Ping SDKs

July 2, 202

Ping

|dentity.

Copyright

All product technical documentation is
Ping Identity Corporation

1001 17th Street, Suite 100

Denver, CO 80202

USA.

Refer to https://docs.pingidentity.com for the most current product documentation.
Trademark

Ping Identity, the Ping Identity logo, PingAccess, PingFederate, PingID, PingDirectory, PingDataGovernance, PingIntelligence, and
PingOne are registered trademarks of Ping Identity Corporation ("Ping Identity"). All other trademarks or registered trademarks
are the property of their respective owners.

Disclaimer

The information provided in Ping Identity product documentation is provided "as is" without warranty of any kind. Ping Identity
disclaims all warranties, either express or implied, including the warranties of merchantability and fitness for a particular
purpose. In no event shall Ping Identity or its suppliers be liable for any damages whatsoever including direct, indirect, incidental,
consequential, loss of business profits or special damages, even if Ping Identity or its suppliers have been advised of the
possibility of such damages. Some states do not allow the exclusion or limitation of liability for consequential or incidental
damages so the foregoing limitation may not apply.

Table of Contents

Aboutthe PINng SDKS. e 10
New name for the ForgeRock SDKs 15
Designing a protected system L e e e e 16
SeCUriNg YOUr SYStEIM L ot e e e e e e e e e 28
Tokenand key security 29
Authentication security L L 31
Datasecurity o i e e e 32
OAuth 2.0security o oo e e 32
Release Notes e 33
What's New o o e e e e 50
Ping SDK for Android changelog 66
Ping SDKforiOS changelog e 73
Ping SDK for JavaScript changelog Lo 79
DaVinciclientchangelog. e 83
Login Widget changelog e 85
Token Vaultchangelog. e 86
Limitations e e e e e e e e 87
Incompatible changes. L e e 89
Deprecated e e e e e e e 94
Interface stability e 94
Getting SUPPOIT e e e e e e e 96
Compatibility. o e e e e e e e 97
Introduction e e e e e 114
Compatibility. e e 121
Configuration. e e e e e e e 133
Configure Ping SDK properties. i i i i e e e e e e 136
Android e e e e 137
IO o 144
Javascript . . . e e 150
Configure logging L e e e 155
Customize REST calls e e 162
Customize StOrage. e e e e e e e e e e e e 173
Enable SSL/certificate pinning 182
Tutorials e e e e 186
PINg SDKS e e e e e e e e e e e 189
Ping SDK for Android. e e e 190
Quickstart e e 190
Beforeyoubegin. 192

Step 1. Download thesamples. 198

Step 2. Configure connection properties. 199

Step3.Testtheapp. v i i i i it i 202

Deepdive. e e e 205
Beforeyoubegin. L 207

Step 1. Configure the development environment. 214

Step 2. Configure connection properties. 218

Step 3. InitializetheSDK 220

Step 4. Createastatusview 221

Step 5. Add login and logoutcalls 225

Step 6. Create Ul to handle the callbacks. 227
Step7.Testtheapp 235

Ping SDKforiOS e e e 237
Beforeyoubegin L 238

Step 1. Download thesamples, 244

Step 2. Configure connection properties. 245
Step3.Testtheapp. o o i i 250

Ping SDK for JavaScript. o o e e e 254
Beforeyoubegin 255

Step 1. Download thesamples, 264

Step 2. Install the dependencies, 264

Step 3. Configure connection properties. 265
Step4.Testtheapp. o o i i e 269

Platform integrations L e e e 271
ANGUIAr. . . e e e e e 271
Beforeyoubegin 273

Step 1. Download thesamples, 283

Step 2. Configure connection properties. 285

Step 3.Buildandruntheprojects, 286

Step 4. Implementthe PingSDK. 287

Flutter (I0S) o o e e e e e e e e e e e e 305
Beforeyoubegin 308

Step 1. Download thesamples, 314

Step 2. Configurethe projects. 315

Step 3. Configure connection properties. 315

Step 4.Buildandruntheproject 316

Step 5. Implement the iOS bridgecode 319

Step 6. Implementthe UlinFlutter. 326

ReaCt)S e e e e e e e 338
Beforeyoubegin 341

Step 1. Download thesamples 351

Step 2. Configure connection properties. 353

Step 3.Buildandruntheprojects 354

Step 4. Implement authentication using the PingSDK 356

Step 5. Startan OAuth2.0flow 365

Step 6. Manage accesstokens. e 371

Step 7. Handle logoutrequestso 376
Step8.Testtheapp. o o i i i i e 377

React Native (i0S). o e e e e e e e e e 381
Beforeyoubegin 383

Step 1. Download thesamples, 389

Step 2. Configurethe projects. 390

Step 3. Configure connection properties. 391
Step4.Buildandruntheproject 392

Step 5. Implement the iOS bridgecode 395

Step 6. Implement the Ulin ReactNative 402

USECases o i e e e 418
Implement PingOne Protect for risk evaluations 425
Step1.Setuptheservers. e 427

Step 2. Install dependencies e 437

Step 3. Developtheclientapp 439
Implement user profile self-service e 446
Implement device self-service e e e 464
Implement mobile biometrics e e 473
PrerequIsites e e e e e e e e e e e e e 476
Preparetheserver e e 477
Biometrics using the Ping SDKfor Android 479
Associate your app withyourserver 479

Configure biometric authentication journeys. 484

Configure the Ping SDK for Android for WebAuthn. 488

Register a WebAuthndevice., 489

Authenticate by using a WebAuthn device. 491

Handle WebAuthnerrors, 494

Unregister a WebAuthndevice, 495

Biometrics using the Ping SDKforiOS. 496

Prepare an apple-app-site-associationfile. 496

Configure biometric authentication journeys. 497

Register a WebAuthndevice., 498

Authenticate by using a WebAuthn device. 503

Errorhandling. e 506

Unregister a WebAuthndevice 507

Implement web biometrics. L 508
Prepare for web biometrics. 512

Handle web biometrics 513
Implement passwordless with passkeys e 514
Implement devicebinding e 529
Implement device profiling. e 553
Preparetheserver e e 554

Uniquely identifying devices e 558

Device profilingin Androidapps 561

Device profiling in i0OS apps« o i v e e e 569

Device profiling in JavaScript apps o o o e e 577

Prevent auditing of devicedata. e 582

Implement social login e e e 583
Configure social login identity providers 585

Set up PingOne Advanced Identity Cloud for sociallogin 592

Set up social loginin Androidapps. L 598

Setup social login iniOSapps o o i e e e 602

Set up social login in JavaScriptapps. L L 608

Implement magiclinks e e e 609
Implement transactional authorization. L o L 613
Implement QR Codes e e e e e 619
Implement Google reCAPTCHA Enterprise o o i i i i i e e e e e e e 620
APlreference. e e 627
Troubleshooting e e e 629
Introduction e e e e 635
Compatibility. o e e e e 640
Default DaVinciclientheaders. e 648

Getting Started. L e e e e e e 649
Installing the DaVinciclient. e 651
Configure DaVinci client properties e e 654

DaVinci Client for Android. e 655

DaVinci Client foriOS e 657

DaVinci Client for JavaScript. 659

Localizetheclient Ul. e 660
Tutorials e 666
DaVinci Client for Android tutorials e 669
Quickstart. e e 670

Beforeyoubegin 671

Step 1. Download thesamples, 675

Step 2. Configurethesampleapp. 675

Step3.Testtheapp. o o i i 683

Deepdive L e e e e 689

DaVinci Client foriOStutorials. e 694
Quickstart. e e e 695

Beforeyoubegin 696

Step 1. Download thesamples, 700

Step 2. Configurethesampleapp. 700

Step3.Testtheapp. o o i i e 702

Deepdive L e e e e 709

DaVinci Client for JavaScript tutorials 716

Quick start. L e e e e 717

Beforeyoubegin 718

Step 1. Download thesamples, 722

Step 2. Install the dependencies, 722

Step 3. Configure connection properties., 722

Step4.Testtheapp. o o i i i i i e 723

Deepdive e e e e e 728

Use Cases. i e e e e 736
Setup social Sign on e e e e e 738
Beforeyou begin e e e 740

Configure client apps for social sign-on. 751

Android. 751

0S e 759

JavaScript. . .. e e 763

APl Reference e 766
Introduction e e e 768
Configuration. e e e e e e e e 772
Configure OIDC0gIN o i i e e e e e e e e e e e 774

Android e e e 775

10S L L e e e e e 780

Javascript . .. e e e e e 786

Choose journeys with ACRvalues i i e e e e e e e 787
Tutorials e 790
ANdroid e e e e 792

PINgONne e e 793

Beforeyoubegin 794

Step 1. Download thesamples 798

Step 2. Configure connection properties. 799

Step3.Testtheapp. o i i e 803

PingOne Advanced IdentityCloud 807

Beforeyoubegin 808

Step 1. Download thesamples 812

Step 2. Configure connection properties. 812

Step3.Testtheapp. . . . v v v v i e e e e 814

PINGAM. . . . e e e 817

Beforeyoubegin 818

Step 1. Download thesamples 822

Step 2. Configure connection properties. 822

Step3.Testtheapp. . . . v v v v i i i e e e e e e 824

PingFederate e e e e e e 827

Beforeyoubegin 828

Step 1. Download thesamples 831

Step 2. Configure connection properties. 831

Step3.Testtheapp. o i i i i e 834

1 2 837
PINgONe e e e e e e e e 838
Beforeyoubegin 839

Step 1. Download thesamples, 843

Step 2. Configure connection properties. 844
Step3.Testtheapp. o o i i i e 848

PingOne Advanced IdentityCloud, 854
Beforeyoubegin 855

Step 1. Download thesamples 859

Step 2. Configure connection properties. 859
Step3.Testtheapp. 863

PINGAM . . . L . e e e e e e e 868
Beforeyoubegin 869

Step 1. Download thesamples 872

Step 2. Configure connection properties. 873
Step3.Testtheapp. o o i i 877
PingFederate e e e e 882
Beforeyoubegin 883

Step 1. Download thesamples, 886

Step 2. Configure connection properties. 886
Step3.Testtheapp. o o i i e 890
Javascript . . . L e e e e e e e 895
PINgONe e e e e e 896
Beforeyoubegin 897

Step 1. Download thesamples, 901

Step 2. Installthe Ping SDK 902

Step 3. Configure connection properties. 902
Step4.Testtheapp. o o i i i e 905

PingOne Advanced IdentityCloud 906
Beforeyoubegin 908

Step 1. Download thesamples 912

Step 2. Installthe Ping SDK 913

Step 3. Configure connection properties. 914
Step4.Testtheapp. o o i i i e 915

PINGAM. e e e e e 917
Beforeyoubegin 918

Step 1. Download thesamples 922

Step 2. Installthe PingSDK 923

Step 3. Configure connection properties. 923
Step4.Testtheapp. o o i i i 925
PingFederate e e e 926

Beforeyoubegin 928

Step 1. Download thesamples, 930

Step 2. Installthe Ping SDK 931

Step 3. Configure connection properties. 931

Step4.Testtheapp. o e 933

Usecases. e e 935
Creating a custom Ul app to share across OIDC apps. .« . v v v v v v v v v v v e e e e e e e e e 937
Beforeyou begin e e 941

Part 1. Configuring your PingAM server or PingOne Advanced Identity Cloud tenant. 949

Part 2. Running the JavaScript custom Ul sampleapp. 955

Part 3. Running aclientsampleapp o o 957

Introduction e e e 975
Tutorial . . . e 980
Step 1. Installthewidget e 990

Step 2. Configure the CSS. e e e e 991

Step 3. Importthewidget. e e 993

Step 4. Configurethe SDK. e e e 994

Step 5. Instantiate the widget L 999

Step 6.Startajourney. e e e e e 1003

Step 7.Subscribetoevents. e 1006
Customizethetheme 1009
USECases o i e e e e 1015
Log in with social authentication 1017

Log in with OATH one-time passwords i i ittt e e 1019
Implement a CAPTCHA e e e e e e 1020

Suspend journeys with "magic links" L 1024
Integrations e e e e e e 1026
Integrate with PingOne Protect for risk evaluations 1028

Step 1.Setuptheservers. i e e 1029

Step 2. Configure the Ping (ForgeRock) Login Widget for PingOne Protect 1039

Integrate Login WidgetintoaReactapp o o i i i i i i i 1042
APlreference. e 1056
Introduction e e 1072
USeCases i e e e e e 1074
Implement MFA using push notifications. L o 1078
Implement MFA using OATH one-time passwords, 1098

Secure the Authenticator app using policies. e 1111
Troubleshooting e e 1113
Recover after replacing alostdevice e 1115

Recover after a device becomesoutofsync. o e 1115

Reset registered devicesover REST i i it e 1116

Introduction L e 1118
Getting started. e e e e e 1121
Set up your Ping (ForgeRock) Authenticator module project. 1123

Initialize the Ping (ForgeRock) Authenticatormodule. 1125
Customize the storageclient. e 1126

USE Cases i i e e e e 1130
Integrate MFA using push notifications. e 1133

Step 1. Configure Push notifications for Android. 1135

Step 2. Configure Push notificationsforiOS 1137

Step 3. Configure Push notificationsin AWS 1138

Configure a server for push notifications, 1143

Step 5: Configure the app for push notifications. 1150

Step 6. Configure the Ping (ForgeRock) Authenticator module for push notifications. 1154

Integrate MFA using OATH one-time passwords. 1166
Integrate authenticator app policies L 1169
APlreference. e 1173
Introduction L e e 1175
Getting started. e e e e e e e e e 1180
Configurethe server. e e e 1182

Prepare for Token Vault. e e 1187
Implement Token Vaultcode. e 1190
AccessresourcesusingTokenVault. L L L e 1194
Tutorial e 1196

What is available?

M Pingldentity.

What is available? Ping SDKs

Our mission is to hide the complexity of underlying protocols and simplify your experience of integrating with Ping products.

We offer products that help developers build secure digital experiences, bringing apps to market faster and reducing costs and

risk.

New name for the ForgeRock SDKs

The SDKs are being optimized to support diverse use cases across the entire Ping portfolio.

With a unified, modular architecture the Ping SDKs empower developers to seamlessly integrate any service, feature, or
functionality into their apps, enabling quick and efficient access to the full range of Ping capabilities.

Learn more about the new name for the SDKs.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What is available?

& Ping SDKs

Our software development kits (SDKs) help you build secure digital experiences faster, for Android, iOS, and in JavaScript.

The SDKs enable you to easily integrate authentication, OAuth 2.0, registration, and self-service into your apps.

Ping SDKs for Authentication Journeys

PingOne Advanced Identity Cloud PingAM

Integrate the Ping SDKs with PingOne Advanced Identity Cloud or PingAM for an embedded (in-app) experience.

Learn more »

DaVinci client for DaVinci Flows

Integrate with DaVinci flows by using a web or native app in PingOne for an embedded (in-app) experience.

Learn more »

Ping SDKs for OIDC (centralized) login

PingOne Advanced Identity Cloud PingAM SISl [OpenID Connect 1.0|

Login to your apps using a browser-redirect, leveraging your server’s own Ul, or by creating your own Ul, in a centralized
(single) location.

Can be used with any OIDC-compliant server, including PingOne, PingOne Advanced ldentity Cloud, PingAM, or
PingFederate.

Learn more »

Copyright © 2025 Ping Identity Corporation

What is available? Ping SDKs

o Ping (ForgeRock) Login Widget

PingOne Advanced Identity Cloud PingAM

The Ping (ForgeRock) Login Widget is an all-inclusive Ul component to help you add authentication, user registration, and
other self-service journeys into your web applications.

The Ping (ForgeRock) Login Widget is only compatible with PingOne Advanced Identity Cloud and PingAM.

You can use the Ping (ForgeRock) Login Widget within React, Vue, Angular and a number of other modern JavaScript
frameworks, as well as vanilla JavaScript.

Ping (ForgeRock) Login Widget »

i ForgeRock Authenticator

PingOne Advanced Identity Cloud PingAM

ForgeRock Authenticator is a multi-factor authentication application.

Users can download the application for Android and iOS and use it as part of their PingOne Advanced Identity Cloud and
PingAM authentication journeys.

ForgeRock Authenticator »

o Token Vault (Plugin)

[0Auth 2.0][OpenID Connect 1.0|

Implemented as a plugin for the Ping SDK for JavaScript, Token Vault provides a feature called origin isolation.

Token Vault provides an additional layer of security for storing and using OAuth 2.0 and OpenlID Connect 1.0 tokens in your
JavaScript single-page applications (SPAs).

Token Vault (Plugin) »

Copyright © 2025 Ping Identity Corporation

Ping SDKs What is available?

oo Ping (ForgeRock) Authenticator module

PingOne Advanced Identity Cloud PingAM

The Ping (ForgeRock) Authenticator module helps you build the functionality of the ForgeRock Authenticator application
into your own Android and iOS apps. The ForgeRock Authenticator works with both PingOne Advanced Identity Cloud and
PingAM.

The module supports time-based one-time passwords (TOTP), HMAC-based one-time password (HOTP), and Push
notifications.

Ping (ForgeRock) Authenticator module »

New name for the ForgeRock SDKs

What is the new name of the SDKs?

The new name for the ForgeRock SDKs is the Ping SDKs.

Why is the name being changed?

The SDKs are being optimized to support diverse use cases across the entire Ping portfolio. With a unified, modular architecture
the Ping SDKs empower developers to seamlessly integrate any service, feature, or functionality into their apps, enabling quick
and efficient access to the full range of Ping capabilities.

Figure 1. ForgeRock SDKs now known as the Ping SDKs

This furthers the commitment of a combined product offering, so you can continue to create the solutions you need. This means
continued support for PingOne Advanced Identity Cloud, PingAM, as well as enabling other solutions such as PingOne DaVinci.

What other changes should | be aware of?

The existing ForgeRock Login Widget and ForgeRock Authenticator Module continue to provide support for PingOne Advanced
Identity Cloud and PingAM exclusively; however, to align with the new naming conventions as well as to keep the server it
supports intuitive, the names are slightly changing:

* The ForgeRock Login Widget is now the Ping (ForgeRock) Login Widget.

Copyright © 2025 Ping Identity Corporation

What is available? Ping SDKs

* The ForgeRock Authenticator Module is now the Ping (ForgeRock) Authenticator module.

The ForgeRock Token Vault is now Token Vault as you can use it with the Ping SDK for JavaScript for any server type, as long as
the server is OAuth 2.0/0IDC compliant. This means that the Token Vault, when used in conjunction with the Ping SDK for
JavaScript, supports and can be used with PingOne, PingOne Advanced Identity Cloud, or PingAM.

Design a protected system

Authentication, sessions, cookies, OAuth 2.0, authorization code flow, and so on. This page explains how to make sense of the
complexity.

The modern system

In the early days, we wrote a single application that did it all. The gorgeous monolith! It did everything: handled user requests,
authenticated users, rendered Uls, queried data directly from the database, served files, managed user sessions... everything.
This could have been an application built with Rails, Spring, Node.js, but that's no longer a representation of a "modern system".

We now live in a world where "monolith" is a bad word. Everything has been split out into microservices, SPAs (single-page web
app), PWAs (Progressive Web App), native mobile apps, with other functionality delegated to a FaaS, Paas, or SaaS (Functions,
Platform or Software as a Service).

