div id="root" class="cstm_root"></div>
+
+ <!-- Root div for mounting Token Vault Proxy (iframe) -->
+ <div id="token-vault"></div>

 <!-- Import React app -->
 <script type="module" src="/src/index.tsx"></script>
 </body>
 </html>

Step 2. Import and initialize the client module

First, import the client module and remove the TokenStorage module from the SDK import.

Second, call the client function with the below minimal configuration. This is how we "glue" the three entities together within
your main app. This function returns an object that we use to register and instantiate each entity.

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1219

React app index.tsx source file

@@ todo-react-app/src/index.tsx @@

- import { Config, TokenStorage } from '@forgerock/javascript-sdk';
+ import { Config } from '@forgerock/javascript-sdk';
+ import { client } from '@forgerock/token-vault';
 import ReactDOM from 'react-dom/client';

@@ collapsed @@

+ const register = client({
+ app: {
+ origin: c.TOKEN_VAULT_APP_ORIGIN,
+ },
+ interceptor: {
+ file: '/interceptor.js', // references public/interceptor.js
+ },
+ proxy: {
+ origin: c.TOKEN_VAULT_PROXY_ORIGIN,
+ },
+ });

/**
 * Initialize the React application
 */
 (async function initAndHydrate() {

@@ collapsed @@

Remember, the file reference within the interceptor object needs to point to the built Token Vault Interceptor file, which will
be located in the public directory as a static file but served from the root, not the source file itself.

This function ensures the app, Token Vault Interceptor and Token Vault Proxy are appropriately configured.

Step 2. Register the interceptor, proxy, and token store

Now that we’ve initialized and configured the client, we now register the Token Vault Interceptor, the Token Vault Proxy, and the
token vault store just under the newly added code from above:

Build advanced token security in a JavaScript single-page app Ping SDKs

1220 Copyright © 2025 Ping Identity Corporation

React app index.tsx source file

@@ todo-react-app/src/index.tsx @@

@@ collapsed @@

 proxy: {
 origin: c.TOKEN_VAULT_PROXY_ORIGIN,
 },
 });
+
+ // Register the Token Vault Interceptor
+ await register.interceptor();
+
+ // Register the Token Vault Proxy
+ await register.proxy(
+ // This must be a live DOM element; it cannot be a Virtual DOM element
+ // `token-vault` is the element added in Step 1 above to `todo-react-app/index.html`
+ document.getElementById('token-vault') as HTMLElement
+);
+
+ // Register the Token Vault Store
+ const tokenStore = register.store();

/**
 * Initialize the React application
 */
 (async function initAndHydrate() {

@@ collapsed @@

Registering the Token Vault Interceptor is what requests and registers the Service Worker. Calling register.interceptor
returns the ServiceWorkerRegistration object that can be used to unregister the Service Worker, as well as other functions,
if that’s needed. We won’t be implementing that in this tutorial.

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1221

https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration

Figure 7. Sample app with Token Vault Interceptor active

Registering the Token Vault Proxy constructs the iframe component and mounts it do the DOM element passed into the
method. It’s important to note that this must be a real, available DOM element, not a Virtual DOM element. This results in the
Token Vault Proxy being "registered" as a child frame and, therefore, accessible to your main app.

Calling register.proxy also returns an optional reference to the DOM element of the iframe that can be used to manually
destroy the element and the Token Vault Proxy, if needed.

Build advanced token security in a JavaScript single-page app Ping SDKs

1222 Copyright © 2025 Ping Identity Corporation

Figure 8. Sample app with Token Vault Proxy mounted in DOM

Finally, registering the store provides us with the object that replaces the default token store within the SDK. There are some
additional convenience methods on this store object that we’ll take advantage of later in the tutorial.

You will see a few errors in the console, but don’t worry about those at the moment. The next steps will resolve them.

Step 3. Replace the SDK’s default token store

Within the existing SDK configuration, pass the tokenStore object we created in the previous step to the set method to
override the SDK’s internal token store.

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1223

React app index.tsx source file

@@ todo-react-app/src/index.tsx @@

@@ collapsed @@

 // Configure the SDK
 Config.set({
 clientId: import.meta.env.WEB_OAUTH_CLIENT,
 redirectUri: import.meta.env.REDIRECT_URI,
 scope: import.meta.env.OAUTH_SCOPE,
 serverConfig: {
 baseUrl: import.meta.env.AM_URL,
 timeout: import.meta.env.TIMEOUT,
 },
 realmPath: import.meta.env.REALM_PATH,
+ tokenStore, // this references the Token Vault Store we created above
 });

@@ collapsed @@

This configures the SDK to use the Token Vault Store, which is within the Token Vault Proxy, and that it needs to manage the
tokens internally.

Step 4. Check for existing tokens

Currently in our application, we check for the existence of stored tokens to provide a hint if our user is authorized. Now that the
main app doesn’t have access to the tokens, we have to ask the Token Vault Proxy if it has tokens.

To do this, replace the SDK method of TokenStorage.get with the Token Vault Proxy has method:

React app index.tsx source file

@@ todo-react-app/src/index.tsx @@

@@ collapsed @@

 let isAuthenticated = false;
 try {
- isAuthenticated = !((await TokenStorage.get()) == null);
+ isAuthenticated = !!(await tokenStore?.has())?.hasTokens;
 } catch (err) {
 console.error(`Error: token retrieval for hydration; ${err}`);
 }

@@ collapsed @@

Note that this doesn’t return the tokens as that would violate the security of keeping them in another origin, but the Token Vault
Proxy will inform you of their existence. This is enough to hint to our UI that the user is likely authorized.

Build advanced token security in a JavaScript single-page app Ping SDKs

1224 Copyright © 2025 Ping Identity Corporation

Build and run the apps

At this point, all the necessary entities are set up. We can now run all the needed servers and test out our new application with
Token Vault enabled.

Open three different terminal windows, all from within the root of this project. Enter each command in its own window:

First terminal window

npm run dev:react

Second terminal window

npm run dev:api

Third terminal window

npm run dev:proxy

Allow all the commands to complete the build and start the development servers.

Then, visit http://localhost:5173 in your browser of choice. The to-do application should look and behave no different from
before.

Open the dev tools of your browser, and proceed to sign in to the app. You will be redirected to the login page, and then
redirected back after successfully authenticating. You may notice some additional redirection within the React app itself, this is
normal.

Once you land on the home page, you should see the "logged in experience" with your username in the success alert.

To test whether Token Vault is successfully implemented, go to the Application or Storage tab of your dev tools and inspect the
localStorage section.

You should see two origins: http://localhost:5173 , our main app, and http://localhost:5175 , our Token Vault Proxy.

Your user’s tokens should be stored under the Token Vault Proxy origin on port 5175 , not under the React app’s origin on port
5173 .

If you observe that behavior, then you have successfully implemented Token Vault. Congratulations, your tokens are now more
securely stored!

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1225

http://localhost:5173
http://localhost:5173
http://localhost:5173
http://localhost:5173
http://localhost:5175
http://localhost:5175

Figure 9. To-do app home page with Token Vault and logged in

If you don’t see the tokens in the Token Vault Proxy origin’s localStorage , then follow the troubleshooting section below:

Troubleshooting

Getting failures in the service worker registration

Make sure your dedicated Vite configuration is correct.

Also, check the actual file output for the interceptor.js file. If the built file has ES Module syntax in it, or it looks incomplete,
then it can cause this issue — Service Workers in some browsers, even the latest versions, don’t support the same ES version or
features as the main browser context.

Tokens are not being saved under any origin

Open up your browser’s dev tools and ensure the following:

Your Token Vault Interceptor is running under your main app’s origin.

Do you have an /access_token request? It comes after the /authorize request and redirect.

1.

2.

Build advanced token security in a JavaScript single-page app Ping SDKs

1226 Copyright © 2025 Ping Identity Corporation

Your Token Vault Interceptor is intercepting the /access_token request. If it is, you should see two outgoing requests:
one for the main app and one for the Token Vault Proxy.

Your Token Vault Proxy is running within the iframe and forwarding the request.

There are no network errors.

There are no console errors.

I’m getting a CORS failure

Make sure you have both origins listed in your CORS configuration.

Additionally, it’s best if you use the Ping SDK template when creating a new CORS config in your server.

If both origins are listed, make sure you have no typos in the allowed methods. The methods like GET and POST are case-
sensitive. Also, check the headers, which are NOT case-sensitive.

Allow Credentials must be enabled.

3.

4.

5.

6.

lightbulb_2
Enabling Preserve Log for both the Console and the Network tabs is very helpful.

Tip

Ping SDKs Build advanced token security in a JavaScript single-page app

Copyright © 2025 Ping Identity Corporation 1227

Troubleshoot the Token Vault

How do I fix CORS errors?

Make sure your CORS configuration in your authorization server allows and accepts origins from both the origin of your main app
and also the origin of the Token Vault Proxy.

These two origins should be unique from one another.

What can cause iframe errors?

This is likely an error coming from the /authorize request to collect OAuth 2.0 or OIDC tokens.

Make sure you are using Ping SDK for JavaScript 4.0 or newer.

To diagnose the issue, copy the full /authorize request URL from the network tab in your dev tools and paste it into your
browser’s URL field to directly visit it.

A 400 error coming from the /authorize endpoint could be caused by a misconfiguration. For example, if a consent page is
rendering ensure you enabled the implied consent property in both your OAuth 2.0 Provider and the OAuth 2.0 client.

Make sure you are allowing the use of third-party cookies. For example, the incognito or private modes in Chromium browsers
disable third-party cookies by default, as do Webkit-based browsers.

Why are the tokens not being stored?

If you are receiving tokens from the /access_token endpoint but they are not getting stored, this is likely caused by the Token
Vault Interceptor not routing the requests to the Token Vault Proxy configured in your main app.

Only the Token Vault Proxy can store tokens when the Token Vault is enabled.

To fix this, ensure your config is identical between your main app’s SDK config found in Config.set() and the config found in
your Token Vault Interceptor file.

We recommend using environment variables, rather than hard-coding the values directly in each of the modules.

Why does the Interceptor (Service Worker) not work or report errors in Firefox
or Safari?

Your bundler is likely not bundling the Token Vault Interceptor into a single file, and language features are present in the bundle
that these browsers do not support in a Service Worker context.

Ensure that your bundler configuration, such as Vite or Webpack, is creating a single file output and that it is down-leveled to
ES2020 .

We recommend a dedicated bundle configuration for the Token Vault Interceptor, separate from your application bundle.

Ping SDKs Troubleshoot the Token Vault

Copyright © 2025 Ping Identity Corporation 1229

What can cause “400 Proxy Error”?

These errors often occur when the Token Vault Proxy itself is encountering an error, and not actually an error response from your
authorization server.

Inspect the network tab in your dev tools to find the specific error message in the response, which will help you debug the
underlying issue.

Troubleshoot the Token Vault Ping SDKs

1230 Copyright © 2025 Ping Identity Corporation

	Table of Contents
	What is available?
	Ping SDKs
	Ping (ForgeRock) Login Widget
	ForgeRock Authenticator
	Token Vault (Plugin)
	Ping (ForgeRock) Authenticator module
	New name for the ForgeRock SDKs
	What is the new name of the SDKs?
	Why is the name being changed?
	What other changes should I be aware of?

	Design a protected system
	The modern system
	What is a protected system?
	Single, "full-stack", server-side application

	What’s a common system design?
	Client-side apps
	Resource API services
	Access management application

	Integrate into a protected system
	Build a branded UX with PingOne Advanced Identity Cloud and the SDKs

	What’s your intended system design?
	How many client-side apps need protecting?
	How are you hosting all these applications?
	Any third-party companies involved?

	Let’s talk about access models (session v. OAuth)
	Session-based (cookies) access
	OAuth 2.0-based access

	What’s the best design to protect my system?