This new design has given us a greater sense of organization and tooling to focus on solving the unique, novel problems
independently of the common ones. Experts can now be responsible for their relative domains within their own repository or
project. If a company does not employ an expert of a required domain, it can now "outsource" it to be managed by another
company.

Unfortunately, this new paradigm comes with its own set of problems. Architecture diagrams now illustrate a complex web of
distributed components that are simple in isolation, but hard to reason about when viewed holistically. Due to this distributed
nature, the system now comes with more surface area to protect from unwanted access.

In a world where everything is a tap or click-of-the-finger away, it's more important than ever to ensure the right fingers have
access to the right data. Knowing the basics of a protected system is no longer optional. Developers, product managers, IT
professionals, all need to have a good grasp of the fundamentals.

Let's cover the basics to ensure we keep our data convenient but private and our users happy but safe.

What is a protected system?

In most modern, enterprise cases, "the system" will consist of a diverse collection of entities, but let's start with the most simple
use case (not quite a system, but bear with me): the monolith.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What is available?

Single, "full-stack", server-side application

Public Internet DMZ Private Intranet
600 f] Query User -

| GET example.com/resource ‘[
+ > Users
| ; User Info

resource.html <
<
Browser —— i
GET .../authenticate Server Applioation I

| > Query Data P

‘ < form.htm! T T

“ Resource R

Figure 1. Architecture diagram of a monolith

This single application was responsible for everything, including identity and access management. These were applications
common around the turn of the century. Though these "systems" still exist, they are becoming much less common as they are
very hard to manage and engineer at large scale.

To take some baby steps, let's consider one step up from this monolith, and separate out access management from the monolith.

Copyright © 2025 Ping Identity Corporation

What is available? Ping SDKs

Public Internet DMZ .‘ Private Intranet
GET example.com/r.esoume > Protected Server | Oue;yDara
Application ‘
Resource Page < resource.htm/ < Resource Resources
A 4 Auth Verification
y Pedirection ‘] i v a {
GET .../login Query User
Access Management . P Access Management | | »
Login Page) Application
(ForgeRock) < Iogm.html' (ForgeRock) < User Info Users

Figure 2. Architecture diagram of a monolith paired with access management app
In this design, you have two entities:
1. Protected, full-stack, server-side application: An application managing the resources you want protected.
2. Access management application: An application managing all identity and access concerns.

The beauty of this system is how it scales. If you decide to add another protected application to the system, you just delegate the
access related needs to the access management application. (There are other great benefits to this, but let's save that for another
article.) The new application introduced to the system could be a web app, mobile app, REST API service app, GraphQL app...
anything that potentially serves up a protected resource.

In an effort to avoid having to rebuild such a vital function over and over with each new app, you "connect them" to your access
management app. This dramatically reduces the surface area of risk in complex systems.

What's more, this serves the users better. It means they log in once, and have access to everything their role or privileges allow.
With me so far? Okay, let's go a bit further.

What's a common system design?

In modern system architectures, it's quite common to split the full-stack application into a backend with multiple, client-side apps,
often one per platform: iOS, Android, Web. In these situations, it's advantageous to keep all data related concerns of our
protected app within a central API server—often referred to as a "service". Each client app requests data via an API. This prevents
business logic duplication across multiple applications and simplifies client-side development.

Let's add these multiple client-side apps as a generic entity to our system from above. We now have three distinct entity types as
our "protected app" has been split into two application types:

1. Protected client-side applications (Mobile and Web)

Copyright © 2025 Ping Identity Corporation

Ping SDKs What is available?

2. Protected server-side, resource API service

3. Access management application

Public Internet DMZ Private Intranet
i GET .../apilresource Protected Re | Query Data ' e
[API Service |

Resource SPA

Client < IRROITOR 000 < Resource Resources

Access Management T P | Access Management | |+ I —p
Login Page . Application
(ForgeRock) < login.htm/ (ForgeRock) < User Info Users

The main access responsibility of the protected client apps and the API service is to distinguish authenticated users from
unauthenticated ones. This ensures those without access get denied, and converted to users with access by directing them to the
access management app.

Let's break down the responsibility of each.

Client-side apps

The role of a protected client-side app is to not only distinguish between authenticated and unauthenticated users, but to assist
in converting unauthenticated users into authenticated with as little friction as necessary.

An app will typically have both public and private portions. The simplest way to protect the private portion is by route, page or
view. The protected routes will often have a reusable function that's run before any response is given, often referred to as
"middleware". This function checks if the user has access by sending the access artifact, like a session cookie, to the access
management app for validation. If the validation succeeds, the app continues processing the request; if not, the app will redirect
the user to the login page.

This can be something as simple as this:

Copyright © 2025 Ping Identity Corporation

What is available? Ping SDKs

// Using a common client-side, middleware-style pattern (session-based example)
async function isAuthenticated(context, next) {
const authResponse = await request(sessionValidateEndpoint);

if (authResponse.valid) {
next(); // continue with processing request
} else {
redirect(authenticationUrl); // send user to login

}

routes('accounts/balances', isAuthenticated, (context) => {
render (changePasswordForm) ;

3

It's important to know that protected client-side apps are not truly secure, and should not have embedded within
them protected resources, secrets or private keys. They are inherently vulnerable as the entire codebase is sent to the
user agent—a device outside of your control—to be executed, so all code is subject to manipulation.

Even though this client-side application cannot guarantee access protection, the implementation of such protection on the client
increases user-experience and performance. It also reduces unnecessary requests to the underlying services.

Resource API services

The role of a protected resource API service is to be the final arbiter for protecting access to resources within the system. Since
we can't fully trust our client-side applications, our resource APl will need to duplicate the same check for authentication.

It will use the authentication artifact sent from the client with every request to validate the access to the requested resource. If
validation passes, process the request. If it fails, send a 401 error message, and let the client-side app appropriately handle the
issue:

// Using a Node.js middleware-style pattern (session-based example)
async function isAuthenticated(req, res, next) {
const authResponse = await request(sessionValidateEndpoint);

if (authResponse.valid) {

next(); // continue with processing request
} else {

res.status(401).send(); // respond with 401 unauthorized
}

routes.get('accounts/balances', isAuthenticated, (req, res) => {
const balances = db.query('balances');

res.json(balances);

Hi

Copyright © 2025 Ping Identity Corporation

Ping SDKs What is available?

The above is route-level protection, which may not be granular enough for your system. Object-level protection, an
increase in access control precision, may be required for your system but is outside the scope of this article.

Access management application

The access management (generic) application has the most important role in a protected system. It manages users, login,
sessions, authorization, password management, and so on, all of which are vital functions.

At the simplest level, here are the main responsibilities of the application:
+ Handles redirection from client-side apps for login, redirecting users back to the respective application upon completion.
* Provides an API for session/artifact validation.
* Provides an API for termination of session or artifact.

In situations where the above responsibilities exceed your level of comfort or skill set, it's often a good idea to delegate these
responsibilities to a platform service provider, like ForgeRock. Our services and products allow you to focus on the novel aspects
of your application development, and delegate the complexities of identity management (users, things, devices, and more), and
access management (what those identities can do) to us.

Let's see how adopting Ping for our access management changes our system.

Integrate into a protected system

We provide a powerful, configurable Identity and Access Management solution out of the box. Whether it's an PingOne Advanced
Identity Cloud tenant; self-hosted, cloud-ready container; or individual on-premise products, our products can provide a great
solution for nearly any system. For simplicity, let's go with the PingOne Advanced Identity Cloud solution for the rest of this article.

PingOne Advanced Identity Cloud comes with its own login flow, registration and self-service journeys, as well as all the APIs
needed for validation, refreshing, termination, authorization and more. This all-in-one solution works perfect for internal
solutions or get-up-and-running quickly situations. But eventually, most companies want their user-facing experience to be fully
customizable to suit their branding requirements.

If I'm redirecting my users to ForgeRock’s platform, how do I provide a fully branded experience?
In ForgeRock’s PingOne Advanced Identity Cloud, you can choose how much control you want over your Uls. You can use it as-is,
"theme" the provided Uls, or build your own Ul using the underlying APIs and our open-source SDKSs.

Build a branded UX with PingOne Advanced Identity Cloud and the SDKs

A fully branded experience means moving the responsibility of rendering the user authentication journey from PingOne
Advanced Identity Cloud to an app that you will build. To facilitate this, we provide the Ping SDK for native Android and iOS apps,
and for JavaScript application development. This allows you to easily integrate APIs into a new or existing app.

There are two choices for fully customizing the user experience:
1. Move the user authentication experience into each protected app, providing a native UX.

2. Move the user authentication experience into a single web app to centralize the login experience.

Copyright © 2025 Ping Identity Corporation

What is available? Ping SDKs

In both cases, our SDKs will help in developing these experiences. But, before we move on, it's important to know that your
overall system has a significant impact on what choice suits you best.

What's your intended system design?

There are a few important points to consider when choosing how to protect your system:
1. How many client-side apps will need protecting?
2. Are all your apps and services served from a single domain?
3. Will there be any third-party apps or services that will need protection?

Let's dive into each concern and how it impacts your system.

How many client-side apps need protecting?

Say you have one app for each major platform: a web app, an iOS app, and an Android app. If the number of apps will not
increase, you may want to develop the user experience for login, registration, and so on, within each app. This ensures that each
app has full control over the best user experience for that platform.

By using our SDKs, you can more efficiently develop a dynamically responsive Ul, handling each step within an authentication
journey. This just slightly changes our client-side app’s responsibilities.

Rather than redirecting unauthenticated users away from our application, we now just internally route the user to our native
login experience. But, we will still continue to validate the user's session upon each navigation of our app.

Public Internet DMZ : Private Intranet

Data o
GET .../apilresource p | ProtectedR °“°'Y >
API Service !
Resource
< resource.json < - Resources
Resource SPA & , N
Client ! v Auth Verification
GET .../api/login Query User
$ > Access Management [| 2
Application !
< login.json (ForgeRock) < Us?r info Users
T

Figure 3. Architecture diagram of a SPA with Embedded Login and access management app

Copyright © 2025 Ping Identity Corporation

Ping SDKs What is available?

But, we have dozens/hundreds of client-side applications! We don't have the resources to update all of them.

Now, if you have many apps, and each app needs to have within it a login (not to mention registration) flow, that's a lot of
duplication. This will inevitably become a maintainability challenge, and a security liability as it increases your attack surface.
Within this context, we need to go one step further.

To deal with this challenge, it's often recommended to extract the login (and possibly registration, self-service) related
responsibilities out of the client-side apps, and build a single web app exclusively around this functionality. All front-end
applications (mobile and web) can now redirect to this one, central application. This reduces your surface area for security
liabilities as well as reduces duplication across your system.

Let's take a look at the system now:
1. Protected client-side apps (mobile & web)
2. Protected resource API services
3. Authentication (login, registration & self-service) web app

4. PingOne Advanced Identity Cloud

Public Internet ‘ DMZ Private Intranet
GET./apilresource | protected Resource | || 0“0['7 e o
Resource SPA resource.json APIService Resource Resources
Client <4 K <

~

: A
‘ Redirection & W —

GET .../apillogin Query User
!Pl’°9' > Access Management ' [| 3
Login SPA Client Application Users
< login.json (ForgeRock) « . A

Figure 4. Architecture diagram of a SPA for resource app, a SPA for the login app, resource APl server and access management app

With this design, we are now starting to organize the system components by scope of responsibility. For mobile applications,
they'll have the availability of using the browser to authenticate, being redirected back to the native app when complete. Web
apps will do a full redirect to the authentication app and a redirect back when done. Single sign-on functionality is provided out-
of-the-box, as the browser is the shared platform for authentication between all apps, native or otherwise, on the user’s device.

Copyright © 2025 Ping Identity Corporation

What is available? Ping SDKs

This provides a more scalable system that's optimized with apps having a more focused set of responsibilities while still providing
full control over your brand and UX. Now that we have the core system design out of the way, let's discuss how all of these
components will be hosted.

How are you hosting all these applications?

Simply put, are all the applications in the above system on the same host? For example:
* mydomain.com/auth
* mydomain.com/app
* mydomain.com/api
Another example would be the use of unique subdomains all on the same parent domain:
* auth.mydomain.com
* app.mydomain.com
* api.mydomain.com

If using either of the two patterns, a session-based system may work well for you. Sessions are frequently based on browser
cookies, which are fundamentally restricted by the host or parent domain.

On the other hand, you may be using different hosts across your apps:
* auth-server.com
* web-app.com
* rest-server.com

This will constrain your options as session-based auth (driven by cookies) will be a challenge with apps on multiple hosts. An
OAuth-based system is well-designed for this particular environment as it uses access tokens as the artifact passed around in the
system, rather than a cookie.

But, before we dive into OAuth 2.0, let's discuss one more aspect of our system.

Any third-party companies involved?

Do you intend to extend access of your protected system to any third-party companies? For example, you may want to allow an
application or service from an external company to interact with your protected system. For this, you likely want to restrict the
scope of capabilities for these external entities, making an OAuth-based system a better choice.

What's OAuth and why is it better than session-based access with diverse hosting environments and third-party entities? Let's
differentiate these two models.

Let's talk about access models (session v. OAuth)

To keep things simple, let's focus on two of the most common models of access: session-based and OAuth-based. Your system
design, discussed above, should strongly influence the type of access model you want to implement, but it's not the only factor in
making the choice.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What is available?

Additional factors that can influence your access modeling are a bit more advanced and out of scope for this article, but they
include:

1. Transaction authorization (aka policy enforcement)
2. Finer control over expiry times and access lifetimes
3. Finer control over scope of access or privileges

Look out for more information about these factors in a future article. For the rest of this article, let’s talk a bit more about the
basics of two foundational access models.

Session-based (cookies) access

The session-based model traditionally uses the HTTP cookie as its artifact. It's one of the oldest models for the web as the cookie
was invented around the mid 1990's (though not originally for authentication). The HTTP cookie is a relatively simple way to
persist data (a simple string of text) within a Web browser. This small piece of information is stored natively in the browser, and is
tightly bound to the domain of the HTTP request the browser made to the server.

Let's use a simple example:

There's a web app running on https://dashboard.example.com, and an access management application running on https://
auth.example.com . After making a request to the access management app to login, a "session cookie" gets added to the browser.
This cookie is written because the server sent back a Set-Cookie header, so the cookie gets written to the full domain of the
server, auth.example.com, or the parent domain, example.com.

Example of browser cookie storage:

COOKIE NAME VALUE DOMAIN

session_id AJi4QfFBCMzK3QFm. . . .example.com

Now that we have this cookie, all requests from that browser to example.com (even subdomains that share the same parent) will
contain a cookie header with its value. It's worth noting that this "Just Works" as it's a seamless, almost invisible, mechanism of
the browser.

Example of request with cookie:

GET https://auth.example.com/sessions/validate

HEADERS

content-type: application/json

cookie: session_id=AJi4QfFBCMzK3Qc. . .s9dg7f6hyGHD
origin: https://dashboard.example.com

This means you can have multiple apps running on multiple subdomains. As long the same parent or root domain is used, this
session cookie will be sent automatically.

Copyright © 2025 Ping Identity Corporation

What is available? Ping SDKs

For example:
* www.example.com
* accounts.example.com
* profile.example.com
* tasks.example.com
With servers running on:
* auth.example.com
* data.example.com

As long as all apps, both client and server, are running on the same parent domain (example.com), you can configure cookies to
work with this setup. In this case, we would configure the cookie to be written to the parent domain, example.com for the highest
amount of flexibility. Your applications can then have their own subdomains and will still receive the cookie (many browsers store
this as .example.com).

@ Note

The downside to this model is the tight coupling of cookies with their respective domains.

If you have apps running on different domains, say auth.example.com and data.userbase.com, this model unfortunately does
not work. The cookies written for auth.example.com would not be sent to our data.userbase.com server. In this case, OAuth
provides better support.

Third-party cookies: it's worth noting that there’s still a nuance with cookies being written when browser-based apps
(SPAs) are running on a different domain than the servers.

These cookies are considered "Third-Party Cookies", and have been an important function of how the Web worked for
years. Unfortunately, most browsers will disable this functionality within the next few years, so relying on it will be
risky.

Safari has already disabled third-party cookies by default.

OAuth 2.0-based access

OAuth is an industry standard for handling authorization and has been around since the late 2000’s. OAuth 2.0 is the most recent
specification of the protocol and is a large rework from the original. In this writing, any reference to OAuth will always refer to the
2.0 specification .

OAuth is a complex specification and has many variations and nuances. The details of which are beyond the scope of this article,
so we will focus only on the basics.

The core artifact of OAuth is the access token, and like the value stored in a cookie for sessions, it is frequently just a simple string
of text (sometimes called a JWT). But, unlike the cookie, the browser does not have a native concept of an access token, so
obtaining and managing an Access Token doesn’t automatically happen within a browser.

Copyright © 2025 Ping Identity Corporation

https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749

Ping SDKs What is available?

@ Note

There are other tokens frequently mentioned in texts about OAuth that are beyond the scope of this article, like
refresh tokens and ID tokens. These tokens will not be covered in order to keep this article more introductory.

There are some choices about how to store and send the access tokens within a system. For the Web, as a simple example,
sessionStorage or localStorage can often be used to store the token. Access Tokens are also not automatically sent along
with all HTTP requests, so how one writes this token to HTTP requests is also something to be considered. Luckily, the industry
has already standardized around best practices.

So, why is OAuth 2.0 better than session-based cookies in certain circumstances?

OAuth is often mentioned in situations where you have third-party applications and services, or a multi-host setup with varying
domains. This is because of its granularity of permissions (for security/privacy) and complete decoupling from domains. This
provides more control over how it behaves. At the end of the day, an access token is just an opaque string that's passed around
the system, frequently called a "bearer token", and written to the Authorization header of requests.

Example of request with authorization header:

GET https://rest.resource.com/activity

HEADERS

content-type: application/json

authorization: Bearer 3QcIFmU6r0qg43U...LJKf807
origin: https://dashboard.example.com

Using OAuth doesn’'t dramatically change your system design. The basic principles of how it's used doesn't significantly diverge
from the session-based model. You are still obtaining an access artifact from a server, passing it to APIs, and validating it where
necessary. The additional responsibilities with Access Tokens are storing it and removing it as needed.

For example, here are some minor changes to the middleware example from above:

// Using Node.js middleware-style pattern (oauth-based example)
async function isAuthorized(req, res, next) {
const authResponse = await request(oauthIntrospectionEndpoint);

if (authResponse.access) {
next(); // continue with processing request
} else {
res.redirect(authorizationUrl); // send to authorization

}

routes.get('accounts/balances', isAuthorized, (req, res) => {
res.render (changePasswordForm) ;

3

Copyright © 2025 Ping Identity Corporation

What is available? Ping SDKs

@ Note

Validating access tokens can also be done without a network request. We refer to these as "stateless" tokens. They
can be introspected with a JWT decoding library for validation.

The only remaining difference between the OAuth and session-based model is the fact that an OAuth token has to be specially
obtained from your access management application. The most common flow for attaining an access token is called the
authorization code flow, and involves an additional interaction with the server after the user successfully authenticates.

The good thing is you do not have to reinvent the wheel to implement OAuth within your applications. PingOne Advanced Identity
Cloud and SDKs abstract away the need for requesting, storing, sharing, and revoking the access token, leaving you with more
time to build the novel aspects of your applications.

What's the best design to protect my system?