	Security
	Tokens and keys
	Authentication
	Data
	OAuth 2.0
	Token and key security
	Token storage
	Session tokens and cookies
	ID, access, and refresh tokens

	Token lifecycle
	Encryption key storage
	Hardware-backed key storage and encryption

	Authentication security
	Data security
	OAuth 2.0 security with PKCE
	How PKCE works

	What’s New
	Latest updates
	Full changelogs
	Ping SDK for Android
	Ping SDK for iOS
	Ping SDK for JavaScript
	DaVinci client
	Ping (ForgeRock) Login Widget
	Token Vault
	Legacy releases

	Release timeline
	What’s New
	Latest updates
	Full changelogs
	Ping SDK for Android
	Ping SDK for iOS
	Ping SDK for JavaScript
	DaVinci client
	Ping (ForgeRock) Login Widget
	Token Vault
	Legacy releases

	Release timeline
	Ping SDK for Android changelog
	Ping SDK for Android 4.8.1
	Ping SDK for Android 4.8.0
	Ping SDK for Android 4.7.0
	Ping SDK for Android 4.6.0
	Ping SDK for Android 4.5.0
	Ping SDK for Android 4.4.0
	Ping SDK for Android 4.3.1
	Ping SDK for Android 4.3.0
	Ping SDK for Android 4.2.0
	Ping SDK for Android 4.1.0
	Ping SDK for Android 4.0.0
	Ping SDK for Android 3.4.0
	Ping SDK for Android 3.3.3
	Ping SDK for Android 3.3.2
	Ping SDK for Android 3.3.0
	Ping SDK for Android 3.2.0
	Ping SDK for Android 3.1.2
	Ping SDK for Android 3.1.1

	Ping SDK for iOS changelog
	Ping SDK for iOS 4.8.0
	Ping SDK for iOS 4.7.0
	Ping SDK for iOS 4.6.0
	Ping SDK for iOS 4.5.0
	Ping SDK for iOS 4.4.1
	Ping SDK for iOS 4.4.0
	Ping SDK for iOS 4.3.0
	Ping SDK for iOS 4.1.0
	Ping SDK for iOS 4.0.0
	Ping SDK for iOS 3.4.1
	Ping SDK for iOS 3.4.0
	Ping SDK for iOS 3.3.2
	Ping SDK for iOS 3.3.1
	Ping SDK for iOS 3.3.0
	Ping SDK for iOS 3.2.0
	Ping SDK for iOS 3.1.1
	Ping SDK for iOS 3.1.0

	Ping SDK for JavaScript changelog
	Ping SDK for JavaScript 4.8.0
	Ping SDK for JavaScript 4.7.0
	Ping SDK for JavaScript 4.6.0
	Ping SDK for JavaScript 4.4.2
	Ping SDK for JavaScript 4.4.0
	Ping SDK for JavaScript 4.3.0
	Ping SDK for JavaScript 4.2.0
	Ping SDK for JavaScript 4.1.2
	Ping SDK for JavaScript 4.1.1
	Ping SDK for JavaScript 4.0.0
	Ping SDK for JavaScript 3.4.0
	Ping SDK for JavaScript 3.3.0

	DaVinci client changelog
	DaVinci client for Android 1.1.0
	DaVinci client for iOS 1.1.0
	DaVinci client for JavaScript 1.1.0
	DaVinci client 1.0.0

	Login Widget changelog
	Ping (ForgeRock) Login Widget 1.3.0
	Ping (ForgeRock) Login Widget 1.2.1
	Ping (ForgeRock) Login Widget 1.1
	Ping (ForgeRock) Login Widget 1.0

	Token Vault changelog
	Token Vault 4.2.0
	Token Vault 4.1.2

	Limitations
	All platforms
	Ping SDK for Android
	Ping SDK for iOS
	Ping SDK for JavaScript
	Ping (ForgeRock) Authenticator module

	Incompatible changes
	ForgeRock SDK for iOS 4.0.0
	ForgeRock SDK for Android 4.0.0
	ForgeRock SDK for JavaScript 4.0.0

	Deprecated
	Deprecated since Ping SDK for JavaScript 4.0

	Interface stability
	Product release levels
	Product stability labels

	Getting support
	Troubleshooting
	Additional Articles

	Compatibility
	Supported server versions
	Supported operating systems and browsers
	JavaScript Compatibility with WebViews

	Supported authentication journey callbacks
	Supported PingOne fields and collectors

	Introducing the Ping SDKs for Authentication Journeys
	Real time response to authentication tree changes
	Token management
	Single sign-on (SSO)
	Push authentication and OTP
	Pluggability and extensibility
	Device security profile
	Jailbreak detection
	Device ID and meta data
	Location information
	Web biometrics
	Mobile biometric authentication
	Social authentication

	Compatibility
	Supported server versions
	Supported operating systems and browsers
	JavaScript Compatibility with WebViews

	Supported authentication journey callbacks

	Configure the Ping SDKs for Auth Journeys
	Configure Ping SDK properties
	Configure logging in the Ping SDKs
	Customize REST requests
	Customize how the Ping SDKs store data
	Verify servers with SSL/certificate pinning
	Configure Ping SDK properties
	Ping SDK for Android
	Ping SDK for iOS
	Ping SDK for JavaScript
	Configure Ping SDK for Android properties
	Properties
	Server
	Journeys
	OAuth 2.0
	Storage
	SSL pinning
	Endpoints

	Examples
	Using the .well-known endpoint

	Configure Ping SDK for iOS properties
	Properties
	Server
	Journeys
	OAuth 2.0
	SSL pinning
	Endpoints

	Example
	Using the .well-known endpoint

	Configure Ping SDK for JavaScript properties
	Properties
	Server
	OAuth 2.0
	Storage
	Logging
	General
	Endpoints

	Examples
	Using the .well-known endpoint

	Configure logging
	Ping SDK for Android
	Ping SDK for iOS
	Ping SDK for JavaScript
	Android
	Configure default Android logging
	Customize Android logging

	iOS
	Configure the default iOS logging
	Customize iOS logging

	JavaScript
	Configure the default JavaScript logging
	Customize JavaScript logging

	Customize REST calls
	Request interceptors
	The Request object
	The Action object

	Examples
	Ping SDK for Android
	Ping SDK for iOS
	Ping SDK for JavaScript

	More information

	Customize storage
	Customize storage on Android
	Implement storage override classes
	Configure storage overrides
	Implement storage fallbacks
	Preventing the Keystore System from using StrongBox

	Customize storage on JavaScript
	Implement storage functions
	Enable the custom storage

	Enable SSL pinning
	Get a hash of the public key from your server
	Ping SDK for Android
	Ping SDK for iOS

	Configure SSL pinning in Android
	Override default implementation of SSL pinning for Android

	Configure SSL pinning in iOS
	Override default implementation of SSL pinning for iOS

	Ping SDK for Auth Journey tutorials
	Ping SDK tutorials
	Ping SDK for Android
	Ping SDK for iOS
	Ping SDK for JavaScript

	Integrating Ping SDKs into other platforms
	Angular
	Flutter (iOS)
	ReactJS
	React Native (iOS)

	Ping SDK for Auth Journey tutorials
	Ping SDK for Android
	Ping SDK for iOS
	Ping SDK for JavaScript
	Ping SDK for Android Auth Journey tutorials
	Ping SDK for Android Tutorials
	Quick start
	Deep dive