The answer is... well, it depends. As discussed above, there are quite a few important aspects to the kind of system we are
discussing and the future plans for your products. Hopefully, after reading through the basics articulated above, you have a
better, foundational understanding of what it means to design a protected system.

If things are still a bit fuzzy, don't worry. The good news is that Ping can help by providing the best tools and guidance to ensure
you have the right information to make the best choice for you.

Security

The Ping SDKs are built from the ground up to use best practices for securing token material and data.

Security is a very broad subject, and every environment is different. Readers are expected to do their own research and
complement the information found in these topics.

A

Q LV

Tokens and keys Authentication
Learn how the Ping SDKs secure your session Discover the protocols the Ping SDKs use when
and OAuth 2.0-related tokens, and the your app authenticates your users.

encryption used.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What is available?

8 v

Data OAuth 2.0
What data do the Ping SDKs use, and what See how the Ping SDKs use Proof Key for Code
security measures help to protect it. Exchange (PKCE) to mitigate the risks of an

OAuth 2.0 attack.

Token and key security

The Ping SDKs handle and store keys and tokens based on the security best practices of each platform.

Token storage

Depending on the authentication use case, the SDKs will potentially have to store and be able to retrieve the session cookie, ID
tokens, access tokens, and refresh tokens.

Each token is serving a different use case, and as such how the SDKs handle them can be different.
The following sections cover how the SDKs handle different types of tokens.
Session tokens and cookies
+ On Android and iOS, the session tokens are stored in either the Android keystoreZ or iOS keychainZ after authentication

completes. The tokens are encrypted using a hardware-backed security key when possible and can be retrieved by the
SDK on request.

* When using the Ping SDK for JavaScript, cookies are stored in the browser’s cookie storage. The cookie name matches the
one provided by PingAM (such as iPlanetDirectoryPro)and its value is the actual session token. When making requests
to PingAM, the value is passed as an authentication cookie. This cookie is configured with the HTTPOnly and Secure
attributes, which provide additional layers of security.

ID, access, and refresh tokens

+ On Android and iOS when authorization is completed any OAuth 2.0-related tokens are stored securely locally, encrypted
using a hardware-backed security key when possible and can be retrieved by the SDK on request. Tokens are not
configured as cloud sharable by default.

* When using the Ping SDK for JavaScript, the OAuth 2.0 Tokens are stored by using one of the web storage APIs provided by
the browser. By default, this uses the browser's localStorage, but the SDK also supports sessionStorage .

Copyright © 2025 Ping Identity Corporation

https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://stash.forgerock.org/projects/DX/repos/sdks-docs/pull-requests/119/overview
https://stash.forgerock.org/projects/DX/repos/sdks-docs/pull-requests/119/overview

What is available? Ping SDKs

@ Important

We recommend that JavaScript single-page applications do not use refresh tokens or any other long-running
authorization elements due to the potentially unsecure nature of the storage mechanisms provided by
browsers.

In addition to built-in storage schemes, Android and JavaScript app developers can provide a custom storage mechanism that can
be passed to the SDK. Learn more in Customize storage on JavaScript.

Token lifecycle

The session and OAuth 2.0-related tokens the SDKs handle all have associated expiry times. When a token reaches its expiry time
it becomes unusable.

A feature of the SDKs is that they manage the refresh of OAuth 2.0 tokens. The timing of the refresh is based on a threshold value
to improve the end-user experience. The SDKs refresh tokens automatically when the token is requested from storage to be used
in your application and its expiry is within the threshold.

In the case of access tokens, if a refresh token is present, then the Android and iOS SDKs will use it to obtain a new access token.
If the refresh token cannot be used, is not present, or if it has expired, then the SDKs fall back to using the session token to start a
new OAuth 2.0 flow.

@ Note

The SDKs do not handle the refresh of session tokens. If a session token has expired, the app needs to re-authenticate
the user.

When an OAuth 2.0 or session token expires, the SDK removes any respective tokens from the secure storage and performs a
cleanup. The Android and iOS SDKs also check if the current session token is the same one used to obtain the OAuth 2.0 tokens.
In case of a mismatch, then these orphaned tokens are cleaned.

When using SDK logout methods to perform a Logout event, the SDKs revoke existing OAuth 2.0 tokens, revoke the session, and
perform a local cleanup. If the SDKs are unable to revoke the session at the server—for example the network is unavailable—then
the SDKs remove the tokens from local storage.

When using the Ping SDK for JavaScript, if an access token expires within the threshold limit or returns an HTTP 481
Unauthorized error, the SDK attempts to renew it using the same session cookie that was performing the authorization code
OAuth 2.0 flow.

The Ping SDK for JavaScript calls the endSession and session?action=logout endpoints during logout, as well as calling
revoke whenever you use FRUser.logout . This ensures that the server invalidates the session cookie.

@ Note

The Ping SDK for JavaScript has no direct control over the session cookie; it can only make requests to the browser
that may or may not be acted upon. Instead, it must rely on the server to manage the cookie removal.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What is available?

Encryption key storage

On supported platforms and devices, the Ping SDKs generate Hardware-Backed encryption keys, and uses them to encrypt and
store tokens. This provides an extra level of security against attacks.

* The Ping SDK for iOS uses the kSecKeyAlgorithmECIESEncryptionCofactorX963SHA256AESGCM encryption algorithm. The
key is stored in the Secure Enclave.

On unsupported devices, the SDK cannot not enforce hardware-backed encryption and will save the tokens in the iOS
keychain.

* The Ping SDK for Android uses a number of different algorithms, depending on the OS version and device functionality. It
supports the following encryptors:

° AndroidLEncryptor : RSA

° AndroidMEncryptor : AES

° AndroidNEncryptor : Similar to M, with the addition of setting setInvalidatedByBiometricEnrollment to true
° AndroidPEncryptor : Similar to N, with the addition of using Android Strongbox

Hardware-backed key storage and encryption

Both the Android and iOS SDKSs use platform-provided methods to create hardware-backed encryption keys.

* On iOS the SDK creates keys within the SecuredKey.swift(J class. If SecuredKey generation fails, the KeychainManager
generates the KeychainService with no SecuredKey . The values in this case will be added to the iOS keychain as
kSecClassGenericPassword types.

If SecuredKey creation is successful then the value is encrypted before being stored. The SecuredKey.swift class
provides an isAvailable() public method that validates whether creation of the SecuredKey using Secure Enclave is
available on the device or not.

Q Tip

The SDKs also support devices that do not have Secure Enclave or other hardware-backed encryption
functionality.

+ On Android, the SDK uses DefaultTokenManager and DefaultSingleSignOnManager for storing tokens, in addition to
SecuredSharedPreferences on supported devices.

Depending on the Android version, the SDK can use more specific encryptors. For more information, see getEncryptor(J.
For information about the different encryptor classes, see the authZ folder in GitHub.

Authentication security
The Ping SDKs provide two methods for implementing authentication in your applications:
Auth journey (embedded) login

The app developer is responsible for building the login and registration Ul.

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/forgerock-ios-sdk/blob/develop/FRCore/FRCore/Keychain/SecuredKey.swift#L63
https://github.com/ForgeRock/forgerock-ios-sdk/blob/develop/FRCore/FRCore/Keychain/SecuredKey.swift#L63
https://github.com/ForgeRock/forgerock-android-sdk/blob/develop/forgerock-core/src/main/java/org/forgerock/android/auth/Encryptor.kt#L36
https://github.com/ForgeRock/forgerock-android-sdk/blob/develop/forgerock-core/src/main/java/org/forgerock/android/auth/Encryptor.kt#L36
https://github.com/ForgeRock/forgerock-android-sdk/tree/develop/forgerock-core/src/main/java/org/forgerock/android/auth
https://github.com/ForgeRock/forgerock-android-sdk/tree/develop/forgerock-core/src/main/java/org/forgerock/android/auth

What is available? Ping SDKs

Uses the Authorization code grant with PKCE flow, based on RFC7636 .

When using auth journeys for authentication, the SDKs do not store user credentials on the device or in the browser.

OIDC (centralized) login

We provide a central login Ul that app developers can use with a redirect for JavaScript apps, or by using an in-app
browser in Android and iOS applications.

Android and iOS use the OAuth 2.0 for Native Apps, based on RFC8252 4, which is recommended way for third-party
applications to authenticate in terms of security, as user credentials are never exposed to the third-party web or native
application.

Both options have their merits and drawbacks, and the choice usually depends on your use case. For more information, refer to:
* Auth journey (embedded) login
+ OIDC (centralized) login

The Ping SDKs also use the following protocols for authentication:
WebAuthn for Mobile and Web Biometrics

Based on the WebAuthn W3C spec(Z.

* The Ping SDK for iOS uses a custom implementation of the protocol that has been created to offer backward
compatibility older iOS versions including iOS 12. For more information, see Supported operating systems.

* The Ping SDK for Android uses the Google FIDO2 API .

Data security

The Ping SDKs do not save or load any user data, such as username or password, or personal information in memory. The only
stored keys and data are the Session and OAuth 2.0 tokens required for authentication, and security-related certificates hashes.

The Ping SDKs for iOS and Android support SSL Pinning. The certificate information used is passed in the form of certificate key
hashes in the SDKs configuration file. This means you do not have to bundle certificates with your iOS .ipa or Android .apk
files.

OAuth 2.0 security with PKCE

Proof Key for Code Exchange (PKCE) mitigates the risks of an OAuth 2.0 attack. Without PKCE, a malicious application running in
the same browser as your public client app could compromise the security of your app.

It is good practice to use PKCE for native apps and SPAs, because the code is stored on browsers and devices. Without PKCE,
you'd have to include a client secret in those public-facing apps. For enhanced security, you should use PKCE whenever you have
the option to use it.

How PKCE works

Your app, with the help of our code, generates a code_verifier (nonce). When a user make a request, your app creates a hash
of that code_verifier as a code_challenge . ForgeRock, as an authorization server, saves the hash value.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-authz-grant-pkce.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-authz-grant-pkce.html
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc8252
https://datatracker.ietf.org/doc/html/rfc8252
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://developers.google.com/identity/fido/android/native-apps
https://developers.google.com/identity/fido/android/native-apps

Ping SDKs What is available?

After the hash is confirmed as valid, your app exchanges its authorization code grant for an access token. Your client app, as the
bearer, can use the token to access to the user’s resources.

This diagram depicts the authorization code grant flow in detail:

Authentication for browser-based apps with PKCE

End User

T T
| |
1 1 Generate code verifier; create hash as a code challenge |
I
I
|
|

|
' 2 Send code challenge and code verifier

>
>

1
|
|
I
I
|
:
I I
' 3 Authenticate and send code challenge hash !
|
|

4 Store code challenge

Authenticate user /
5 Request credentials

<
<

I
i
| 6 Supply credentials
I
|

_ 7 Return authorization code

|
_ 8 Pass authorization code !

|
|
< |
|
|

| |
1 9 Send authorization code, code verifier; request access token

10 Confirm matching hash, return access token

<
<

11 Request resource with access token

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
|

(Browser)

If you're familiar with OpenID Connect (OIDC) specifications, the web app is the relying party, and PingOne Advanced Identity
Cloud or PingAM is the authorization server.

For more information on PKCE standards, see the following IETF document: Proof key for code exchange by OAuth public clients
G.

For more information on how we implement PKCE for native and SPA apps, refer to Authorization code grant with PKCE(Z,

Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7636
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-authz-grant-pkce.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-authz-grant-pkce.html

What's New

M Pingldentity.

Ping SDKs What's New

Subscribe to get automatic updates:
+ B Ping SDKs Changelog RSS feed
+ 8 Ping SDKs Changelog email notifications(J

@ Important

SDKs Renamed
Prior to November 2024, the Ping SDKs were known as the ForgeRock SDKs.

Latest updates
SDK for Android 4.8.1 released ' ygy

25 June, 2025
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Improved performance by adding caching for KeyStore, Cipher, and Symmetric Key encryption and decryption.
+ Added a strongBoxPreferred=false parameter to allow conditional use of StrongBox for key storage.
Learn more in Preventing the Keystore System from using StrongBox.

Full changelog

SDK for Android 4.8.0 released
16 May, 2025
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

+ Added the ability to update the Firebase Cloud Messaging (FCM) device token for existing devices registered for push
notifications.

Learn more in Updating device tokens for existing accounts.

+ Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud.

Learn more in Accessing WebAuthn authenticator information.
Full changelog

SDK for iOS 4.8.0 released | ygy

16 May, 2025

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_pdf/changelogs/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

What's New Ping SDKs

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

+ Added the ability to update the Apple Push Notification Service (APNs) device token for existing devices registered for push
notifications.

Learn more in Updating device tokens for existing accounts.

+ Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud.

Learn more in Accessing WebAuthn authenticator information.

Full changelog

SDK for JavaScript 4.8.0 released | ygy

16 May, 2025
A new version of the SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added a flag to skip immediately to the OAuth 2.0 flow rather than attempting to get tokens without redirecting.
Learn more in Configure JavaScript apps for OIDC login.
+ Added support for signing out of PingOne by using an ID token.

Full changelog

DaVinci Client for Android 1.1.0 released | gy

15 April, 2025
A new version of the DaVinci Client for Android is now available with improvements and fixes over earlier versions:
+ Added social sign on with supported external IDPs.
Learn more in Set up social sign on with external IDPs.
+ Added Accept-Language header customization to support localization.
Learn more in Localizing the user interface.
+ Added support for additional PingOne Form fields.
Learn more in Supported PingOne fields and collectors.

Full changelog

DaVinci Client for iOS 1.1.0 released | ygy

15 April, 2025
A new version of the DaVinci Client for iOS is now available with improvements and fixes over earlier versions:

+ Added social sign on with supported external IDPs.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

Learn more in Set up social sign on with external IDPs.

+ Added Accept-Language header customization to support localization.
Learn more in Localizing the user interface.

« Added support for additional PingOne Form fields.
Learn more in Supported PingOne fields and collectors.

+ Added support for Swift 6.

Full changelog

DaVinci Client for JavaScript 1.1.0 released | ygy

15 April, 2025
A new version of the DaVinci Client for JavaScript is now available with improvements and fixes over earlier versions:
+ Added social sign on with supported external IDPs.
Learn more in Set up social sign on with external IDPs.
+ Added middleware support to alter Accept-Language header to support localization.
Learn more in Localizing the user interface.
+ Added support for additional PingOne Form fields.
Learn more in Supported PingOne fields and collectors.

Full changelog

SDK for Android 4.7.0 released ' ygy

11 February, 2025
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added support for user profile self-service.
Learn more in Set up user profile self service.
+ Added support for managing registered devices.
Learn more in Set up registered device self service.
+ Added support for signing-out of PingOne with an ID token.

Full changelog

SDK for iOS 4.7.0 released

11 February, 2025

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added support for user profile self-service.
Learn more in Set up user profile self service.
« Added support for managing registered devices.
Learn more in Set up registered device self service.
+ Added support for signing-out of PingOne with an ID token.

Full changelog

SDK for JavaScript 4.7.0 released | ygy

11 February, 2025
A new version of the SDK for JavaScript is now available with improvements and fixes over earlier versions:
Added
+ Added support for managing registered devices.
Learn more in Set up registered device self service.
Changed

* Prioritized displayName field over userName when saving a WebAuthn or passkey to an account. Previously the SDK
displayed a UUID for saved credentials rather than the user's name.

Full changelog

DaVinci client 1.0.0 released
16 December, 2024
The first version of the DaVinci client for Android, iOS and JavaScript is now available.

@ Note

The Ping SDK DaVinci clients are constantly evolving to meet your business needs.
Check back from time to time on latest updates and enhancements.

* Supports the Custom HTML Template capability of the HTTP Connector.
+ Supports the following fields:

o Text field

o Password field

o Submit button

o Flow button

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

To learn more, refer to Supported DaVinci fields.
+ Follow the DaVinci client tutorials to quickly setup a demo app to connect to your DaVinci flows.
* Read how to configure the DaVinci client to leverage DaVinci flows in your native or single-page apps.

Full changelog

SDK for Android 4.6.0 released
17 October, 2024
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added the ability to customize how the ForgeRock SDK stores tokens and data.
To learn more, refer to Customizing storage.
+ Added support for Android App Links that use the http/https scheme for redirect URIs in centralized login apps.
+ Added support for Android 15.
» Added support for the PingOne Protect Marketplace nodes.

Full changelog

SDK for iOS 4.6.0 released

17 October, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added support for the PingOne Protect Marketplace nodes.
+ Exposed the realm, success URL and failure URL values within Token .
+ Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback.

Full changelog

SDK for JavaScript 4.6.0 released

17 October, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added centralized login support for PingFederate servers.
+ Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback.
+ Added support for the PingOne Protect Marketplace nodes.

Full changelog

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

SDK for Android 4.5.0 released
9 July, 2024
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added support for signing off from PingOne to the centralized login flow.
To learn more, follow the Android tutorial for PingOne.

+ Added the ability to dynamically configure the SDK by collecting values from a PingOne or server’'s OpenlID
Connect .well-known endpoint.

To learn more, refer to Using the .well-known endpoint for dynamic configuration.

Full changelog

SDK for iOS 4.5.0 released
9 July, 2024
A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added support for signing off from PingOne when using the centralized login flow with OAuth 2.0.
To learn more, follow the iOS tutorial for PingOne.

+ Added the ability to dynamically configure the SDK by collecting values from the server's OpenlD Connect .well-known
endpoint.

To learn more, refer to Using the .well-known endpoint for dynamic configuration.

Full changelog

Ping (ForgeRock) Login Widget 1.3.0 released | ygy

30 May, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
« Added support for integration with PingOne Protect(Z.
+ Added the name of the device to the recovery codes page.

Full changelog

SDK for JavaScript 4.4.2 released

15 May, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added a logoutRedirectUri parameter to the FRUser.logout() method.

Add the parameter to invoke a redirect flow, for revoking tokens and ending sessions created by a PingOne server.

Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

Ping SDKs What's New

To learn more, follow the JavaScript tutorial for PingOne.

+ Added a platformHeader configuration property to control whether the SDK adds the X-Requested-Platform header to
all outgoing connections.

Full changelog

SDK for iOS 4.4.1 released

25 April, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added privacy manifest files(Z to ForgeRock SDK for iOS modules.

Full changelog

SDK for iOS 4.4.0 released
4 April, 2024
A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added a new module for future integration with PingOne Protect (.
Learn more at Integrate with PingOne Protect for risk evaluations.
+ Added an interface for customizing the biometric Ul prompts when device binding or signing.
Learn more at Bind and verify devices.
+ Added support for the TextInput callback.

Full changelog

SDK for Android 4.4.0 released

28 March, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added a new module for future integration with PingOne Protect(Z.
Learn more at Integrate with PingOne Protect for risk evaluations.
+ Added an interface for customizing the biometric Ul prompts when device binding or signing.
Learn more at Bind and verify devices.
+ Added support for the TextInput callback.

Full changelog

Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

What's New Ping SDKs

SDK for JavaScript 4.4.0 released
13 March, 2024
A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added a new module for future integration with PingOne Protect (.
+ Added the ability to include the supplied device name when displaying recovery codes.
Learn more at Using the device name.
+ Added the ability to use values from an OpenID Connect .well-known URL to automatically configure the SDK paths.
This simplifies using the SDKs with OIDC-compliant identity providers, such as PingOne (.
For more information, refer to the ForgeRock SDK for JavaScript PingOne tutorial.

Full changelog

SDK for Android 4.3.1 released

9 February, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
* Fixed an SDK crash during device binding on Android 9 devices.