	Authentication journey quick start for Android
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app

	Authentication journey deep-dive tutorial for Android
	Before you begin
	Step 1. Configure the development environment
	Step 2. Configure connection properties
	Step 3. Initialize the SDK
	Step 4. Create a status view
	Step 5. Add login and logout calls
	Step 6. Create UI to handle the callbacks
	Step 7. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Configure the development environment
	Prerequisites
	Create a new project
	Configure compile options
	Add build dependencies
	(Optional) Enable optional clear traffic and location support
	(Optional) Enable location permissions
	Example completed manifest file
	Check point

	Step 2. Configure connection properties
	Add required connection settings to your app
	Check point

	Step 3. Initialize the SDK
	Enable debug logging and initialize the SDK
	Check point

	Step 4. Create a status view
	Create a layout for the status view
	Add a function to update the status view
	Check point

	Step 5. Add login and logout calls
	Implement NodeListener and methods
	Check point

	Step 6. Create UI to handle the callbacks
	Create a UI fragment
	Configure the fragment code
	Open the fragment when receiving callbacks
	Check point

	Step 7. Test the app
	Log in as a demo user
	Next Steps

	Authentication journey tutorial for iOS
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration
	PingOne Advanced Identity Cloud
	PingAM

	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app

	Authentication journey tutorial for JavaScript
	Before you begin
	Step 1. Download the samples
	Step 2. Install the dependencies
	Step 3. Configure connection properties
	Step 4. Test the app
	Before you begin
	Prerequisites
	Server configuration
	PingOne Advanced Identity Cloud
	PingAM

	Step 1. Download the samples
	Step 2. Install the dependencies
	Step 3. Configure connection properties
	Step 4. Test the app
	Recap
	More information

	Ping SDKs platform integrations for auth journeys
	Angular
	Flutter (iOS)
	ReactJS
	React Native (iOS)
	Authentication journey tutorial for Angular
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Build and run the projects
	Step 4. Implement the Ping SDK
	Before you begin
	Prerequisites
	Server configuration
	PingOne Advanced Identity Cloud
	PingAM

	Step 1. Download the samples
	Step 2. Configure connection properties
	Configure the Angular client app
	Configure the API server app

	Step 3. Build and run the projects
	Troubleshooting

	Step 4. Implement the Ping SDK
	Set configuration from the ENV file
	Build the login page
	Continue to the OAuth 2.0 flow
	Request user information
	React to the presence of the access token
	Validate the access token
	Request protected resources with an access token
	Handle logout request
	Test the app

	Authentication journey tutorial for an iOS Flutter app
	Before you begin
	Step 1. Download the samples
	Step 2. Configure the projects
	Step 3. Configure connection properties
	Step 4. Build and run the project
	Step 5. Implement the iOS bridge code
	Step 6. Implement the UI in Flutter
	Before you begin
	Compatibility
	Prerequisites
	Server configuration
	PingOne Advanced Identity Cloud
	PingAM

	Step 1. Download the samples
	Step 2. Configure the projects
	Install the Ping SDK for iOS
	Install Flutter
	Install API server dependencies

	Step 3. Configure connection properties
	Step 4. Build and run the project
	Troubleshooting
	Using Xcode and iOS Simulator

	Step 5. Implement the iOS bridge code
	Configure your .plist file
	Write the start() method
	Write the login() method
	Write the next() method
	Write the logout() bridge method

	Step 6. Implement the UI in Flutter
	Building the login view
	Submitting the login form
	Handling the user provided values

	Redirecting to the TodoList screen and requesting user info
	Adding logout functionality
	Testing the app

	Authentication journey tutorial for ReactJS
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Build and run the projects
	Step 4. Implement authentication using the Ping SDK
	Step 5. Start an OAuth 2.0 flow
	Step 6. Manage access tokens
	Step 7. Handle logout requests
	Step 8. Test the app
	Before you begin
	Prerequisites
	Server configuration
	PingOne Advanced Identity Cloud
	PingAM

	Step 1. Download the samples
	Step 2. Configure connection properties
	Configure the React client app
	Configure the API server app

	Step 3. Build and run the projects
	Troubleshooting

	Step 4. Implement authentication using the Ping SDK
	Building the login page
	Handling the login form submission

	Step 5. Start an OAuth 2.0 flow
	Request user information

	Step 6. Manage access tokens
	Validating the access token
	Request protected resources with an access token

	Step 7. Handle logout requests
	Step 8. Test the app

	Authentication journey tutorial for an iOS React Native app
	Before you begin
	Step 1. Download the samples
	Step 2. Configure the projects
	Step 3. Configure connection properties
	Step 4. Build and run the project
	Step 5. Implement the iOS bridge code
	Step 6. Implement the UI in React Native
	Before you begin
	Compatibility
	Prerequisites
	Server configuration
	PingOne Advanced Identity Cloud
	PingAM

	Step 1. Download the samples
	Step 2. Configure the projects
	Step 3. Configure connection properties
	Step 4. Build and run the project
	Troubleshooting
	Xcode, iOS Simulator and Safari dev tools
	Tips if the home screen doesn’t render

	Step 5. Implement the iOS bridge code
	Configure your .plist file
	Write the start() method
	Write the login() method
	Write the next() method
	Write the logout() bridge method

	Step 6. Implement the UI in React Native
	Build the login view
	Handle the login form submission
	Handle the user provided values

	Request user info and redirecting to home screen
	Add logout functionality to our bridge and React Native code
	Testing the app

	Implement your use cases with the Ping SDKs
	Integrate with PingOne Protect for risk evaluations
	Steps
	Step 1. Set up the servers
	Create a worker application in PingOne
	Configure the PingOne Worker service in your server
	Prerequisites
	Register the client secret in the server
	Configure the PingOne worker service
	Map the Client Secret Label Identifier to a secret
	Map secrets in Advanced Identity Cloud
	Map secrets in self-managed AM

	Configure a journey to perform PingOne Protect risk evaluations

	Step 2. Install dependencies
	Ping SDK for Android
	Ping SDK for iOS
	Ping SDK for JavaScript
	Add Android dependencies
	Add iOS dependencies
	Add dependencies using CocoaPods
	Add dependencies using Swift Package Manager

	Add JavaScript dependencies

	Step 3. Develop the client app
	Initialize data collection
	Initialize manually
	Initialize based on a callback