Full changelog

Ping (ForgeRock) Login Widget 1.2.1 released

8 January, 2024

A new version of the Ping (ForgeRock) Web Login Framework is now available with improvements and fixes over earlier versions:
+ Support for CAPTCHA nodes.

Full changelog

SDK for JavaScript 4.3.0 released
4 January, 2024
A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added ability to override default prefix string given to storage keys.
For more information, refer to prefix in the ForgeRock SDK for JavaScript Properties.
+ Added an FRQRCode utility class to determine if a step has a QR code and handle the data to display.
For more information, refer to Set up QR code handling.

Full changelog

Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services

Ping SDKs What's New

SDK for Android 4.3.0 released

28 December, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added ability to customize cookie headers in outgoing requests from the SDK.
+ Added ability to add custom claims when verifying signatures from bound devices.
+ Added client-side support for the upcoming AppIntegrity callback.

Full changelog

SDK for iOS 4.3.0 released
28 December, 2023
A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added client-side support for the upcoming AppIntegrity callback.
+ Added a new ephemeralAuthSession browser type for i0OS13 and later.
+ Added iat and nbf claims to the device binding JWS payload.
+ Added ability to insert custom claims when performing device signing verification.
+ Updated the detection of Jailbreak status.

Full changelog

SDK for Android 4.2.0 released
3 October, 2023
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added Gradle 8 and JDK 17 support.
+ Added Android 14 support.
+ Added verification of key pairs during device binding enroliment by using Google Key Attestation.
+ Added issued at (iat) and not before (nbf) claims to JSON Web tokens used for device binding and signing verification.

Full changelog

Token Vault 4.2.0 released
11 September, 2023
A new version of the Token Vault is now available with improvements and fixes over earlier versions:

+ Added a requirement to declare a list of URLs in the Token Vault Proxy configuration. These generate an allowlist of origins
to which the proxy can forward requests.

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

Full changelog

SDK for JavaScript 4.2.0 released

11 September, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

+ Added a logLevel configuration property to specify the level of logging the SDK performs.

+ Added a customLogger configuration property to specify a replacement for the native console.log that the SDK uses by

default.

For example, you could write a replacement that captures SDK log output to services such as RelicZ or Rocket (5.

Full changelog

SDK for Android 4.1.0 released

31 July, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added support for interceptors in the authenticator module
+ Added an interface for refreshing access tokens

+ Added support for policy advice from IG in JSON format

Full changelog

SDK for iOS 4.1.0 released

28 July, 2023

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

+ Added support for interceptors in the authenticator module.
+ Added support for mfauth deep links in the authenticator sample app.
+ Added an interface for refreshing access tokens.

« Added support for policy advice from IG in JSON format.

Full changelog

Token Vault 4.1.2 released

24 July, 2023
Token Vault provides an additional layer of security for storing and using OAuth 2.0 and OpenID Connect 1.0 tokens in your
JavaScript single-page applications (SPAs).

Implemented as a plugin for the ForgeRock SDK for JavaScript, Token Vault provides a feature called origin isolation.

Copyright © 2025 Ping Identity Corporation

https://newrelic.com/
https://newrelic.com/
https://logrocket.com/
https://logrocket.com/

Ping SDKs What's New

Full changelog

SDK for JavaScript 4.1.2 released

20 July, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added support in preparation for upcoming Token Vault.

Full changelog

Ping (ForgeRock) Login Widget 1.1.0 released

17 July, 2023

A new version of the Ping (ForgeRock) Web Login Framework is now available with improvements and fixes over earlier versions:
+ Support for device profiling callbacks (DeviceProfileCallback)
+ Support for web authentication (WebAuthn) journeys and trees.

Full changelog

SDK for JavaScript 4.1.1 released

29 June, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added support in the HTTPClient for receiving transactional authorization advice in JSON format.

Full changelog

SDK for iOS 4.0.0 released
9 June, 2023
A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added support for Passkeys.
+ Added the ability to provide a device name when registering WebAuthN devices.
+ Added support for enforcing policies in the Authenticator SDK.
+ Added SwiftUl quick start sample code.
Full changelog

@ Important

This release contains changes that could affect the functionality of your app.
Refer to Incompatible changes.

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

SDK for Android 4.0.0 released

30 May, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Upgraded the Google Fido client to support Passkeys.
+ Added the ability to provide a device name when registering WebAuthN devices.
+ Added support for enforcing policies in the Authenticator SDK.

Full changelog

@ Important

This release contains changes that could affect the functionality of your app.
Refer to Incompatible changes.

SDK for JavaScript 4.0.0 released
23 May, 2023
A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added the ability to provide a device name when registering WebAuthN devices.
+ Updated ESModule (ESM) bundle.
+ Updated tags in the GitHub repo to be prefixed with the package name. For example, javascript-sdk-${tag}.

Full changelog

@ Important

This release contains changes that could affect the functionality of your app.
Refer to the following pages for details:

* Incompatible changes
+ Deprecations

Ping (ForgeRock) Login Widget 1.0.0 released
18 April, 2023

The Ping (ForgeRock) Login Widget is an all-inclusive Ul component to help you add authentication, user registration, and other
self-service journeys into your web applications.

The Ping (ForgeRock) Login Widget uses the Ping SDK for JavaScript internally, and adds a user interface and state management.
This rendering layer helps eliminate the need to develop and maintain the Ul components for providing complex authentication
experiences.

Full changelog

Copyright © 2025 Ping Identity Corporation

Ping SDKs

Full changelogs

AR

Ping SDK for Android

Ping SDK for JavaScript

Ping (ForgeRock) Login Widget

Legacy releases

Copyright © 2025 Ping Identity Corporation

What's New

g

Ping SDK for iOS

DaVinci client

Token Vault

What's New

Ping SDKs

Release timeline

Key:

N.N.N = Latest version

Release date

2025-MAY-16

2025-MAY-16

2025-MAY-16

2025-APR-15

2025-APR-15

2025-APR-15

2025-FEB-11

2024-FEB-11

2025-FEB-11

2024-DEC-16

2024-0CT-17

2024-0CT-17

2024-0CT-17

2024-JUL-11

2024-JUL-11

2024-JUN-05

2024-MAY-15

2024-APR-25

2024-APR-04

2024-MAR-28

2024-MAR-13

Platform
Ping SDK for Android
Ping SDK for JavaScript

Ping SDK for iOS

DaVinci client for Android

DaVinci client for iOS

DaVinci client for JavaScript

Ping SDK for Android
Ping SDK for iOS

Ping SDK for JavaScript
DaVinci client

Ping SDK for Android
Ping SDK for iOS

Ping SDK for JavaScript
Ping SDK for Android
Ping SDK for iOS

Login Widget

Ping SDK for JavaScript
Ping SDK for iOS

Ping SDK for iOS

Ping SDK for Android

Ping SDK for JavaScript

SDK version

4.8.0

4.8.0

4.8.0

4.7.0

4.7.0

4.7.0

1.0.0

4.6.0

4.6.0

4.6.0

4.5.0

4.5.0

1.3.0

4.4.2

4.41

4.4.0

4.4.0

4.4.0

Release type(!
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Major
Minor
Minor
Minor
Minor
Minor
Minor
Patch
Patch
Minor
Minor

Minor

Copyright © 2025 Ping Identity Corporation

Ping SDKs

What's New

Release date

2024-FEB-09

2024-JAN-08

2024-JAN-04

2023-DEC-28

2023-DEC-28

2023-JUL-31

2023-SEP-11

2023-SEP-11

2023-JUL-31

2023-JUL-28

2023-JUL-24

2023-JUL-20

2023-JUL-17

2023-JUN-29

2023-JUN-09

2023-MAY-30

2023-MAY-23

2023-APR-18

Release date

2022-NOV-15

2022-0CT-10

2022-SEP-29

2022-SEP-22

2022-JUN-22

Platform

Ping SDK for Android
Login Widget

Ping SDK for JavaScript
Ping SDK for Android
Ping SDK for iOS

Ping SDK for Android
Token Vault

Ping SDK for JavaScript
Ping SDK for Android
Ping SDK for iOS
Token Vault

Ping SDK for JavaScript
Login Widget

Ping SDK for JavaScript
Ping SDK for iOS

Ping SDK for Android
Ping SDK for JavaScript

Login Widget

Platform

Ping SDK for iOS

Ping SDK for JavaScript
Ping SDK for Android
Ping SDK for iOS

Ping SDK for Android

SDK version

4.3.1

1.2.1

43.0

4.3.0

4.3.0

4.2.0

4.2.0

4.2.0

411

4.0.0

4.0.0

4.0.0

1.0.0

SDK version

3.4.1

3.4.0

3.4.0

3.4.0

3.3.3

Release type("
Patch
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Major
Patch
Minor
Patch
Major
Major
Major

Major

Release type(!
Patch
Minor
Minor
Minor

Patch

Copyright © 2025 Ping Identity Corporation

What's New

Ping SDKs

Release date

2022-JUN-21

2022-JUN-20

2022-JUN-08

2022-MAY-19

2022-MAY-18

2022-APR-25

2022-JAN-27

2022-JAN-26

Release date

2021-NOV-17

2021-0OCT-28

2021-SEP-25

2021-SEP-09

2021-MAY-24

Release date

2020-DEC-18

2020-AUG-21

2020-JUN-30

Release date

2019-DEC-10

2019-0CT-21

Platform

Ping SDK for Android
Ping SDK for iOS

Ping SDK for iOS

Ping SDK for iOS

Ping SDK for Android
Ping SDK for JavaScript
Ping SDK for iOS

Ping SDK for Android

Platform

Ping SDK for iOS
Ping SDK for Android
Ping SDK for iOS
Ping SDK for Android

All

Platform
All
All

All

Platform
All

All

SDK version

3.3.2

3.3.2

3.3.1

3.3.0

3.3.0

3.3.0

3.2.0

3.2.0

SDK version

3.1.1

3.1.1

3.0.0

SDK version

2.2.0

2.1.0

2.0.0

SDK version

GA.12.10.2019

Beta.10.21.2019

Release type("
Patch
Patch
Patch
Minor
Minor
Minor
Minor

Minor

Release type("
Patch
Patch
Minor
Patch

Major

Release type(!
Minor
Minor

Major

Release type(!
Technology Preview

Technology Preview

() For details about the scope of expected changes for different release types, see Interface stability.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

What's New

Subscribe to get automatic updates:
+ B Ping SDKs Changelog RSS feed
+ 8 Ping SDKs Changelog email notifications(J

<> Important

SDKs Renamed
Prior to November 2024, the Ping SDKs were known as the ForgeRock SDKs.

Latest updates
SDK for Android 4.8.1 released | ygy

25 June, 2025
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
« Improved performance by adding caching for KeyStore, Cipher, and Symmetric Key encryption and decryption.
+ Added a strongBoxPreferred=false parameter to allow conditional use of StrongBox for key storage.
Learn more in Preventing the Keystore System from using StrongBox.

Full changelog

SDK for Android 4.8.0 released
16 May, 2025
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:

+ Added the ability to update the Firebase Cloud Messaging (FCM) device token for existing devices registered for push
notifications.

Learn more in Updating device tokens for existing accounts.

« Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud.

Learn more in Accessing WebAuthn authenticator information.

Full changelog

SDK for iOS 4.8.0 released | ygy

16 May, 2025

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_pdf/changelogs/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

What's New Ping SDKs

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

+ Added the ability to update the Apple Push Notification Service (APNs) device token for existing devices registered for push
notifications.

Learn more in Updating device tokens for existing accounts.

+ Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud.

Learn more in Accessing WebAuthn authenticator information.

Full changelog

SDK for JavaScript 4.8.0 released | ygy

16 May, 2025
A new version of the SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added a flag to skip immediately to the OAuth 2.0 flow rather than attempting to get tokens without redirecting.
Learn more in Configure JavaScript apps for OIDC login.
+ Added support for signing out of PingOne by using an ID token.

Full changelog

DaVinci Client for Android 1.1.0 released | gy

15 April, 2025
A new version of the DaVinci Client for Android is now available with improvements and fixes over earlier versions:
+ Added social sign on with supported external IDPs.
Learn more in Set up social sign on with external IDPs.
+ Added Accept-Language header customization to support localization.
Learn more in Localizing the user interface.
+ Added support for additional PingOne Form fields.
Learn more in Supported PingOne fields and collectors.

Full changelog

DaVinci Client for iOS 1.1.0 released | ygy

15 April, 2025
A new version of the DaVinci Client for iOS is now available with improvements and fixes over earlier versions:

+ Added social sign on with supported external IDPs.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

Learn more in Set up social sign on with external IDPs.

+ Added Accept-Language header customization to support localization.
Learn more in Localizing the user interface.

« Added support for additional PingOne Form fields.
Learn more in Supported PingOne fields and collectors.

+ Added support for Swift 6.

Full changelog

DaVinci Client for JavaScript 1.1.0 released | ygy

15 April, 2025
A new version of the DaVinci Client for JavaScript is now available with improvements and fixes over earlier versions:
+ Added social sign on with supported external IDPs.
Learn more in Set up social sign on with external IDPs.
+ Added middleware support to alter Accept-Language header to support localization.
Learn more in Localizing the user interface.
+ Added support for additional PingOne Form fields.
Learn more in Supported PingOne fields and collectors.

Full changelog

SDK for Android 4.7.0 released ' ygy

11 February, 2025
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added support for user profile self-service.
Learn more in Set up user profile self service.
+ Added support for managing registered devices.
Learn more in Set up registered device self service.
+ Added support for signing-out of PingOne with an ID token.

Full changelog

SDK for iOS 4.7.0 released

11 February, 2025

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added support for user profile self-service.
Learn more in Set up user profile self service.
« Added support for managing registered devices.
Learn more in Set up registered device self service.
+ Added support for signing-out of PingOne with an ID token.

Full changelog

SDK for JavaScript 4.7.0 released | ygy

11 February, 2025
A new version of the SDK for JavaScript is now available with improvements and fixes over earlier versions:
Added
+ Added support for managing registered devices.
Learn more in Set up registered device self service.
Changed

* Prioritized displayName field over userName when saving a WebAuthn or passkey to an account. Previously the SDK
displayed a UUID for saved credentials rather than the user's name.

Full changelog

DaVinci client 1.0.0 released
16 December, 2024
The first version of the DaVinci client for Android, iOS and JavaScript is now available.

@ Note

The Ping SDK DaVinci clients are constantly evolving to meet your business needs.
Check back from time to time on latest updates and enhancements.

* Supports the Custom HTML Template capability of the HTTP Connector.
+ Supports the following fields:

o Text field

o Password field

o Submit button

o Flow button

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

To learn more, refer to Supported DaVinci fields.
+ Follow the DaVinci client tutorials to quickly setup a demo app to connect to your DaVinci flows.
* Read how to configure the DaVinci client to leverage DaVinci flows in your native or single-page apps.

Full changelog

SDK for Android 4.6.0 released
17 October, 2024
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added the ability to customize how the ForgeRock SDK stores tokens and data.
To learn more, refer to Customizing storage.
+ Added support for Android App Links that use the http/https scheme for redirect URIs in centralized login apps.
+ Added support for Android 15.
» Added support for the PingOne Protect Marketplace nodes.

Full changelog

SDK for iOS 4.6.0 released

17 October, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added support for the PingOne Protect Marketplace nodes.
+ Exposed the realm, success URL and failure URL values within Token .
+ Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback.

Full changelog

SDK for JavaScript 4.6.0 released

17 October, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added centralized login support for PingFederate servers.
+ Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback.
+ Added support for the PingOne Protect Marketplace nodes.

Full changelog

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

SDK for Android 4.5.0 released
9 July, 2024
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added support for signing off from PingOne to the centralized login flow.
To learn more, follow the Android tutorial for PingOne.

+ Added the ability to dynamically configure the SDK by collecting values from a PingOne or server’'s OpenlID
Connect .well-known endpoint.

To learn more, refer to Using the .well-known endpoint for dynamic configuration.

Full changelog

SDK for iOS 4.5.0 released
9 July, 2024
A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added support for signing off from PingOne when using the centralized login flow with OAuth 2.0.
To learn more, follow the iOS tutorial for PingOne.

+ Added the ability to dynamically configure the SDK by collecting values from the server's OpenlD Connect .well-known
endpoint.

To learn more, refer to Using the .well-known endpoint for dynamic configuration.

Full changelog

Ping (ForgeRock) Login Widget 1.3.0 released | ygy

30 May, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
« Added support for integration with PingOne Protect(Z.
+ Added the name of the device to the recovery codes page.

Full changelog

SDK for JavaScript 4.4.2 released

15 May, 2024

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added a logoutRedirectUri parameter to the FRUser.logout() method.

Add the parameter to invoke a redirect flow, for revoking tokens and ending sessions created by a PingOne server.

Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

Ping SDKs What's New

To learn more, follow the JavaScript tutorial for PingOne.

+ Added a platformHeader configuration property to control whether the SDK adds the X-Requested-Platform header to
all outgoing connections.

Full changelog

SDK for iOS 4.4.1 released

25 April, 2024

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added privacy manifest files(Z to ForgeRock SDK for iOS modules.

Full changelog

SDK for iOS 4.4.0 released
4 April, 2024
A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added a new module for future integration with PingOne Protect (.
Learn more at Integrate with PingOne Protect for risk evaluations.
+ Added an interface for customizing the biometric Ul prompts when device binding or signing.
Learn more at Bind and verify devices.
+ Added support for the TextInput callback.

Full changelog

SDK for Android 4.4.0 released

28 March, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added a new module for future integration with PingOne Protect(Z.
Learn more at Integrate with PingOne Protect for risk evaluations.
+ Added an interface for customizing the biometric Ul prompts when device binding or signing.
Learn more at Bind and verify devices.
+ Added support for the TextInput callback.

Full changelog

Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

What's New Ping SDKs

SDK for JavaScript 4.4.0 released
13 March, 2024
A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added a new module for future integration with PingOne Protect (.
+ Added the ability to include the supplied device name when displaying recovery codes.
Learn more at Using the device name.
+ Added the ability to use values from an OpenID Connect .well-known URL to automatically configure the SDK paths.
This simplifies using the SDKs with OIDC-compliant identity providers, such as PingOne (.
For more information, refer to the ForgeRock SDK for JavaScript PingOne tutorial.

Full changelog

SDK for Android 4.3.1 released

9 February, 2024

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
* Fixed an SDK crash during device binding on Android 9 devices.

Full changelog

Ping (ForgeRock) Login Widget 1.2.1 released

8 January, 2024

A new version of the Ping (ForgeRock) Web Login Framework is now available with improvements and fixes over earlier versions:
+ Support for CAPTCHA nodes.

Full changelog

SDK for JavaScript 4.3.0 released
4 January, 2024
A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added ability to override default prefix string given to storage keys.
For more information, refer to prefix in the ForgeRock SDK for JavaScript Properties.
+ Added an FRQRCode utility class to determine if a step has a QR code and handle the data to display.
For more information, refer to Set up QR code handling.

Full changelog

Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services

Ping SDKs What's New

SDK for Android 4.3.0 released

28 December, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added ability to customize cookie headers in outgoing requests from the SDK.
+ Added ability to add custom claims when verifying signatures from bound devices.
+ Added client-side support for the upcoming AppIntegrity callback.