	Pause and resume behavioral data capture
	Return collected data for a risk evaluation

	Set up user profile self service
	Compatibility
	Before you begin
	Create a user profile management journey
	Server configuration
	PingOne Advanced Identity Cloud
	PingAM

	Try it out
	Step 1. Download the sample apps
	Step 2. Configure sample apps
	Step 3. Run the sample app

	Set up registered device self service
	Getting lists of devices
	Examples

	Renaming a device
	Examples

	Deleting a device
	Examples

	Limitations

	What are mobile biometrics?
	Differences between device binding and WebAuthn
	Prerequisites
	Prepare the server
	Accessing WebAuthn authenticator information
	Catching client errors

	Biometrics using the Ping SDK for Android
	Associate your app with your server
	Get SHA-256 fingerprint of your signing certificates
	Host the digital asset links JSON file
	Summary

	Configure biometric authentication journeys
	Configure origin domains
	Summary

	Configure the Ping SDK for Android for WebAuthn
	Register a WebAuthn device
	Passkey support
	Override passkey support

	Authenticate by using a WebAuthn device
	WebAuthnKeySelector

	Handle WebAuthn errors
	Convert exceptions for handling by the PingAM server

	Unregister a WebAuthn device
	More information

	Biometrics using the Ping SDK for iOS
	Prepare an apple-app-site-association file
	Configure biometric authentication journeys
	Configure origin domains

	Register a WebAuthn device
	Enable Passkey support
	Detect WebAuthn keys on passkey-enabled devices

	Request consent
	Request consent when credentials already exist for the device
	Request consent to create new credentials

	Authenticate by using a WebAuthn device
	Select credentials

	Error handling
	Error handling with PingAM node outcome

	Unregister a WebAuthn device
	More information

	Web biometrics
	What are web biometrics?
	Differences between device binding and WebAuthn
	Before using web biometrics
	Prepare for web biometrics
	Handle web biometrics
	Using the device name

	Set up passwordless authentication with passkeys
	What is passwordless?
	Biometrics and WebAuthn
	Differences between WebAuthn keys and Passkeys
	Differences between WebAuthn and Device Binding
	How to implement Passkeys using Ping SDKs
	Download the sample app
	Create WebAuthn registration and authentication journeys
	Download
	Create the registration journey manually
	Create the authentication journey manually
	Configure the WebAuthn nodes in the journeys

	Test the journeys in a browser

	Using Passkeys with the Ping SDK for iOS
	Add support for the callbacks
	Call the journeys
	Configure the project
	Test the app

	Summary

	Bind and verify user devices
	Differences between device binding and WebAuthn
	Relevant authentication nodes and callbacks
	Add device binding dependencies
	Add Android dependencies
	Add iOS dependencies

	Handle device binding callbacks
	Handle device signing verifier callbacks
	Add custom claims when signing

	Unbind devices by deleting keys
	Step 1. Retrieve a list of keys
	Step 2. Delete the key from both the server and the device

	Implement custom UI
	Customize authentication prompts
	Customize authentication UI
	Customize key selection UI
	Custom authentication prompts
	Apple iOS restrictions on custom prompts

	Custom authentication UI
	Custom key selection UI

	Error handling

	Device profile client configuration
	Prepare the server
	Configure a journey to perform device profiling
	Customize device profile matching
	Download and modify a sample device match script
	Requirements
	Customize the script
	Configure the matching
	Build the script

	Uniquely identifying devices
	Device identifier generation
	When can identifiers change?

	Set up device profiling in Android apps
	Handle a device profile callback
	Use the default device profile callback
	Customize the device profile callback

	Manually collect device profile information
	Default collectors
	Sample device profile
	Create a custom collector
	Device profile attributes

	Obtain user permission for the device location
	Implement default jailbreak/rooted device detection
	Customize jailbreak/rooted detection
	Implement custom detectors

	More information

	Set up device profiling in iOS apps
	Handle a device profile callback
	Use the default device profile callback
	Customize the device profile callback

	Manually collect device profile information
	Default collectors
	Sample device profile
	Modify the default collectors
	Create a custom collector
	Device profile attributes

	Obtain user permission for the device location
	Implement default jailbreak/rooted device detection
	Customize jailbreak/rooted detection
	Implement custom detectors

	Known limitations
	More information

	Set up device profiling in JavaScript apps
	Handle a device profile callback
	Manually collect device profile information
	Default collectors
	Sample device profile
	Create a custom collector
	Device profile attributes

	Obtain user permission for the device location
	Known limitations
	More information

	Prevent device data from appearing in audit logs
	More information

	Set up social login
	What is social login?
	Limitations
	Support matrices
	Platform matrix
	Callback matrix
	Supported providers matrix

	Instructions
	Configure social login identity providers
	Apple
	Facebook
	Google
	Create an Apple client
	Sign up for an Apple developer account
	Set up application redirection
	The redirect URL

	Set up Apple sign in
	Create an app ID
	Create a service ID
	Configure the Apple sign in service

	Create a key
	Generate a client secret
	Configure the client ID

	Create a Facebook client
	Generate a key hash
	Configure an Android app
	Configure an iOS app

	Create a Google client
	Native Android social authentication

	Set up PingOne Advanced Identity Cloud for social login
	Enable IdPs
	Configure Google and Facebook
	Configure Apple

	Create your authentication journey
	Create users for a specific realm
	A simple social authentication journey
	Social authentication and local username-password journey

	Set up social login in Android apps
	SDK configuration
	Google
	Facebook
	Apple

	Set up social login in iOS apps
	Setup the social providers
	Configure Facebook
	Configure Google
	Configure Apple

	Handle social login with the Ping SDK for iOS

	Set up social login in JavaScript apps

	Suspend and resume authentication with magic links
	Prepare for suspended authentication
	Handle the suspended authentication callback
	Capture the resume URI
	Resume a suspended authentication
	Resume authentication in an Android app
	Resume authentication in an iOS app
	Resume authentication in a JavaScript app

	More information

	Set up transactional authorization
	How does transactional authorization work?
	Handle transactions in an Android app
	Handle transactions in an iOS app
	Handle transactions in a JavaScript app
	More information

	Set up QR code handling
	Integrate with Google reCAPTCHA Enterprise
	Understand how the SDKs work with Google reCAPTCHA Enterprise
	Set up a journey for reCAPTCHA Enterprise
	Prepare your app for reCAPTCHA Enterprise
	Handling the callback with the SDK
	Customizing the assessment payload
	Returning custom error codes