Full changelog

SDK for iOS 4.3.0 released
28 December, 2023
A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added client-side support for the upcoming AppIntegrity callback.
+ Added a new ephemeralAuthSession browser type for i0OS13 and later.
+ Added iat and nbf claims to the device binding JWS payload.
+ Added ability to insert custom claims when performing device signing verification.
+ Updated the detection of Jailbreak status.

Full changelog

SDK for Android 4.2.0 released
3 October, 2023
A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added Gradle 8 and JDK 17 support.
+ Added Android 14 support.
+ Added verification of key pairs during device binding enroliment by using Google Key Attestation.
+ Added issued at (iat) and not before (nbf) claims to JSON Web tokens used for device binding and signing verification.

Full changelog

Token Vault 4.2.0 released
11 September, 2023
A new version of the Token Vault is now available with improvements and fixes over earlier versions:

+ Added a requirement to declare a list of URLs in the Token Vault Proxy configuration. These generate an allowlist of origins
to which the proxy can forward requests.

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

Full changelog

SDK for JavaScript 4.2.0 released

11 September, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:

+ Added a logLevel configuration property to specify the level of logging the SDK performs.

+ Added a customLogger configuration property to specify a replacement for the native console.log that the SDK uses by

default.

For example, you could write a replacement that captures SDK log output to services such as RelicZ or Rocket (5.

Full changelog

SDK for Android 4.1.0 released

31 July, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Added support for interceptors in the authenticator module
+ Added an interface for refreshing access tokens

+ Added support for policy advice from IG in JSON format

Full changelog

SDK for iOS 4.1.0 released

28 July, 2023

A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:

+ Added support for interceptors in the authenticator module.
+ Added support for mfauth deep links in the authenticator sample app.
+ Added an interface for refreshing access tokens.

« Added support for policy advice from IG in JSON format.

Full changelog

Token Vault 4.1.2 released

24 July, 2023
Token Vault provides an additional layer of security for storing and using OAuth 2.0 and OpenID Connect 1.0 tokens in your
JavaScript single-page applications (SPAs).

Implemented as a plugin for the ForgeRock SDK for JavaScript, Token Vault provides a feature called origin isolation.

n Copyright © 2025 Ping Identity Corporation

https://newrelic.com/
https://newrelic.com/
https://logrocket.com/
https://logrocket.com/

Ping SDKs What's New

Full changelog

SDK for JavaScript 4.1.2 released

20 July, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added support in preparation for upcoming Token Vault.

Full changelog

Ping (ForgeRock) Login Widget 1.1.0 released

17 July, 2023

A new version of the Ping (ForgeRock) Web Login Framework is now available with improvements and fixes over earlier versions:
+ Support for device profiling callbacks (DeviceProfileCallback)
+ Support for web authentication (WebAuthn) journeys and trees.

Full changelog

SDK for JavaScript 4.1.1 released

29 June, 2023

A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added support in the HTTPClient for receiving transactional authorization advice in JSON format.

Full changelog

SDK for iOS 4.0.0 released
9 June, 2023
A new version of the ForgeRock SDK for iOS is now available with improvements and fixes over earlier versions:
+ Added support for Passkeys.
+ Added the ability to provide a device name when registering WebAuthN devices.
+ Added support for enforcing policies in the Authenticator SDK.
+ Added SwiftUl quick start sample code.
Full changelog

@ Important

This release contains changes that could affect the functionality of your app.
Refer to Incompatible changes.

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

SDK for Android 4.0.0 released

30 May, 2023

A new version of the ForgeRock SDK for Android is now available with improvements and fixes over earlier versions:
+ Upgraded the Google Fido client to support Passkeys.
+ Added the ability to provide a device name when registering WebAuthN devices.
+ Added support for enforcing policies in the Authenticator SDK.

Full changelog

@ Important

This release contains changes that could affect the functionality of your app.
Refer to Incompatible changes.

SDK for JavaScript 4.0.0 released
23 May, 2023
A new version of the ForgeRock SDK for JavaScript is now available with improvements and fixes over earlier versions:
+ Added the ability to provide a device name when registering WebAuthN devices.
+ Updated ESModule (ESM) bundle.
+ Updated tags in the GitHub repo to be prefixed with the package name. For example, javascript-sdk-${tag}.

Full changelog

@ Important

This release contains changes that could affect the functionality of your app.
Refer to the following pages for details:

* Incompatible changes
+ Deprecations

Ping (ForgeRock) Login Widget 1.0.0 released
18 April, 2023

The Ping (ForgeRock) Login Widget is an all-inclusive Ul component to help you add authentication, user registration, and other
self-service journeys into your web applications.

The Ping (ForgeRock) Login Widget uses the Ping SDK for JavaScript internally, and adds a user interface and state management.
This rendering layer helps eliminate the need to develop and maintain the Ul components for providing complex authentication
experiences.

Full changelog

Copyright © 2025 Ping Identity Corporation

Ping SDKs

Full changelogs

AR

Ping SDK for Android

Ping SDK for JavaScript

Ping (ForgeRock) Login Widget

Legacy releases

Copyright © 2025 Ping Identity Corporation

What's New

Ping SDK for iOS

DaVinci client

Token Vault

What's New

Ping SDKs

Release timeline

Key:

N.N.N = Latest version

Release date

2025-MAY-16

2025-MAY-16

2025-MAY-16

2025-APR-15

2025-APR-15

2025-APR-15

2025-FEB-11

2024-FEB-11

2025-FEB-11

2024-DEC-16

2024-0CT-17

2024-0CT-17

2024-0CT-17

2024-JUL-11

2024-JUL-11

2024-JUN-05

2024-MAY-15

2024-APR-25

2024-APR-04

2024-MAR-28

2024-MAR-13

Platform
Ping SDK for Android
Ping SDK for JavaScript

Ping SDK for iOS

DaVinci client for Android

DaVinci client for iOS

DaVinci client for JavaScript

Ping SDK for Android
Ping SDK for iOS

Ping SDK for JavaScript
DaVinci client

Ping SDK for Android
Ping SDK for iOS

Ping SDK for JavaScript
Ping SDK for Android
Ping SDK for iOS

Login Widget

Ping SDK for JavaScript
Ping SDK for iOS

Ping SDK for iOS

Ping SDK for Android

Ping SDK for JavaScript

SDK version

4.8.0

4.8.0

4.8.0

4.7.0

4.7.0

4.7.0

1.0.0

4.6.0

4.6.0

4.6.0

4.5.0

4.5.0

1.3.0

442

4.41

4.4.0

4.4.0

4.4.0

Release type(V
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Major
Minor
Minor
Minor
Minor
Minor
Minor
Patch
Patch
Minor
Minor

Minor

Copyright © 2025 Ping Identity Corporation

Ping SDKs

What's New

Release date

2024-FEB-09

2024-JAN-08

2024-JAN-04

2023-DEC-28

2023-DEC-28

2023-JUL-31

2023-SEP-11

2023-SEP-11

2023-JUL-31

2023-JUL-28

2023-JUL-24

2023-JUL-20

2023-JUL-17

2023-JUN-29

2023-JUN-09

2023-MAY-30

2023-MAY-23

2023-APR-18

Release date

2022-NOV-15

2022-0CT-10

2022-SEP-29

2022-SEP-22

2022-JUN-22

Platform

Ping SDK for Android
Login Widget

Ping SDK for JavaScript
Ping SDK for Android
Ping SDK for iOS

Ping SDK for Android
Token Vault

Ping SDK for JavaScript
Ping SDK for Android
Ping SDK for iOS
Token Vault

Ping SDK for JavaScript
Login Widget

Ping SDK for JavaScript
Ping SDK for iOS

Ping SDK for Android
Ping SDK for JavaScript

Login Widget

Platform

Ping SDK for iOS

Ping SDK for JavaScript
Ping SDK for Android
Ping SDK for iOS

Ping SDK for Android

SDK version

4.3.1

1.2.1

43.0

4.3.0

4.3.0

4.2.0

4.2.0

4.2.0

411

4.0.0

4.0.0

4.0.0

1.0.0

SDK version

3.4.1

3.4.0

3.4.0

3.4.0

3.3.3

Release type("
Patch
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Major
Patch
Minor
Patch
Major
Major
Major

Major

Release type(!
Patch
Minor
Minor
Minor

Patch

Copyright © 2025 Ping Identity Corporation

What's New

Ping SDKs

Release date

2022-JUN-21

2022-JUN-20

2022-JUN-08

2022-MAY-19

2022-MAY-18

2022-APR-25

2022-JAN-27

2022-JAN-26

Release date

2021-NOV-17

2021-0OCT-28

2021-SEP-25

2021-SEP-09

2021-MAY-24

Release date

2020-DEC-18

2020-AUG-21

2020-JUN-30

Release date

2019-DEC-10

2019-0CT-21

Platform

Ping SDK for Android
Ping SDK for iOS

Ping SDK for iOS

Ping SDK for iOS

Ping SDK for Android
Ping SDK for JavaScript
Ping SDK for iOS

Ping SDK for Android

Platform

Ping SDK for iOS
Ping SDK for Android
Ping SDK for iOS
Ping SDK for Android

All

Platform
All
All

All

Platform
All

All

SDK version

3.3.2

3.3.2

3.3.1

3.3.0

3.3.0

3.3.0

3.2.0

3.2.0

SDK version

3.1.1

3.1.1

3.0.0

SDK version

2.2.0

2.1.0

2.0.0

SDK version

GA.12.10.2019

Beta.10.21.2019

Release type("
Patch
Patch
Patch
Minor
Minor
Minor
Minor

Minor

Release type("
Patch
Patch
Minor
Patch

Major

Release type(!
Minor
Minor

Major

Release type(!
Technology Preview

Technology Preview

() For details about the scope of expected changes for different release types, see Interface stability.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

Ping SDK for Android changelog

Subscribe to get automatic updates:
+ B Ping SDKs Changelog RSS feed
+ 8 Ping SDKs Changelog email notifications

Ping SDK for Android 4.8.1

June 25, 2025

Added
+ Added caching for KeyStore, Cipher, and Symmetric Key encryption and decryption, improving performance. [SDKS-4090]
+ Added a strongBoxPreferred=false parameter to allow conditional use of StrongBox for key storage. [SDKS-4090]

Ping SDK for Android 4.8.0

May 16, 2025
Added

+ Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud. [SDKS-3843]

+ Added the ability to update the Firebase Cloud Messaging (FCM) device token for existing devices registered for push
notifications. [SDKS-3684]

Updated
+ Improved logging for errors and warning exceptions. [SDKS-3990]
Fixed

* Fixed an issue causing a crash when the killing the app process in the background during the OIDC (centralized login) flow.
[SDKS-3993]

Ping SDK for Android 4.7.0

February 11, 2025
Added

+ Added support for user profile self-service. [SDKS-3408]

+ Added support for managing registered devices.

+ Added support for signing-out of PingOne with an ID token. [SDKS-3423]
Updated

+ Improved compatibility with certain devices by implementing a fallback mechanism that uses asymmetric key generation if
symmetric key generation in the AndroidKeyStore fails. [SDKS-3467]

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

What's New Ping SDKs

Fixed
+ Fixed an issue that caused duplicate PUSH notifications in the Authenticator module. [SDKS-3533]

Ping SDK for Android 4.6.0

October 17, 2024
Added
+ Added support for Android 15. [SDKS-3098]
+ Added the ability to customize how the SDK stores tokens and data. [SDKS-3378]

+ Added support for Android App Links that use the http/https scheme for redirect URIs in centralized login apps.
[SDKS-3433]

+ Added support for the PingOne Protect Marketplace nodes. [SDKS-3297]

+ Exposed the realm and success URL values within SSOToken . [SDKS-3351]

+ Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback. [SDKS-2499]
Updated

+ Updated the SDK to ignore any type 4 TextOutputCallback callbacks, as these contain JavaScript that Android cannot
execute. [SDKS-3227]

Fixed
* Fixed a potential ServiceConnection leakin CustomTabManager . [SDKS-3346]

Ping SDK for Android 4.5.0

July 12, 2024
Added
+ Added support for signing off from PingOne to the centralized login flow. [SDKS-3020]

+ Added the ability to dynamically configure the SDK by collecting values from the server's OpenlD Connect .well-known
endpoint. [SDKS-3022]

Fixed

* Resolved security vulnerability warnings related to the commons-io-2.6.jar and bcprov-jdk150n-1.68.jar libraries.
[SDKS-3072, SDKS-3073]

* Fixed @ NullPointerException in the centralized login flow. [SDKS-3079]

+ Improved multi-threaded performance when caching access tokens. [SDKS-3104]

+ Synchronized the encryption and decryption block to avoid keystore crashes. [SDKS-3199]

+ Fixed an issue related to handling HiddenValueCallback if isMinifyEnabled is setto true.[SDKS-3201]

+ Fixed an issue where device binding using an application PIN was failing when Arabic language was used. [SDKS-3221]

H Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

« Fixed an issue where browser sessions were not properly signed out when a non-default browser was used in centralized
login. [SDKS-3276]

« Fixed an unexpected behavior in the authentication flow caused by AppAuthConfiguration settings being ignored during
centralized login. [SDKS-3277]

« Fixed the FRUser.revokeAccessToken() method to not end the user’s session during the centralized login flow.
[SDKS-3282]

Ping SDK for Android 4.4.0

March 28, 2024
Added
* Added a new module for integration with PingOne Protect(X. [SDKS-2900]
* Added support for the TextInput callback. [SDKS-545]
+ Added an interface for customizing the biometric Ul prompts when device binding or signing. [SDKS-2991]

* Added x-requested-with: forgerock-sdk and x-requested-platform: android immutable HTTP headers to each
outgoing request. [SDKS-3033]

Fixed

+ Addressed a null pointer exception during centralized login by using ActivityResultContract in place of the deprecated
onActivityResult method. [SDKS-3079]

+ Addressed nimbus-jose-jwt:9.25 library security vulnerability (CVE-2023-52428). [SDKS-2988]

Ping SDK for Android 4.3.1

February 9, 2024
Fixed
« Fixed an issue where the SDK crashes during device binding on Android 9 devices. [SDKS-2948]

Ping SDK for Android 4.3.0

December 28, 2023
Added
+ Added ability to customize cookie headers in outgoing requests from the SDK. [SDKS-2780]
+ Added ability to add custom claims when verifying signatures from bound devices. [SDKS-2787]
+ Added client-side support for the upcoming AppIntegrity callback. [SDKS-2631]
Updated
* The SDK now uses auth-per-use keys for Device Binding. [SDKS-2797]

+ Improved handling of WebAuthn cancellations. [SDKS-2819]

Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

What's New Ping SDKs

* The forgerock_url, forgerock_realm, and forgerock_cookie_name parameters are now mandatory when dynamically
configuring the SDK. [SDKS-2782]

* Addressed woodstox-core:6.2.4 library security vulnerability CVE-2022-40152 (2. [SDKS-2751]

Ping SDK for Android 4.2.0

October 3, 2023
Added
+ Added Gradle 8 and JDK 17 support. [SDKS-2451]
+ Added Android 14 support. [SDKS-2636]
+ Added verification of key pairs during device binding enroliment by using Google Key Attestation. [SDKS-2412]

+ Added issued at (iat) and not before (nbf) claims to JSON Web tokens used for device binding and signing verification.
[SDKS-2747]

Ping SDK for Android 4.1.0

July 31, 2023
Added
« Added support for interceptors in the authenticator module. [SDKS-2544]
+ Added an interface for refreshing access tokens. [SDKS-2567]
+ Added support for policy advice from IG in JSON format. [SDKS-2240]
Fixed
* Fixed an issue with parsing the issuer value in the URI provided by the combined MFA registration node. [SDKS-2542]
+ Added an error message about duplicated accounts while using the combined MFA registration node. [SDKS-2627]

« Fixed an issue that caused loss of WebAuthn credentials when upgrading the SDK from 4.0.0-beta4 to newer versions.
[SDKS-2576]

Ping SDK for Android 4.0.0

May 30, 2023
Added
+ Upgraded the Google Fido client to support Passkeys. [SDKS-2243]
« Added the FRWebAuthn interface to remove WebAuthn reference keys. [SDKS-2272]
+ Added an interface to specify a device name during WebAuthn registration. [SDKS-2296]
+ Added DeviceBinding callback support. [SDKS-1747]
+ Added DeviceSigningVerifier callback support. [SDKS-2022]

« Added support for combined MFA registration in the Authenticator SDK. [SDKS-1972]

Copyright © 2025 Ping Identity Corporation

https://github.com/advisories/GHSA-3f7h-mf4q-vrm4
https://github.com/advisories/GHSA-3f7h-mf4q-vrm4

Ping SDKs What's New

+ Added support for enforcing policies in the Authenticator SDK. [SDKS-2166]
Fixed
* Fixed WebAuthn authentication on devices that use a full-screen biometric prompt. [SDKS-2340]
« Fixed functionality of the NetworkCollector method. [SDKS-2445]
Incompatible changes
+ Removed support for native single sign-on (SSO).
+ Changed the signature for a number of methods.
For more information, refer to Incompatible changes.

Ping SDK for Android 3.4.0

September 29, 2022
Added
+ Dynamic SDK Configuration. [SDKS-1759]
+ Android 13 support. [SDKS-1944]
Changed
+ Changed activity type used as parameter in PushNotification.accept .[SDKS-1968]
+ Updated deserialization of objects to use a class allowlist to prevent access to untrusted data. [SDKS-1818]

+ Updated the Authenticator module and sample app to handle the new POST_NOTIFICATIONS permission in Android 13.
[SDKS-2033]

* Fixed an issue where the DefaultTokenManager was not caching the AccessToken in memory upon retrieval from Shared
Preferences. [SDKS-2066]

* Deprecated the forgerock_enable_cookie configuration. [SDKS-2069]

+ Align forgerock_logout_endpoint configuration name with the Ping SDK for iOS. [SDKS-2085]

+ Allow leading slash on custom endpoint path. [SDKS-2074]

« Fixed bug where the state parameter value was not being verified upon calling the Authorize endpoint. [SDKS-2078]

Ping SDK for Android 3.3.3

June 22, 2022
Changed
+ Updated the version of the com.squareup.okhttp3 library in the SDK to 4.10.0 [SDKS-1957]

Ping SDK for Android 3.3.2

June 21, 2022

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

Added
+ Interface for log management [SDKS-1864]

Ping SDK for Android 3.3.0

May 18, 2022
Added
* Support SSL pinning [SDKS-80]
+ Restore session token when it is out of sync with the session token that bound with the access token [SDKS-1664]
+ Session token should be included in the header instead of request parameter for /authorize endpoint [SDKS-1670]
* Support to broadcast logout event to clear application tokens when user logout the app [SDKS-1663]
+ Obtain timestamp from new PushNotification payload [SDKS-1666]
+ Add new payload attributes to the PushNotification [SDKS-1776]
+ Allow processing of push notifications without device token [SDKS-1844]
Fixed
* Dispose AuthorizationService when no longer required [SDKS-1636]
+ Authenticator sample app crash after scanning push mechanism [SDKS-1454]

Ping SDK for Android 3.2.0

January 26, 2022
Features
* Google Sign-In Security Enhancement.
* Fix for WebAuthn Registration & Authentication prompt.

Ping SDK for Android 3.1.2

October 28, 2021
Features
+ Disable native SSO when the SDK fails to access the Android AccountManager.

Ping SDK for Android 3.1.1

September 09, 2021
Features
+ Support for Android 12.

+ Unlocked device is not required for data decryption.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

+ Introduced FRLifecycle interface and exposed interfaces to allow custom native SSO implementation.