	Ping SDKs API reference
	Ping SDK for Android
	Ping SDK for iOS
	Ping SDK for JavaScript
	More resources

	SDK troubleshooting
	Ping SDK for JavaScript
	Knowledge base
	Getting support
	Troubleshooting your JavaScript app
	How to fix cross-domain, authenticated-request failures?
	Use a shared parent domain
	macOS and iOS Safari workaround
	Google Chrome and Incognito Mode workaround

	How do I enable "platform authenticators" in Safari (iOS and macOS)?
	Solution

	How do I fix "a mutation operation was attempted on a database that did not allow mutations"?
	Solution

	Knowledge base
	Additional Articles

	Getting support

	Introducing the DaVinci client for DaVinci flows
	UI Development
	Dynamically Updating of DaVinci Flows
	Flow collectors
	Token Management

	Compatibility
	Supported operating systems and browsers
	JavaScript Compatibility with WebViews

	Supported PingOne fields and collectors
	Default DaVinci client headers

	Getting started with the DaVinci client
	Install the DaVinci client
	Configure DaVinci client properties
	Localize DaVinci client UI
	Installing the DaVinci client
	Android
	iOS
	JavaScript
	Installing the DaVinci client for Android
	Installing the DaVinci client for iOS
	Installing the DaVinci client for JavaScript
	Next Steps

	Configure DaVinci client properties
	Android
	iOS
	JavaScript
	Configure DaVinci client for Android properties
	Example

	Configure DaVinci client for iOS properties
	Example

	Configure DaVinci client for JavaScript properties
	Example

	Localizing the user interface
	Before you begin
	Configuring a DaVinci client to send the language header
	Overriding the automatically-added languages

	Ping SDK for PingOne DaVinci tutorials
	Android
	iOS
	JavaScript
	DaVinci Client for Android tutorials
	DaVinci Client for Android Tutorials
	Quick start
	Deep dive

	DaVinci client quick start for Android
	Before you begin
	Step 1. Download the samples
	Step 2. Configure the sample app
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Configure the sample app
	Step 3. Test the app
	Troubleshooting
	What can cause validation errors in the request?

	DaVinci client deep dive for Android
	Installing and importing the DaVinci client
	Configuring the DaVinci client
	Stepping through DaVinci flows
	Starting a DaVinci flow
	Determining DaVinci flow node type
	Handling DaVinci flow collectors in continue nodes
	Continuing a DaVinci flow
	Handling DaVinci flow error nodes
	Handling DaVinci flow failure nodes
	Handling DaVinci flow success nodes

	Leverage Jetpack Compose

	DaVinci Client for iOS tutorials
	DaVinci Client for iOS Tutorials
	Quick start
	Deep dive

	DaVinci client quick start for iOS
	Before you begin
	Step 1. Download the samples
	Step 2. Configure the sample app
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Configure the sample app
	Step 3. Test the app
	Log in as a demo user

	DaVinci client deep dive for iOS
	Installing and importing the DaVinci client
	Add dependencies using SPM (Swift Package Manager)
	Add dependencies using CocoaPods

	Configuring the DaVinci client
	Stepping through DaVinci flows
	Starting a DaVinci flow
	Determining DaVinci flow node type
	Handling DaVinci flow collectors in continue nodes
	Continuing a DaVinci flow
	Handling DaVinci flow error nodes
	Handling DaVinci flow failure nodes
	Handling DaVinci flow success nodes

	Leverage SwiftUI

	DaVinci Client for JavaScript tutorials
	DaVinci Client for JavaScript Tutorials
	Quick start
	Deep dive

	DaVinci client quick start for JavaScript
	Before you begin
	Step 1. Download the samples
	Step 2. Install the dependencies
	Step 3. Configure connection properties
	Step 4. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Install the dependencies
	Step 3. Configure connection properties
	Step 4. Test the app

	DaVinci client deep dive for JavaScript
	Installing and importing the DaVinci client
	Configuring the DaVinci client
	Stepping through DaVinci flows
	Starting a DaVinci flow
	Adding custom parameters

	Determining DaVinci flow node type
	Handling DaVinci flow collectors in continue nodes
	Example 1. Handling TextCollector with a component
	Example 2. Handling FlowCollector with a component
	Example 3. Handling SubmitCollector with a component

	Continuing a DaVinci flow
	Handling DaVinci flow error nodes
	Handling DaVinci flow failure nodes
	Handling DaVinci flow success nodes

	Implement your use cases with the DaVinci client
	Set up social sign on with external IDPs
	Before you begin
	Configure client apps for social sign on
	Before you begin
	Compatibility
	Connecting external identity providers in PingOne
	Apple
	Facebook
	Google

	Configuring DaVinci Flows for social sign on
	DaVinci Forms
	HTTP Connector
	Option A. Configuring DaVinci Forms for social sign on
	Creating a DaVinci Form
	Adding a form to a DaVinci flow

	Option B: Configuring the HTTP Connector for social sign on
	Adding the HTTP Connector to a DaVinci flow
	Building a custom HTML sign-on page

	Configuring a DaVinci flow to be launched by the Ping SDKs
	Next Steps
	Related links

	Configure client apps for social sign on
	Android
	iOS
	JavaScript
	Configure an Android app for social sign on
	Step 1. Add core dependencies
	[Optional] Step 2. Add native SDK library dependencies
	Implementing the Facebook native sign-in SDK
	Implementing the Sign in with Google native SDK

	Step 3. Handle the redirect scheme
	Step 4. Handling IdpCollector nodes

	Configure an iOS app for social sign on
	Step 1. Add the dependencies
	Add dependencies using CocoaPods
	Add dependencies using Swift Package Manager

	Step 2. Handle the redirect scheme
	Step 3. Handling IdpCollector nodes

	Configure a JavaScript app for social sign on
	Step 1. Add the module
	Step 2. Handle the redirect back from the IdP
	Step 3. Handling IdpCollector nodes

	DaVinci client API reference
	Android
	iOS
	JavaScript

	Introducing the Ping SDKs for OIDC login
	Use cases
	Security considerations
	Next steps

	Configure the Ping SDKs for OIDC login
	Configure OIDC login
	Configure ACR parameters
	Configure OIDC login
	Android
	iOS
	JavaScript
	Configure Android apps for OIDC login
	Configure iOS apps for OIDC login
	Configure JavaScript apps for OIDC login

	Specifying auth journeys/flows using ACR values
	Adding ACR parameters

	Ping SDK OIDC login tutorials
	Android
	iOS
	JavaScript
	Android OIDC login tutorials
	PingOne
	PingOne Advanced Identity Cloud
	PingAM
	PingFederate
	OIDC login to PingOne tutorial for Android
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Log in as a demo user

	OIDC login to PingOne Advanced Identity Cloud tutorial for Android
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Log in as a demo user

	OIDC login to PingAM tutorial for Android
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Log in as a demo user

	OIDC login to PingFederate tutorial for Android
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Log in as a demo user

	Apple iOS OIDC login tutorials
	PingOne
	PingOne Advanced Identity Cloud
	PingAM
	PingFederate
	Authentication journey tutorial for iOS
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app

	OIDC login to PingOne Advanced Identity Cloud tutorial for Android
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app

	OIDC login to PingAM tutorial for Android
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app

	Authentication journey tutorial for iOS
	Before you begin
	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app
	Before you begin
	Compatibility
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Configure connection properties
	Step 3. Test the app

	JavaScript OIDC login tutorials
	PingOne
	PingOne Advanced Identity Cloud
	PingAM
	PingFederate
	OIDC login to PingOne tutorial for JavaScript
	Before you begin
	Step 1. Download the samples
	Step 2. Install the Ping SDK
	Step 3. Configure connection properties
	Step 4. Test the app
	Before you begin
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Install the Ping SDK
	More information

	Step 3. Configure connection properties
	Step 4. Test the app
	Run the sample
	Recap
	More information

	OIDC login to PingOne Advanced Identity Cloud tutorial for Android
	Before you begin
	Step 1. Download the samples
	Step 2. Install the Ping SDK
	Step 3. Configure connection properties
	Step 4. Test the app
	Before you begin
	Server configuration

	Step 1. Download the samples
	Step 2. Install the Ping SDK
	More information

	Step 3. Configure connection properties
	Step 4. Test the app
	Run the sample
	Recap
	More information

	OIDC login to PingAM tutorial for Android
	Before you begin
	Step 1. Download the samples
	Step 2. Install the Ping SDK
	Step 3. Configure connection properties
	Step 4. Test the app
	Before you begin
	Server configuration

	Step 1. Download the samples
	Step 2. Install the Ping SDK
	More information

	Step 3. Configure connection properties
	Step 4. Test the app
	Run the sample
	Recap
	More information

	OIDC login to PingFederate tutorial for JavaScript
	Before you begin
	Step 1. Download the samples
	Step 2. Install the Ping SDK
	Step 3. Configure connection properties
	Step 4. Test the app
	Before you begin
	Prerequisites
	Server configuration

	Step 1. Download the samples
	Step 2. Install the Ping SDK
	More information

	Step 3. Configure connection properties
	Step 4. Test the app
	Run the sample
	Recap
	More information

	Implement your use cases with the Ping SDKs
	Creating a custom UI app to share across OIDC apps
	Before you begin
	Part 1. Configuring your PingAM server or PingOne Advanced Identity Cloud tenant
	Part 2. Running the JavaScript custom UI sample app
	Part 3. Running a client sample app
	Before you begin
	Step 1. Downloading the samples
	Step 2. Installing the dependencies
	Step 3. Hosting the sample apps
	Obtaining your local IP address
	Creating a DNS alias for the JavaScript client application

	Part 1. Configuring your PingAM server or PingOne Advanced Identity Cloud tenant
	Step 1. Configure an OAuth 2.0 client
	Step 2. Configure CORS

	Part 2. Running the JavaScript custom UI sample app
	Part 3. Running a client sample app
	Running the JavaScript sample OIDC client app
	Try it out

	Running the Android sample OIDC client app
	Try it out

	Running the iOS sample OIDC client app
	Try it out

	Ping (ForgeRock) Login Widget
	Topics
	Tutorial
	Themes
	Use cases
	Integrations
	API

	Functionality
	Requirements

	Tutorial
	Prerequisites
	Server configuration
	PingOne Advanced Identity Cloud
	PingAM

	Steps
	Step 1. Install the widget
	Install the Ping (ForgeRock) Login Widget with npm
	Build a customized Ping (ForgeRock) Login Widget
	Next

	Step 2. Configure the CSS
	Examples
	Controlling the CSS cascade
	Next

	Step 3. Import the widget
	Next

	Step 4. Configure the SDK
	SDK configuration properties
	Server
	OAuth 2.0
	Storage
	Logging
	General
	Endpoints
	Next

	Step 5. Instantiate the widget
	Choose where to mount the Ping (ForgeRock) Login Widget
	Instantiate the modal form factor
	Instantiate the inline form factor
	Next

	Step 6. Start a journey
	Configure start() parameters
	Configure journey() parameters
	Listen for journey completion
	Next

	Step 7. Subscribe to events
	Assign an observable
	Subscribe to observable events
	Unsubscribe from an observable
	Get current local values
	Get updated values
	Use promises rather than observables

	Theme the widget
	Switch between light and dark themes
	Customize the theme
	Recommendations
	Supported customization

	Implement your use cases with the Ping (ForgeRock) Login Widget
	Log in with social authentication
	Log in with OATH one-time passwords
	Implement a CAPTCHA
	Supported CAPTCHA variants
	Configure your app
	Test a CAPTCHA
	Troubleshooting

	Suspend journeys with "magic links"
	Configure the authentication server
	Handle suspend IDs in your app

	Integrating the Ping (ForgeRock) Login Widget
	Integrate with PingOne Protect for risk evaluations
	Steps
	Step 1. Set up the servers
	Create a worker application in PingOne
	Configure the PingOne Worker service in your server
	Prerequisites
	Register the client secret in the server
	Configure the PingOne worker service
	Map the Client Secret Label Identifier to a secret
	Map secrets in Advanced Identity Cloud
	Map secrets in self-managed AM

	Configure a journey to perform PingOne Protect risk evaluations

	Step 2. Configure the Ping (ForgeRock) Login Widget for PingOne Protect
	Initialize data collection
	Return collected data for a risk evaluation
	Pause and resume behavioral data capture

	Integrate the Ping (ForgeRock) Login Widget into a React app
	Requirements
	Configure your server
	Create a Vite app
	Install the Ping (ForgeRock) Login Widget
	Prepare the HTML
	Prepare the CSS
	Import and configure the Ping (ForgeRock) Login Widget
	Instantiate and mount the Ping (ForgeRock) Login Widget
	Controlling the component
	Calling the authorization server
	Authenticating a user
	Logging a user out