Ping SDK for iOS changelog
Subscribe to get automatic updates:
+ B Ping SDKs Changelog RSS feed
+ 8 Ping SDKs Changelog email notifications(J

Ping SDK for iOS 4.8.0

May 16, 2025
Added

+ Added the ability to update the Apple Push Notification Service (APNs) device token for existing devices registered for push
notifications. [SDKS-3684]

* Added support for returning WebAuthn authenticator information in the updated WebAuthn authentication and
registration callbacks introduced in PingAM and PingOne Advanced Identity Cloud. [SDKS-3842]

Updated
+ Upgraded ReCAPTCHA Enterprise to version 18.7.0 (from 18.6.0) [SDKS-3927]

Fixed
+ Resolved an issue where updating device biometrics didn't enforce device re-binding as expected. [SDKS-3963]
* Corrected the missing PingProtect scheme. [SDKS-3856]

+ Resolved a race condition in the device network collector that prevented NetworkReachabilityMonitor from completing.
[SDKS-3827]

Ping SDK for iOS 4.7.0

February 11, 2025
Added

+ Added support for user profile self-service. [SDKS-3409]

+ Added support for managing registered devices.

+ Added support for signing-out of PingOne with an ID token. [SDKS-3424]
Updated

+ Updated jailbreak detectors to reduce false-positive detections. [SDKS-3693]
Fixed

* Fixed an issue that caused duplicate PUSH notifications in the Authenticator module. [SDKS-3533]

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

What's New Ping SDKs

Ping SDK for iOS 4.6.0

October 17, 2024
Added

+ Added support for the PingOne Protect Marketplace nodes. [SDKS-3296]

+ Exposed the realm, success URL, and failure URL values within Token . [SDKS-3352]

+ Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback. [SDKS-3324]

+ Added support for Device Binding in iOS simulators, by setting Authentication Type in the Device Binding node to None.
Updated

* Updated the SDK to skip any type 4 TextOutputCallback callbacks, as these contain JavaScript that iOS cannot execute.
[SDKS-3226]

* Made PolicyAdviceCreator public. [SDKS-3349]
Fixed
« Fixed missing UIKit import issue for SPM. [SDKS-3348]
+ Fixed an issued preventing SSL pinning from working with root certificates. [SDKS-3334]
* Fixed a build failure because FRCore.swiftmodule is not built for armé4 . [SDKS-3347]

Ping SDK for iOS 4.5.0

July 12, 2024
Added
+ Added support for signing off from PingOne when using the centralized login flow with OAuth 2.0. [SDKS-3021]

+ Added the ability to dynamically configure the SDK by collecting values from the server's OpenlD Connect .well-known
endpoint. [SDKS-3023]

Fixed
+ Fixed issue causing SSL pinning configuration to be ignored in FRURLProtocol class. [SDKS-3239]
* Removed scope validation from AccessToken initialization. [SDKS-3305]

Ping SDK for iOS 4.4.1

April 25,2024
Added

+ Added privacy manifest files(Z to Ping SDK for iOS modules. [SDKS-3086]
Updated

* Updated PingOne Signals (Protect) SDK to version 5.2.3. [SDKS-3086]

Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk

Ping SDKs What's New

+ Updated Google SDK to version 7.1.0. [SDKS-3086]
Changed
* Removed storage field from the HardwareCollector class. [SDKS-3086]

Ping SDK for iOS 4.4.0

April 4, 2024
Added
+ Added a new module for integration with PingOne Protect(Z. [SDKS-2901]
o Added support for the TextInput callback. [SDKS-546]
o Added an interface for customizing the biometric Ul prompts when device binding or signing. [SDKS-2990]

o Added x-requested-with: forgerock-sdk and x-requested-platform: ios immutable HTTP headers to each
outgoing request. [SDKS-2997]

Changed
+ Prevented the operation of device binding and signing features on simulators. [SDKS-2995]

Ping SDK for iOS 4.3.0

December 15, 2023
Added
+ Added client-side support for the upcoming AppIntegrity callback. [SDKS-2630/SDKS-2761]
+ Added a new ephemeralAuthSession browser type for iOS13 and later. [SDKS-2707]
+ Added iat and nbf claims to the device binding JWS payload. [SDKS-2748]
+ Added ability to insert custom claims when performing device signing verification. [SDKS-2788]
Fixed
* Fixed an issue where the issuer parameter was not properly parsed when using PingAM 7.2.x. [SDKS-2653]
« Fixed an issue related to inadequate cache control. [SDKS-2700]

* Fixed an issue when the sfviewController settingin centralized login had entersReaderIfAvailable setto true.
[SDKS-2746]

+ Fixed an issue with the device profile collector that affected phones with multiple sim cards in iOS 16.3 and earlier.
[SDKS-2776]

« Fixed an issue with device binding API access levels. [SDKS-2886]
* Fixed an issue with removing a userkey from the local device repo. [SDKS-2887]
Updated

+ Updated the detection of Jailbreak status. [SDKS-2796]

Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

What's New Ping SDKs

+ Improved unit and end-to-end tests. [SDKS-2637]

Ping SDK for iOS 4.1.0

July 28, 2023
Added
+ Added support for interceptors in the authenticator module. [SDKS-2545]
+ Added support for mfauth deep links in the authenticator sample app. [SDKS-2524]
+ Added an interface for refreshing access tokens. [SDKS-2563]
+ Added support for policy advice from IG in JSON format. [SDKS-2239]
Fixed
* Fixed an issue with parsing the issuer value in the URI provided by the combined MFA registration node. [SDKS-2542]
+ Added an error message about duplicated accounts while using the combined MFA registration node. [SDKS-2627]

Ping SDK for iOS 4.0.0

June 9, 2023 | major

Added
+ Added support for Passkeys. [SDKS-2140]
* Added DeviceBinding callback support. [SDKS-1748]
+ Added DeviceSigningVerifier callback support. [SDKS-2023]
+ Added support for combined MFA registration in the Authenticator SDK. [SDKS-1972]
+ Added support for enforcing policies in the Authenticator SDK. [SDKS-2166]
+ Added an interface for listing and deleting WebAuthn credentials from the device. [SDKS-2279]
+ Added an interface to specify a device name during WebAuthn registration. [SDKS-2297]
+ Added a SwiftUl quick start example. [SDKS-2405]
Fixed
+ Added error message description to the WebAuthnError enum. [SDKS-2226]
+ Updated the order of presenting the registered WebAuthN keys on the device. [SDKS-2251]
+ Updated Facebook SDK version to 16.0.1. [SDKS-1839]
+ Updated Google SDK version to 7.0.0. [SDKS-2426]
Incompatible changes
+ Changed the signature for a number of methods.

For more information, refer to Incompatible changes.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

Ping SDK for iOS 3.4.1

November 15, 2022

Changed
+ Updated legacy encryption algorithm used for generation of cryptographic keys stored in Secure Enclave [SDKS-1994]
* Fixed an issue related to push notifications timeout [SDKS-2164]
« Fixed an unexpected error occurring during the decoding of some push notifications [SDKS-2199]

Ping SDK for iOS 3.4.0

September 22, 2022
Added
+ Dynamic SDK Configuration [SDKS-1760]
+i0S 16 Support [SDKS-1932]
Changed
* Fixed build errors on Xcode 14 [SDKS-2073]
« Fixed bug where the state parameter value was not verified upon calling the Authorize endpoint [SDKS-2077]

Ping SDK for iOS 3.3.2

June 20, 2022
Added
« Interface for log management [SDKS-1863]
Changed
* Fixed memory leak in the NetworkCollector class [SDKS-1931]

Ping SDK for iOS 3.3.1

June 08, 2022
Added

* Add PushType.biometric supportand BiometricAuthentication class for biometric authentication. Updated sample
app to handle new Push types [SDKS-1865]

Changed
« Fixed the bug when refreshing the access token we return the old token [SDKS-1824]

« Fixed bug when multiple threads are trying to access the same resource in the deviceCollector and ProfileCollector
[SDKS-1912]

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

Ping SDK for iOS 3.3.0

May 19, 2022
Added
* SSL pinning support [SDKS-1627]
+ Obtain timestamp from new push notification payload [SDKS-1665]
+ Add new payload attributes in the push notification [SDKS-1775]
+ Apple Sign In enhancements to get user profile info [SDKS-1632]
Changed
* Remove "Accept: application/x-www-form-urlencoded" header from /authorize endpoint for GET requests [SDKS-1729]

* Remove iPlanetDirectoryPro (or session cookie name) from the query parameter, and inject it into the header instead
[SDKS-1708]

* Fix issue when expired push notification displayed as "Approved" in the notification history list [SDKS-1491]
« Fix issues with registering TOTP accounts with invalid period [SDKS-1405]
Ping SDK for iOS 3.2.0
January 27, 2022
Changed
» Updated GoogleSignin library to the latest version 6.1.8.
+ FRGoogleSignIn is now available through SPM.

Ping SDK for iOS 3.1.1
November 17, 2021
Features
+ Added custom implementation for HTTPCookie for iOS 11+ devices, to support NSSecureCoding for storing cookies.
* Changed all instances of Archiving/Unarchiving to use NSSecureCoding.
* SecuredKey initializer now supports passing a Keychain accessibility flag.
+ SecuredKey now has the same default Keychain accessibility flag as the KeychainService ".afterFirstUnlock".

Ping SDK for iOS 3.1.0

September 25, 2021

Features

« Fixed an issue where the MetadataCallback was overriding the stage property of a node.

« Fixed an issue which was affecting the centralized login feature.

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

« Various bug fixes and enhancements for the Authenticator SDK.

Ping SDK for JavaScript changelog
Subscribe to get automatic updates:
+ B Ping SDKs Changelog RSS feed
+ 8 Ping SDKs Changelog email notifications(J

Ping SDK for JavaScript 4.8.0

May 16, 2025 | minor

Added

+ Added a flag to skip immediately to the OAuth 2.0 flow rather than attempting to get tokens without redirecting.
[SDKS-3866]

+ Added support for signing out of PingOne by using an ID token. [SDKS-3757]
Changed
* Removed an unneeded call to the /session endpoint. [SDKS-3757]

Ping SDK for JavaScript 4.7.0

February 11, 2025 minor

Added
+ Added a device client module to manage registered devices.
Changed

* Prioritized displayName field over userName when saving a WebAuthn or passkey to an account. Previously the SDK
displayed a UUID for saved credentials rather than the user's name. [SDKS-3473]

Ping SDK for JavaScript 4.6.0
October 17,2024 | minor

Added
+ Added centralized login support for PingFederate servers. [SDKS-3250]
+ Added client-side support for the upcoming ReCaptchaEnterpriseCallback callback. [SDKS-3326]
+ Added support for the PingOne Protect Marketplace nodes. [SDKS-3298]
Changed
« Refactored authorize URL utilities for upcoming DaVinci module. [SDKS-3183]

+ Updated allowed message list to include PingFederate "requires consent" response. [SDKS-3478]

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

What's New Ping SDKs

+ Changed the PKCE utility to return a storage function.

Ping SDK for JavaScript 4.4.2

May 15, 2024 | patch
Added
+ Added a logoutRedirectUri parameter to the FRUser.logout() method.
Add the parameter to invoke a redirect flow, for revoking tokens and ending sessions created by a PingOne server.
To learn more, follow the JavaScript tutorial for PingOne.

+ Added a platformHeader configuration property to control whether the SDK adds the X-Requested-Platform header to
all outgoing connections.

Updated
* Updated the embedded PingOne Signals (Protect) SDK to the latest version.

* Updated the SDK to import the PingOne Signals (Protect) SDK dynamically and start it with a method call rather than on
load.

+ Updated the build system to use Vite (2.
Fixed
* Wrapped the PingOne Signals (Protect) SDK to protect it from being called when running server-side.

Ping SDK for JavaScript 4.4.0
March 13, 2024 | minor
Added
+ Added a new module for integration with PingOne Protect(J. [SDKS-2902]

+ Added the ability to include the supplied device name when displaying recovery codes. [SDKS-2536]

+ Added the ability to use the OpenlID Connect .well-known endpoint to override the default path configuration.
[SDKS-2966]

This simplifies using the SDKs with OIDC-compliant identity providers, such as PingOne (.

For more information, refer to the Ping SDK for JavaScript PingOne tutorial.

@ Note

The SDK is currently unable to revoke PingOne-issued OIDC tokens when using Firefox and Safari, due to third-
party cookie restrictions.

+ Added StepOptions type to the public APIZ.

n Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk
https://vitejs.dev/
https://vitejs.dev/
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/r/en-us/pingone/p1_c_services
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/enums/fr-auth_enums.StepType.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/enums/fr-auth_enums.StepType.html

Ping SDKs What's New

Fixed

« Fixed a naming collision when using sessionStorage for tokens, state, and PKCE data and performing centralized login.
[SDKS-2945]

Ping SDK for JavaScript 4.3.0

January 4, 2024 | minor
Added
+ Added ability to override default prefix string given to storage keys.
For more information, refer to prefix in the Ping SDK for JavaScript Properties.
+ Added an FRQRCode utility class to determine if a step has a QR code and handle the data to display.
For more information, refer to Set up QR code handling.
Fixed
* Fixed undefined main and module fields in package.json.
Ping SDK for JavaScript 4.2.0
September 11, 2023 | minor
Added
+ Added a logLevel configuration property to specify the level of logging the SDK performs.
For more information, refer to About the default Ping SDK for JavaScript logger.

+ Added a customLogger configuration property to specify a replacement for the native console.log that the SDK uses by
default.

For example, you could write a replacement that captures SDK log output to services such as RelictZ or Rocket [Z.
For more information, refer to Customize the Ping SDK for JavaScript logger .

Ping SDK for JavaScript 4.1.2

July 20, 2023 | patch

Added
+ Added support in preparation for upcoming Token Vault.
Fixed

* Fixed an issue with the getTokens() method failing if no parameters are provided and you perform certain down-leveling
of code in the build process.

Ping SDK for JavaScript 4.1.1

June 29, 2023 | minor

Copyright © 2025 Ping Identity Corporation

https://newrelic.com/
https://newrelic.com/
https://logrocket.com/
https://logrocket.com/

What's New Ping SDKs

Added

+ Added support in the HTTPClient for receiving transactional authorization advice in JSON format.
Changed

* Improved types when using strict mode with TypeScript.

Ping SDK for JavaScript 4.0.0

May 23, 2023 | major

Added
+ Added the ability to provide a device name when registering WebAuthN devices.
Changed
» Updated ESModule (ESM) bundle.
+ Updated tags in the GitHub repo to be prefixed with the package name. For example, javascript-sdk-${tag}.

* Inserted a prompt=none parameter into OAuth 2.0 calls to the /authorize endpoint to prevent console error about
frames.

Incompatible changes
+ No longer provides Universal Module Definition (UMD) support
+ Updated Policy types
* Removed duplicate modules
For more information, refer to Incompatible changes.
Deprecated
* JavaScript support configuration property deprecated.
For more information, refer to Deprecations.

Ping SDK for JavaScript 3.4.0
October 10, 2022 | minor

Changed
« Fixed HTTP headers by capitalizing all header names
+ Added support for TextInput callback
+ Updated device profile collection code:
o Added optional chaining to protect object checks in both browser and node environments

o Changed usage of window.crypto to globalThis.crypto toimprove compatibility

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

Ping SDK for JavaScript 3.3.0
April 25,2022 | minor

Added
+ Added Angular sample app.

» Added token threshold feature.

DaVinci client changelog

Subscribe to get automatic updates:
+ B Ping SDKs Changelog RSS feed
+ 8 Ping SDKs Changelog email notifications (@

DaVinci client for Android 1.1.0

April 17,2025
Added
+ Added support for additional PingOne Form fields. [SDKS-3649]
° Label
o Checkbox
o Dropdown
o Combobox

o Radio list

o

Flow link

* Added an external-idp module to support social sign on with supported external IDPs by using browser redirects.
[SDKS-3662]

Supported external IDPs:
° Apple
o Facebook
o Google
* Added Accept-Language header to support localization. [SDKS-3622]
+ Added ability to validate PingOne Form fields. [SDKS-3649]
+ Added support for default values in PingOne Form fields. [SDKS-3649]

* Added an interface to access ErrorNode and validation errors. [SDKS-3649]

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

What's New Ping SDKs

* Added a browser module. [SDKS-3662]
+ Added dynamic environment switching in the test sample app. [SDKS-3642]
Fixed
« Fixed an issue affecting the global logger when configuring a logger in DaVinci client configuration. [SDKS-3616]

DaVinci client for iOS 1.1.0

April 17, 2025
Added
+ Added support for additional PingOne Form fields. [SDKS-3671, SDKS-3672]
o Label
o Checkbox
o Dropdown

o Combobox

o

Radio list
o Flow link

+ Added an external-idp module to support social sign on with supported external IDPs by using browser redirects.
[SDKS-3720, SDKS-3920]

Supported external IDPs:

° Apple

o Facebook

o Google
+ Added Accept-Language header to support localization. [SDKS-3623]
+ Added ability to validate PingOne Form fields. [SDKS-3671, SDKS-3672]
+ Added support for default values in PingOne Form fields. [SDKS-3674]
» Added a PingBrowser module. [SDKS-3920]
+ Added Swift 6 support. [SDKS-3728]

DaVinci client for JavaScript 1.1.0

April 17, 2025
Added
+ Added support for additional PingOne Form fields.

o Label

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

o Checkbox
o Dropdown
o Combobox
o Radio list
° Flow link
+ Added support for social sign on with supported external IDPs.
Supported external IDPs:
o Apple
o Facebook
o Google
+ Added the ability to call start with query parameters which the DaVinci client appends to the /authorize call.
+ Added request middleware to amend outgoing HTTP requests, for example to override Accept-Language headers.
+ Added ability to validate PingOne Form fields.
+ Added support for default values in PingOne Form fields.
Updated
» Updated dependency on @forgerock/javascript-sdk to 4.7.0.
+ Updated error node to now be submittable to help the app recover from an error state.
+ Updated the checks to determine what node state the DaVinci Client is in based on the response from PingOne.
DaVinci client 1.0.0
December 16, 2024

Added

« Initial release of the DaVinci client, for Android, iOS and JavaScript.

Login Widget changelog
Subscribe to get automatic updates:
+ B Ping SDKs Changelog RSS feed
+ B Ping SDKs Changelog email notifications(J

Ping (ForgeRock) Login Widget 1.3.0

June 5, 2024 minor

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

What's New Ping SDKs

Added
+ Added support for integration with PingOne Protect.
+ Added the name of the device to the recovery codes page.
Fixed
+ Corrected an issue that prevented use of the logLevel parameter in the Ping (ForgeRock) Login Widget configuration.

« Fixed an issue with configuration literals that caused ZodError messages in the console.
Ping (ForgeRock) Login Widget 1.2.1
January 8, 2024 | minor
Added
* Support for CAPTCHA nodes.
Ping (ForgeRock) Login Widget 1.1
July 17,2023 | minor

Added
+ Support for device profiling callbacks (DeviceProfileCallback)

+ Support for web authentication (WebAuthn) journeys and trees.
Ping (ForgeRock) Login Widget 1.0

April 18,2023 | major

Changed

* First public release

Token Vault changelog
Subscribe to get automatic updates:
+ B Ping SDKs Changelog RSS feed
+ B8 Ping SDKs Changelog email notifications(J

Token Vault 4.2.0

September 11, 2023 | minor

Added

+ Added a requirement to declare a list of URLs in the Token Vault Proxy configuration. These generate an allowlist of origins
to which the proxy can forward requests.