	API reference
	Widget
	Configuration
	Content configuration options
	Links configuration options
	Style configuration options
	Add a header section

	Journeys configuration options

	Component
	Schema for component events

	Journey
	Schema for journey events

	User
	Schema for user.info events
	Schema for user.tokens events

	Request

	ForgeRock Authenticator
	Download
	Android
	iOS

	Develop

	Implement your use cases with the ForgeRock Authenticator
	Develop your own use case solutions
	Implement MFA using push notifications
	How push authentication works
	Step 1. Enable the ForgeRock Authenticator Push service
	Step 2: Create Push service credentials in Backstage
	Step 3: Configure the Push Notification service in your server
	Step 4: Create a push registration and authentication journey
	Step 5: Authenticate using a push notification
	Next steps

	Implement MFA using OATH one-time passwords
	Overview
	Step 1. Create an OATH registration and authentication journey
	Step 2. Authenticate using a one-time password
	Next steps

	Secure the Authenticator app using policies
	Available policies
	Enable Authenticator app policies
	Next steps

	Troubleshoot the ForgeRock Authenticator
	Recover after replacing a lost device
	Recover after a device becomes out of sync
	Reset registered devices over REST
	Reset OATH devices
	Reset push devices

	Ping (ForgeRock) Authenticator module
	Topics
	Getting started
	Use cases
	API Reference

	Getting started with the Ping (ForgeRock) Authenticator module
	Optional tasks
	Set up your Ping (ForgeRock) Authenticator module project
	Android
	Set compile options
	Add module dependencies
	Request notification permissions
	Declare the permission

	iOS
	Install the Ping (ForgeRock) Authenticator module using CocoaPods
	Install the Ping (ForgeRock) Authenticator module using Swift Package Manager (SPM)

	Initialize the Ping (ForgeRock) Authenticator module
	Android
	Start the module

	iOS
	Start the module

	Customize the storage client
	Android
	iOS

	Implement your use cases with the Ping (ForgeRock) Authenticator module
	Integrate MFA using push notifications
	Tasks
	Step 1. Configure Push notifications for Android
	Prerequisites
	Create a project in Google Firebase
	Add your Android app to the Firebase project
	Create a key for the Firebase service account

	Step 2. Configure Push notifications for iOS
	Prerequisites
	Register a new key for APNs

	Step 3. Configure Push notifications in AWS
	Set up AWS for Android push notifications
	Set up AWS for iOS push notifications
	Create a service account with access to the ARN endpoints
	Create an access token for the service account

	Step 4. Configure an PingOne Advanced Identity Cloud or PingAM server for push notifications
	Add the Authenticator (Push) service
	Connect your server to Amazon SNS
	Create a push registration and authentication journey

	Step 5: Configure the app for push notifications
	Enabling push notification support in an Android app
	Enabling push notification support to an iOS app

	Step 6. Configure the Ping (ForgeRock) Authenticator module for push notifications
	Prerequisites
	Register a device token to receive notifications
	Updating device tokens for existing accounts
	Retrieving the existing device token
	Updating existing accounts with a new device token

	Handle registration of the app for push notifications
	Handle push notifications from the server
	Obtain values from the push notification payload
	Handle different push notification types
	Handle the default push type
	Handle the challenge push type
	Handle the biometric push type

	More information

	Integrate MFA using OATH one-time passwords
	Prerequisites
	Sample apps
	Android
	iOS

	Step 1. Register your app
	Step 2. Generate one-time passwords
	More information

	Integrate authenticator app policies
	Prerequisites
	Step 1. Handle policies on the client
	Step 2. Create custom policies

	API reference
	Android
	iOS

	Token Vault
	Token Vault components
	Token Vault flow

	Getting started
	Configure the authorization server
	Prepare for Token Vault
	Implement Token Vault code
	Access a protected resource via Token Vault
	Configure your Authorization Server
	Configure an OAuth 2.0 client
	Configure CORS

	Prepare for Token Vault
	Install the Token Vault
	Configure your module bundler
	Configure your web servers
	Structure your codebase
	Next steps

	Implement Token Vault code
	Implement main app code
	Implement Token Vault Interceptor code
	Implement Token Vault Proxy code
	Build the code
	Bundling the Interceptor
	Next steps

	Access resources using Token Vault
	Request tokens
	Make requests
	Revoke tokens
	Use convenience methods
	The has method
	The refresh method

	Build advanced token security in a JavaScript single-page app
	First, why advanced token security?
	The Backend for Frontend (BFF) pattern
	Origin Isolation
	What is Token Vault?
	What you will learn
	Using this tutorial
	Requirements
	Knowledge requirements
	Technical requirements

	Authorization server setup
	Step 1. Configure CORS (Cross-Origin Resource Sharing)
	Step 2. Create two OAuth 2.0 clients
	Public OAuth 2.0 client settings
	Confidential OAuth 2.0 client settings

	Step 3. Create a test user

	Local project setup
	Step 1. Installing the project
	Step 2. Create an .env file

	Build and run the project
	Open the app in browser
	Install Token Vault module
	Implement the Token Vault Proxy
	Step 1. Scaffold the Proxy
	Step 2. Add the npm workspace
	Step 3. Setup the supporting files
	Step 4. Create and configure the Proxy
	Step 5. Build and verify the Proxy

	Implement the Token Vault Interceptor
	Step 1. Create the Token Vault Interceptor build config
	Step 2. Create the new Token Vault Interceptor file
	Step 3. Import and initialize the interceptor module
	Step 4. Build the Interceptor
	Step 5. Ensure interceptor.js is accessible

	Implement the Token Vault Client
	Step 1. Add HTML element to index.html
	Step 2. Import and initialize the client module
	Step 2. Register the interceptor, proxy, and token store
	Step 3. Replace the SDK’s default token store
	Step 4. Check for existing tokens

	Build and run the apps
	Troubleshooting
	Getting failures in the service worker registration
	Tokens are not being saved under any origin
	I’m getting a CORS failure

	Troubleshoot the Token Vault
	How do I fix CORS errors?
	What can cause iframe errors?
	Why are the tokens not being stored?
	Why does the Interceptor (Service Worker) not work or report errors in Firefox or Safari?
	What can cause “400 Proxy Error”?