ﬂ Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_pdf/developer_experience_changelog_rss.xml
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings

Ping SDKs What's New

Token Vault 4.1.2
July 24, 2023 | major

Added

« Initial release of Token Vault.

Limitations

This page lists the known issues and limitations of the Ping SDKs.

@ Important

SDKs Renamed
Prior to November 2024, the Ping SDKs were known as the ForgeRock SDKs.

All platforms

* The Ping SDKs do not support authentication chains nor modules.
* The FRUI module is for prototyping your Ul, and is not intended for production use, as-is.

+ As of ForgeRock SDKs 3.0, the Identity Providers supported for social login are limited to Apple, Facebook, and Google.

Ping SDK for Android

« Displaying CAPTCHAs or using the Ping (ForgeRock) Authenticator module in your application requires the presence of the
Google Play Services.

* The Authenticator module of the Ping SDK for Android only supports Firebase Cloud Messaging service as a Push
Notification provider.

+ Social Login requires PingAM 7.1 or the latest version of PingOne Advanced Identity Cloud.

+ Calling FRUser .logout() will only sign out the session from PingAM but not the Social Identity Provider. Every
subsequent, social login attempt will automatically log in without asking for credentials.

+ Biometric authentication is only supported on Android 7.0 or newer.

+ Biometric authentication requires PingAM 7.1 or the latest version of PingOne Advanced Identity Cloud.

* Biometric authentication requires the use of Google Play Services.

* When a biometric dialog, such as the provide fingerprint dialog, is dismissed, the application may become unresponsive.

+ Biometric authentication does not distinguish individual biometrics (fingerprints or faces), but is limited to any registered
for the device's current user account.

+ As of ForgeRock SDKs 3.0, only platform authenticators can be used for WebAuthn; roaming/USB authenticators, like
Yubikey, are not currently supported.

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

+ Ping SDK for Android apps do not function correctly if they are minimized to picture-in-picture mode in Android custom
tabs(.

The Ping SDK is not able to detect being minimized until API support from Google is available in Android.

Ping SDK for iOS

+ Data encryption with Secure Enclave is only available for iOS 10+ devices with TouchID or FacelD.
+ DeviceCollector customization is only available in Swift.

« JailbreakDetector customization is only available in Swift.

» HiddenValueCallback and SuspendedTextOutputCallback are not accessible in Objective-C.

* FRAuthenticator SDK is only available in Swift.

+ Social Login requires PingAM 7.1 or the latest version of PingOne Advanced Identity Cloud.

+ Calling FRUser.logout() will only sign out the session from PingAM but not the Social Identity Provider. Every
subsequent, social login attempt will automatically log in without asking for credentials.

* The Google Sign-In SDK is only compatible with CocoaPods (Swift Package Manager is not supported).
+ Sign In With Apple is only supported in iOS 13 and above.
+ Biometric authentication requires PingAM 7.1 or the latest version of PingOne Advanced Identity Cloud.

+ Biometric authentication does not distinguish between individual biometrics (fingerprints or faces), but is limited to the
collection of biometrics registered for the device's current user account.

« For Biometric authentication, iOS only supports the ES256 signing algorithm, this is configured in the WebAuthn
Registration node.

« For "usernameless" biometric authentication support, "limit registrations" must be disabled within the WebAuthn
Registration node.

+ As of ForgeRock SDKs 3.0, only the platform authenticator can be used for WebAuthn; roaming/USB authenticators, like
Yubikey, are not supported.

+ Device Binding is not supported on iOS simulators. You must use a physical device to test Device Binding.

Ping SDK for JavaScript

* The Ping SDK for JavaScript is currently unable to revoke PingOne-issued OIDC tokens when using Firefox and Safari, due
to third-party cookie protection.

+ When resources are protected by PingGateway, the Ping SDK for JavaScript can only support transactional authorization if
PingAM and PingGateway are on the same origin.

« FireFox does not support Touch ID as a WebAuthn device on Mac therefore it limits some WebAuthn node configurations.
* The SDK requires polyfills to function in IE 11 and Legacy Edge.

« In WebKit for both macOS and iOS, the "Prevent Cross-site Tracking" option, which is enabled by default, can prevent the
SDK from functioning when the app and PingAM are under different origins.

Copyright © 2025 Ping Identity Corporation

https://developer.chrome.com/docs/android/custom-tabs
https://developer.chrome.com/docs/android/custom-tabs
https://developer.chrome.com/docs/android/custom-tabs

Ping SDKs What's New

« Collecting location information requires the user’s system preferences to allow browser access to location information.

+ IndexedDB as a token storage strategy has a known issue with Firefox Private Mode. (Use localStorage asan
alternative.)

+ Social login with Apple requires the use of a form POST, so the "Redirect URL" cannot be an SPA as they are unable to
handle a POST request; the use of the special PingAM endpoint explained in Set up social login is recommended.

« Calling FRUser.logout() will only sign out the session from PingAM but not the social identity provider. Every subsequent
social login attempt will automatically log in without asking for credentials.
Ping (ForgeRock) Authenticator module

* The default storage client for Android that is built on SharedPreferences can behave unpredictably on devices from
certain manufacturers that customize the Android operating system.

For maximum compatibility with devices from different manufacturers we highly recommend that you implement your
own custom storage client for Android devices.

Incompatible changes

Incompatible changes refer to changes that impact existing functionality and might have an effect on your deployment. Before you
upgrade, review these lists and make the appropriate changes to your scripts and plugins.

@ Important

SDKs Renamed
Prior to November 2024, the Ping SDKs were known as the ForgeRock SDKs.

ForgeRock SDK for iOS 4.0.0

Exception changes

* The FRAClient.updateAccount() method now throws AccountError.accountLocked when attempting to update
a locked account.

* The HOTPMechanism.generateCode() and TOTPMechanism.generateCode() methods now throw
AccountError.accountLocked when attempting to get an OATH token for a locked account.

Method signature changes

The signature of the following methods has changed:

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

WebAuthnRegistrationCallback

old
public func register(
node: Node? = nil,
onSuccess: @escaping StringCompletionCallback,
onError: @escaping ErrorCallback
)
New

public func register(
node: Node? = nil,
window: UIWindow? = UIApplication.shared.windows.first,
deviceName: String? = nil,
usePasskeysIfAvailable: Bool = false,
onSuccess: @escaping StringCompletionCallback,
onError: @escaping ErrorCallback

WebAuthnAuthenticationCallback

old
public func authenticate(
node: Node? = nil,
onSuccess: @escaping StringCompletionCallback,
onError: @escaping ErrorCallback
)
New

public func authenticate(
node: Node? = nil,
window: UIWindow? = UIApplication.shared.windows.first,
preferImmediatelyAvailableCredentials: Bool = false,
usePasskeysIfAvailable: Bool = false,
onSuccess: @escaping StringCompletionCallback,
onError: @escaping ErrorCallback

FacebookSignInHandler
old

public static func handle(

_ application: UIApplication,

_url: URL,

_ options: [UIApplication.OpenURLOptionsKey : Any] = [:]
) -> Bool

Copyright © 2025 Ping Identity Corporation

Ping SDKs What's New

New

public static func application(

_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.LaunchOptionsKey : Any]? = nil
) -> Bool

@ Note

In ForgeRock SDK for Android 4.0.0 and later, make calls to the method using:
application(_ application:, didFinishLaunchingWithOptions launchOptions:)
Not the previous call:

application(_ app:, open url:, options:)

ForgeRock SDK for Android 4.0.0

Removed support for native single sign-on (550)

The Android platform has deprecated sharedUserId that underpins the ForgeRock SDK for Android native SSO
implementation.

This native SSO implementation will not be viable after sharedUserId is removed from the Android platform.

Due to this deprecation, ForgeRock SDK for Android 4.0.0 removes support for Android native single sign-on, as well as the
following related changes:

+ AuthenticatorService is removed. Remove <service> from your AndroidManifest.xml file.
* The ForgeRock SDK for Android no longer requires the following permissions:
° android.permission.AUTHENTICATE_ACCOUNTS
° android.permission.GET_ACCOUNTS
° android.permission.MANAGE_ACCOUNTS
° android.permission.USE_CREDENTIALS
* The ForgeRock SDK for Android no longer requires the following configuration properties:
o forgerock
o forgerock_account_name
o forgerock_webauthn_account_name
o forgerock_webauthn_max_credential

o forgerock_enable_sso
Method signature changes

The signature of the following methods has changed:

Copyright © 2025 Ping Identity Corporation

What's New Ping SDKs

WebAuthnRegistrationCallback
old

public void register(Node node,FRListener<Void> listener)

New

suspend fun register(context: Context, node: Node)

WebAuthAuthenticationCallback

old
public void authenticate(
@NonNull Fragment fragment,
@NonNull Node node,
@Nullable WebAuthnKeySelector selector,
FRListener<Void> listener
)
New

suspend fun authenticate(
context: Context,
node: Node,
selector: WebAuthnKeySelector = WebAuthnKeySelector.DEFAULT

)

org.forgerock.android.auth.FRAClient
Oold

public boolean updateAccount(@NonNull Account account)

New

public boolean updateAccount(@NonNull Account account)
throws AccountLockException

org.forgerock.android.auth.HOTPMechanism
Oold

public OathTokenCode getOathTokenCode ()
throws OathMechanismException

New

public OathTokenCode getOathTokenCode()
throws OathMechanismException, AccountLockException

Copyright © 2025 Ping Identity Corporation

Ping SDKs

org.forgerock.android.auth.OathMechanism
Oold

public abstract OathTokenCode getOathTokenCode()
throws OathMechanismException

New

public abstract OathTokenCode getOathTokenCode()
throws OathMechanismException, AccountlLockException

org.forgerock.android.auth.TOTPMechanism
Oold

public OathTokenCode getOathTokenCode()
throws OathMechanismException

New
public OathTokenCode getOathTokenCode()

throws OathMechanismException, AccountlLockException

ForgeRock SDK for JavaScript 4.0.0

No longer provides Universal Module Definition (UMD) support

This version of the ForgeRock SDK for JavaScript does not provide a UMD bundle.

If you require UMD support, you can:

+ Use an earlier version of the ForgeRock SDK for JavaScript, such as 3.4.0.

+ Clone the repository with the latest source code and configure it locally to provide UMD support.

@ Note

What's New

Support for Common]S (CJS) and ES Modules (ESM) is not affected and still provided in ForgeRock SDK

for JavaScript 4.0.0

Removal of indexedDB token store

The indexedDB option has been removed from the tokenStore configuration property in ForgeRock SDK for JavaScript
4.0.0. The indexedDB option did not offer sufficient functionality or reliability when the browser is using a private or

incognito window.

If you are using the indexedDB option after upgrading to ForgeRock SDK for JavaScript 4.0.0 it is ignored and the SDK

defaults to using the localStorage option instead. A warning message is output to the browser console.

This change will not affect the functionality of your app.

For more information on options for the token store, refer to Configure the Ping SDKs for Auth Journeys.

Copyright © 2025 Ping Identity Corporation

III%HII

What's New Ping SDKs

Updated Policy types

Updated policy types so that a PolicyRequirement array is output from failedPolicies.
Removed duplicate modules

Removed the FRUI and Event modules from the ForgeRock SDK for JavaScript repository.

These modules were incorrectly duplicated from the forgerock-javascript-sdk-ui [repository.

Deprecated

The functionality listed here is deprecated, and likely to be removed in a future release.

Deprecated since Ping SDK for JavaScript 4.0

JavaScript support configuration property
The support configuration property has been removed in Ping SDK for JavaScript 4.0.

This property could be used to change the way the SDK would make requests to the /authorize endpointin OAuth 2.0
interactions.

If you configured the SDK to use the modern option, you might notice that your app uses the default iframe method to call
the /authorize endpoint if you upgrade to this version of the SDK. This technical difference will not negatively impact
your app'’s user-experience or require any code changes.

If you were using the legacy option or not providing a value for the support property at all, you will likely obtain
improvements in latency and a reduction of errors in the logs when upgrading to Ping SDK for JavaScript 4.0.

Interface stability

Interfaces labelled as Evolving in the documentation may change without warning. In addition, the following rules apply:
« Interfaces that are not described in released product documentation should be considered Internal/Undocumented.

* Also refer to Deprecated features and Incompatible changes.

Product release levels

Ping Identity defines Major, Minor, Maintenance, and Patch product release levels. The version number reflects release level. The
release level tells you what sort of compatibility changes to expect.

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/forgerock-javascript-sdk-ui
https://github.com/ForgeRock/forgerock-javascript-sdk-ui
https://github.com/ForgeRock/forgerock-javascript-sdk-ui

Ping SDKs What's New

Release level definitions

Release Label Version Numbers Characteristics
Major Version: x[.0.0] (trailing Os are
optional) + Bring major new features, minor features, and bug fixes.

+ Can include changes even to Stable interfaces.

+ Can remove previously Deprecated functionality, and in rare
cases remove Evolving functionality that has not been explicitly
Deprecated.

+ Include changes present in previous Minor and Maintenance
releases.

Minor Version: x.y[.0] (trailing Os are
optional) * Bring minor features, and bug fixes.
+ Can include backwards-compatible changes to Stable interfaces
in the same Major release, and incompatible changes to
Evolving interfaces.
+ Can remove previously Deprecated functionality.
+ Include changes present in previous Minor and Maintenance
releases.
Maintenance, Version: x.y.z[.p]
Patch The optional p reflects a Patch * Bring bug fixes
version. * Are intended to be fully compatible with previous versions from

the same Minor release.

Product stability labels

Ping Identity Platform software supports many features, protocols, APIs, GUIs, and command-line interfaces. Some of these are
standard and very stable. Others offer new functionality that is continuing to evolve.

Ping Identity acknowledges you invest in these features and interfaces and so need to understand when they are expected to
change. For that reason, we define stability labels and use these definitions in Ping Identity Platform products.

Stability label definitions

Stability Label Definition

Stable This documented feature or interface is expected to undergo backwards-compatible changes only for
major releases.
Changes may be announced at least one minor release before they take effect.

Evolving This documented feature or interface is continuing to evolve and so is expected to change, potentially in
backwards-incompatible ways even in a minor release. Changes are documented at the time of product
release.

While new protocols and APIs are still in the process of standardization, they are Evolving. This applies,
for example, to recent Internet-Draft implementations and to newly developed functionality.

Copyright © 2025 Ping Identity Corporation

What's New

Ping SDKs

Stability Label

Legacy

Deprecated

Removed

Technology
Preview

Internal/
Undocumented

Definition

This feature or interface has been replaced with an improved version, and is no longer receiving
development effort from Ping Identity.

You should migrate to the newer version, however the existing functionality will remain.

Legacy features or interfaces will be marked as Deprecated if they are scheduled to be removed from the
product.

This feature or interface is deprecated, and likely to be removed in a future release.
For previously stable features or interfaces, the change was likely announced in a previous release.
Deprecated features or interfaces will be removed from Ping Identity products.

This feature or interface was deprecated in a previous release, and has now been removed from the
product.

Technology previews provide access to new features that are considered as new technology that is not
yet supported. Technology preview features may be functionally incomplete, and the function as
implemented is subject to change without notice.

DO NOT DEPLOY A TECHNOLOGY PREVIEW INTO A PRODUCTION ENVIRONMENT.

Customers are encouraged to test drive the technology preview features in a non-production
environment, and are welcome to make comments and suggestions about the features in the associated
forums.

Ping Identity does not guarantee that a technology preview feature will be present in future releases, the
final complete version of the feature is liable to change between preview and the final version. Once a
technology preview moves into the completed version, said feature will become part of Ping Identity
Platform.

Technology previews are provided on an “AS-IS” basis for evaluation purposes only, and Ping Identity
accepts no liability or obligations for the use thereof.

Internal and undocumented features or interfaces can change without notice.
If you depend on one of these features or interfaces, contact support to discuss your needs.

Getting support

Ping Identity provides support services, professional services, training, and partner services to assist you in setting up and
maintaining your deployments. For a general overview of these services, see https://www.pingidentity.com (5.

Ping Identity has staff members around the globe who support our international customers and partners. For details on Ping
Identity’s support offering, visit https://www.pingidentity.com/support(Z.

Ping Identity publishes comprehensive documentation online:

* The Ping Identity Knowledge Base [offers a large and increasing number of up-to-date, practical articles that help you
deploy and manage Ping Identity Platform software.

While many articles are visible to everyone, Ping Identity customers have access to much more, including advanced
information for customers using Ping Identity Platform software in a mission-critical capacity.

Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com
https://www.pingidentity.com
https://www.pingidentity.com/support
https://www.pingidentity.com/support
https://support.pingidentity.com/s/knowledge-base
https://support.pingidentity.com/s/knowledge-base

Ping SDKs What's New

* Ping Identity product documentation, such as this document, aims to be technically accurate and complete with respect to
the software documented. It is visible to everyone and covers all product features and examples of how to use them.
Troubleshooting
For troubleshooting information, see the following articles in the Knowledge Base:
* Ping SDK for Android Troubleshooting™@
* Ping SDK for iOS Troubleshooting@
* Ping SDK for JavaScript Troubleshooting ™

Additional Articles

* How do | troubleshoot issues with the CORS filter in PingAM/AM/OpenAM (All versions)?(J

Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/knowledge/kb/article/a68547609
https://backstage.forgerock.com/knowledge/kb/article/a68547609
https://backstage.forgerock.com/knowledge/kb/article/a79362752
https://backstage.forgerock.com/knowledge/kb/article/a79362752
https://backstage.forgerock.com/knowledge/kb/article/a83789945
https://backstage.forgerock.com/knowledge/kb/article/a83789945
https://backstage.forgerock.com/knowledge/kb/article/a43149209
https://backstage.forgerock.com/knowledge/kb/article/a43149209

Compatibility

M Pingldentity.

Ping SDKs Compatibility

Supported server versions

The Ping SDKs support the following server versions:
* PingOne
* PingOne Advanced Identity Cloud
* PingAM 6.5, 7.0, 7.1,7.2,7.3,7.4,7.5, 8.0, and later

* PingFederate

Supported operating systems and browsers

Select a platform below to view the supported operating systems and browsers.

Copyright © 2025 Ping Identity Corporation

Compatibility Ping SDKs

Android

The Ping SDK for Android supports the following versions of the Android operating system:

Supported Android versions and original release dates

Release API Levels Released
Android 15 35 September, 2024
Android 14 34 October, 2023
Android 13 33 March, 2022
Android 12 31,32 October, 2021
Android 11 30 September, 2020
Android 10 29 September, 2019
Android 9 (Pie) 28 August, 2018

@ Important
Since March 1st, 2025, the Ping SDKs support policy is as follows:

« Every public major release of Android within the last 6 years.

Supported browsers on Android

« Chrome - Two most recent major versions.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Compatibility

i0S

The Ping SDK for iOS supports the following versions of the iOS operating system:

Supported iOS versions and original release dates

Release Released

i0S 18 September, 2024
i0S 17 September, 2023
i0OS 16 September, 2022

@ Important
Since March 1st, 2025, the Ping SDKs support policy is as follows:

+ Every public major release of iOS within the last 3 years.

Supported browsers on iOS

« Safari - Two most recent major versions.

JavaScript / Login Widget

The Ping SDK for JavaScript, and the Ping (ForgeRock) Login Widget support the desktop and mobile browsers listed
below.

Minimum supported Desktop browser versions
* Chrome 83
* Firefox 77
+ Safari 13
* Microsoft Edge 83 (Chromium)
Supported Mobile browsers
+ iOS (Safari) - Two most recent major versions of the operating system.

+ Android (Chrome) - Two most recent major versions of the operating system.

Copyright © 2025 Ping Identity Corporation

Compatibility Ping SDKs

JavaScript Compatibility with WebViews

A WebView allows you to embed a web browser into your native Android or iOS application to display HTML pages, and run
JavaScript apps.

For example, the Android system WebView is based on the Google Chrome engine, and the iOS WebView is based on the Safari
browser engine.

However, it is important to note that WebViews do not implement the full feature set of their respective browsers. For example,
some of the browser-provided APIs that the Ping SDK for JavaScript requires are not available in a WebView, such as the
WebAuthn APIs.

In addition, there are concerns that a WebView does not provide the same level of security as their full browser counterparts.
As the SDK requires full, spec-compliant, browser-supplied APIs for full functionality we do not support usage within a WebView.
We also do not support or test usage with any wrappers around WebViews.

Whilst you might be able to implement simple use-cases using the Ping SDK for JavaScript within a WebView, we recommend that
you use an alternative such as opening a full browser, or using an in-app instance of a full browser such as Custom Tabs(Z for
Android or SFSafariViewController for iOS.

Supported authentication journey callbacks

The Ping SDKs support the following authentication journey callbacks when using the following servers:

* PingOne Advanced Identity Cloud

* PingAM
Callback name Callback description Android ioS JavaScript
BooleanAttributeInputCallback Collects true or false.
SDK 2.1
ChoiceCallback Collects single user input from
available choices, retrieves
i
selected choice from user
interaction.
ConfirmationCallback Retrieve a selected option from a
. . .
list of options.
ConsentMappingCallback Prompts the user to consent to
.) X X
SDK 2.0 share their profile data.
DeviceBindingCallback Cryptographically bind a mobile %
device to a user account. SDK 4.0 SDK 4.0

Copyright © 2025 Ping Identity Corporation

https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

Ping SDKs

Compatibility

Callback name

DeviceProfileCallback
SDK 2.0

DeviceSigningVerifierCallback

HiddenValueCallback

IdPCallback

KbaCreateCallback A SPK 2.0

MetadataCallback ()

NameCallback

NumberAttributeInputCallback
SDK 2.1

PasswordCallback

PingOneProtectEvaluationCallback
SDK 4.4

PingOneProtectInitializeCallback
SDK 4.4

PollingWaitCallback

ReCaptchaCallback

Callback description

Collects meta and/or location data
about the authenticating device.

Verify ownership of a bound device
by signing a challenge.

Returns form values that are not
visually rendered to the end user.

Provides the information required
for connecting to an identity
provider (IdP) for social sign-on.

Collects knowledge-based answers.
For example, the name of your first
pet.

Injects key-value metadata into the
authentication process.

For example, the WebAuthn nodes
use this callback to return the data
the SDK requires to perform
authentication and registration.

Collects a username.

Collects a number.

Collects a password or one-time
pass code.

Collects captured contextual data
from the client to perform risk
evaluations.

Instructs the client to start
capturing contextual data for risk
evaluations

Instructs the client to wait for the
given period and resubmit the
request.

Provides data required to use a
CAPTCHA in your apps.

Android

SDK 4.0

i0S

SDK 4.0

JavaScript

Copyright © 2025 Ping Identity Corporation

Compatibility Ping SDKs

Callback name Callback description Android ioS JavaScript
ReCaptchaEnterpriseCallback Provides data requiredlto use 2)
reCAPTCHA Enterprise in your SDK 4.6 SDK 4.6 SDK 4.6
apps.
RedirectCallback Redirects the user’s browser or
X X)
user-agent.
SelectIdPCallback Provides a list of identity providers
(IdPs) users can choose from to
perform social sign-on.
StringAttributeInputCallback Collects the values of attributes for
:
SDK 2.0 use elsewhere in a tree.
SuspendedTextOutputCallback Pause and resume authentication,
1 n 1 H n
SDK 2.1 sometimes known as "magic links".
TermsAndConditionsCallback Collects a user’s acceptance of the
SDK 2.0 configured Terms & Conditions.
TextInputCallback Collects text input from the end

user. For example, a nickname for
their account.

SDK 4.4 SDK 4.4 SDK 3.4

TextOutputCallback Provides a message to be
displayed to a user with a given
message type.

TextOutputCallback Some nodes use the
(messageType === 4) TextOutputCallback callback to
include JavaScript that is intended
) X X (4
to be run on the client.
In this case the mesageType
property equals 4.
ValidatedPasswordCallback Collects a password value with
SDK 2.0 optional password policy
validation.
ValidatedUsernameCallback Collects a username value with
SDK 2.0 optional username policy
validation.

The table below lists the nodes that might return supported callbacks.

The actual callbacks a node returns depends on its configuration. It might not return all the callbacks listed in this table.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Compatibility

Callback Auth nodes that might return callback

BooleanAttributeInputCallback
» Attribute Collector node™@

ChoiceCallback
» Choice Collector node”

ConfirmationCallback
* LDAP Decision node®

* Message node

* MFA Registration Options node
+ OATH Token Verifier node(

+ Polling Wait node

* Push Wait node@

* WebAuthn Authentication node
* OATH Registration node @

ConsentMappingCallback
» Consent Collector node™

DeviceBindingCallback
* Device Binding node@

DeviceProfileCallback
» Device Profile Collector node™

DeviceSigningVerifierCallback
* Device Signing Verifier node

HiddenValueCallback

* Amster Jwt Decision node @

* Push Wait node”

+ WebAuthn Authentication node”

* WebAuthn Registration node (&
IdPCallback

* Social Provider Handler node
KbaCreateCallback

+ KBA Definition node”
MetaDataCallback

» WebAuthn Authentication node™®
« WebAuthn Registration node (&

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html

Compatibility Ping SDKs

Callback Auth nodes that might return callback

NameCallback
+ Username Collector node™”

* Datastore Decision node @

* OATH Token Verifier node™

* Platform Username node @

» Configuration Provider node

NumberAttributeInputCallback
» Attribute Collector node™@

PasswordCallback
* Create Password node”

» Password Collector node®

« Datastore Decision node &

* KBA Verification node @

* LDAP Decision node@

+ One-time Password Collector Decision node
* Platform Password node @

PingOneProtectEvaluationCallback -
* PingOne Protect Evaluation node

PingOneProtectInitializeCallback
* PingOne Protect Initialization node@

PollingWaitCallback
« Combined MFA Registration node &

* Push Registration node(

ReCaptchaCallback
* CAPTCHA node”

* Legacy CAPTCHA node (deprecated)d

ReCaptchaEnterpriseCallback
* reCAPTCHA Enterprise node @

RedirectCallback
* Provision IDM Account node®
* Identity Assertion node &
* Social Provider Handler node™@
SelectIdPCallback

+ Select Identity Provider node

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html

Ping SDKs Compatibility

Callback Auth nodes that might return callback

StringAttributeInputCallback
+ Attribute Collector node™

SuspendedTextOutputCallback
* Email Suspend node™@

TermsAndConditionsCallback
* Accept Terms and Conditions node@

TextInputCallback
« Configuration Provider node

TextOutputCallback
* Create Password node?

» Display Username node

* LDAP Decision node”

* Message node

* MFA Registration Options node

TextOutputCallback (messageType == 4)
* WebAuthn Authentication node

+ WebAuthn Registration node@

ValidatedPasswordCallback
* Platform Password node™@

ValidatedUsernameCallback
* Platform Username node™”

The table below lists the supported callbacks that a node might return.

The actual callbacks a node returns depends on its configuration. It might not return all the callbacks listed in this table.

Auth node Callbacks the node might return
Accept Terms and Conditions node TermsAndConditionsCallback
Amster Jwt Decision node @ HiddenValueCallback

Attribute Collector node @ BooleanAttributeInputCallback

NumberAttributeInputCallback
StringAttributeInputCallback

CAPTCHA node® ReCaptchaCallback

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html

Compatibility

Choice Collector node™
Combined MFA Registration node

Configuration Provider node

Consent Collector node@

Create Password node@

Datastore Decision node @

Device Binding node@

Device Profile Collector node (@
Device Signing Verifier node
Display Username node @
Email Suspend node@

Identity Assertion node(J

KBA Definition node

KBA Verification node

LDAP Decision node”

Legacy CAPTCHA node (deprecated)

Message node

MFA Registration Options node @

OATH Registration node

OATH Token Verifier node™®

One-time Password Collector Decision node™

ChoiceCallback

PollingWaitCallback

NameCallback
TextInputCallback

ConsentMappingCallback

PasswordCallback
TextOutputCallback

NameCallback
PasswordCallback

DeviceBindingCallback

DeviceProfileCallback

Ping SDKs

DeviceSigningVerifierCallback

TextOutputCallback

SuspendedTextOutputCallback

RedirectCallback
KbaCreateCallback
PasswordCallback
ConfirmationCallback
PasswordCallback
TextOutputCallback

ReCaptchaCallback

ConfirmationCallback
TextOutputCallback

ConfirmationCallback
TextOutputCallback

ConfirmationCallback

ConfirmationCallback
NameCallback

PasswordCallback

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html

Ping SDKs Compatibility

Password Collector node ™ PasswordCallback
PingOne Protect Evaluation node & PingOneProtectEvaluationCallback
PingOne Protect Initialization node @ PingOneProtectInitializeCallback
Platform Password node & PasswordCallback

ValidatedPasswordCallback

Platform Username node@ NameCallback
ValidatedUsernameCallback

Polling Wait node @ ConfirmationCallback
Provision IDM Account node& RedirectCallback
Push Registration node @ PollingWaitCallback
Push Wait node@ ConfirmationCallback
HiddenValueCallback
reCAPTCHA Enterprise node® ReCaptchaEnterpriseCallback
Select Identity Provider node@ SelectIdPCallback
Social Provider Handler node& IdPCallback
RedirectCallback
Username Collector node@ NameCallback
WebAuthn Authentication node™@ ConfirmationCallback
HiddenValueCallback
MetaDataCallback

TextOutputCallback (messageType == 4)

WebAuthn Registration node(” HiddenValueCallback
MetaDataCallback
TextOutputCallback (messageType == 4)

() The WebAuthn Authentication node and the WebAuthn Registration nodeZ both use a MetaDataCallback when the
Return challenge as JavaScript is NOT enabled.

You must not enable this option when handling WebAuthn journeys with the Ping SDK for Android and iOS.

The Ping SDK for JavaScript handles either the MetaDataCallback or the JavaScript-based payload.

(2) Requires the presence of Google Play Services (.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://developers.google.com/android/guides/overview
https://developers.google.com/android/guides/overview

Compatibility Ping SDKs

Supported PingOne fields and collectors

The DaVinci clients support the following connectors and capabilities when connecting to PingOne:
* PingOne Forms Connector
o Show Form capability
* HTTP Connector

o Custom HTML capability

Copyright © 2025 Ping Identity Corporation

Ping SDKs Compatibility

PingOne Form Connector fields

+ Custom Fields support

* Toolbox support

Custom Fields support

Field (Collector) Description DaVinci module
Android ioS JavaScript

Text Input Collects a single text string.
(TextCollector) 1.1.0 1.1.0 1.1.0
Password Collects a single text string that cannot be
(PasswordCollector) read from the screen. 1.1.0 1.1.0 1.1.0
Dropdown Collects a value from a dropdown
(SingleSelectCollector) containing one or more text strings. 1.1.0 1.1.0 1.1.0
Combobox CoIIec}tsA avalue from a dropdovyn
(MultiSelectCollector) containing one or more text strings, the 1.1.0 1.1.0 1.1.0

user can enter their own text string.

Radio Button List Collects a value from one or radio
(SingleSelectCollector) buttons. 1.1.0 1.1.0 1.1.0
Checkbox List Collects the value of one or more
(MultiSelectCollector) checkboxes. 1.1.0 1.1.0 1.1.0
Toolbox support
Field (Collector) Description DaVinci module
Android ioS JavaScript

Flow Button Presents a customized button.
(FlowCollector) 1.1.0 1.1.0 1.1.0
Flow Link Presents a customized link.
(FlowCollector) 1.1.0 1.1.0 1.1.0

Copyright © 2025 Ping Identity Corporation

Compatibility

Ping SDKs

Translatable Rich Text
(TextCollector)

Social Login
(IdpCollector)

Presents rich text that you can translate
into multiple languages.

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

1.1.0 1.1.0
1.1.0 1.1.0

Copyright © 2025 Ping Identity Corporation

Ping SDKs

Compatibility

HTTP Connector fields

« HTTP Connector field and collector support

* HTTP Connector SK-Component support

HTTP Connector field and collector support

Field (Collector)

Text field
(TextCollector)

Password field
(PasswordCollector)

Submit Button
(SubmitCollector)

Flow Button
(FlowCollector)

Label
(LabelCollector)

Radio / Dropdown

(SingleSelectCollector)

Description

Collects a single text string.

Collects a single text string that cannot be

read from the screen.

Sends the collected data to PingOne to
continue the DaVinci flow.

Triggers an alternative flow without
sending the data collected so far to
PingOne.

Display a read-only text label.

Collects a single value from a choice of
multiple options.

HTTP Connector SK-Component support

SK-Component
(Collector)

skIDP
(IdpCollector)

Unsupported features:

Description

Presents a button to allow users to
authenticate using an external identity
provider, such as Apple, Facebook, or
Google.

Android

> @

- @

- @

Android

- @

DaVinci module

ioS JavaScript
1.0.0 1.0.0
1.0.0 1.0.0
1.0.0 1.0.0
1.0.0 1.0.0
1.1.0 1.1.0
1.1.0 1.1.0

DaVinci module

ioS JavaScript
1.1.0 1.1.0

Copyright © 2025 Ping Identity Corporation

Compatibility Ping SDKs

Verify that your flow does not depend on any unsupported elements:
SKPolling components

The SKPolling(Z component cannot be processed by the DaVinci Client and should not be included in flows.

Features such as Magic Link authentication require the SKPolling component and therefore cannot be used with
the DaVinci Client.

Images

Images included in the flow cannot be passed to the SDK.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling
https://docs.pingidentity.com/davinci/flows/davinci_sk_components.html#skpolling

Introducing the Ping SDKs for
Authentication Journeys

M Pingldentity.

Introducing the Ping SDKs for Authentication Journeys Ping SDKs

Server support: SDK support:
X PingOne v Ping SDK for Android
v PingOne Advanced Identity Cloud v Ping SDKfor iOS
v PingAM v Ping SDK for JavaScript
X PingFederate

The Ping SDKs can leverage PingOne Advanced Identity Cloud authentication journeys and PingAM authentication trees, and their
associated callbacks.

For more information, refer to Supported callbacks.

They let you step through each node in a journey, where you render the appropriate user interface to collect input from your
users. The Ping SDKs then return the input and continue the journey.

For example, let's say you want to use this authentication flow:
1. Collect username and password.
2. Request KBA information.
3. Request the user to accept the terms and conditions.

You can use the SDK to make each callback call the next step in the tree. You don't have to traverse the REST APIs to call the next
step.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Introducing the Ping SDKs for Authentication Journeys

|Start0\
>

@ Platform Username

P
@ Data Store Decision
True
False

....... / @ Fallure |

® KBA Definition @

_______ "z

g
@ Patch Object .—@ Success
Patched '
Failed

m) Real time response to authentication tree changes

The Ping SDKs empower developers to build applications that can handle the changes to your authentication journeys in
real time, without having to redeploy your app.

e Token management

The Ping SDKs use the OAuth 2.0 auth code flow, and support PKCE.

This method is the best practice for first-party applications. The SDK automatically handles token exchange for you, and
also securely stores the tokens.

Token refresh is automatically handled by the SDK, so you don’t have to think about it.

Copyright © 2025 Ping Identity Corporation

Introducing the Ping SDKs for Authentication Journeys Ping SDKs

ov Single sign-on (SSO)

In some scenarios, your company may have multiple native applications that customers have installed on their devices.

You can use the SDK to seamlessly sign users in to multiple applications on a device.

When the customer signs in to one application, they are automatically signed in to a second application on that device—
without having to authenticate again.

Ch Push authentication and OTP

The Ping SDKs can help you integrate push authentication or one-time password (OTP) capabilities into your mobile
applications so your end users don't have to download and use a dedicated Authenticator application. The SDK's
Authenticator module can support:

v Time-based one-time passwords (TOTP)
v HMAC-based one-time password (HOTP)

v Push notifications

oo Pluggability and extensibility

The SDK has a modular architecture and is designed with flexibility in mind.

Don't want to use our method for jailbreak detection? No problem! Just plug in your own method, or use any 3rd-party
plug-in instead.

i Device security profile

Using the SDK, you have the option to collect device profile information to use in your authentication journeys.
You might use this data to compare a user sign-in to a prior sign-in event.

If the device profile has changed too much from the prior event, you can deny the sign-in.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Introducing the Ping SDKs for Authentication Journeys

i Jailbreak detection

Detecting whether a device is jailbroken or rooted assures developers that a device is managed by the authorized device
owner.

Jailbroken devices may be running outdated OS versions, or could be missing security patches.

Detecting whether a device is jailbroken can provide valuable insight into the security posture of a device. You can feed that
insight into your authentication journey.

The iOS and Android SDKs generate a score to determine if a device is jailbroken or rooted. There are a number of factors
that go into creating this score. The score ranges from 0 to 1.0, where 1 indicates the device is an emulator.

You can use this information as part of an authentication flow to ask the user for another factor, or to deny access entirely.

D Device ID and meta data

Ping SDKs can automatically generate a device ID for you. You can use the ID with PingIDM or PingAM to allow your users to
manage their devices.

For example, you can insert the device ID and associated data into a user’s profile. This lets them view their devices and set
the devices as trusted. You can also decide to use a recognized device in an authentication flow to avoid asking a user for
another factor.

@ Note

It is up to you what information you collect from users and devices.

You should always use data responsibly and provide your users appropriate control over data they share with
you.

You are responsible for complying with any regulations or data protection laws.

= Location information

You can collect latitude and longitude information from your users via the Android and iOS SDKs.

Apps that use location services must request location permissions from users.

Copyright © 2025 Ping Identity Corporation

Introducing the Ping SDKs for Authentication Journeys Ping SDKs

ov Web biometrics

The Ping SDK for JavaScript supports web biometrics functionality provided by PingAM.

Web biometrics lets users authenticate by using an authenticator device; for example, the fingerprint scanner on their
laptop or phone, or a USB key such as those provided by Yubico, or Google's Titan security keys.

Communication with authentication devices is handled by the SDK. PingAM requests that the SDK activates authenticators
with certain criteria; for example, it must be built-in to the platform, or is a cross-platform roaming USB device. You can
also specify that the device must verify the identity of the user, rather than simply that a user is present.

The Ping SDKs have two methods for handling web biometrics: one for registering devices, and another for authenticating
using a registered device.

For more information, refer to Web biometrics.

ov Mobile biometric authentication

Mobile biometric authentication lets users authenticate by using a mobile device's biometric authentication.
Communication with the platform authenticator, for example, with a fingerprint reader or facial recognition system, is
handled by the Ping SDK.

The Ping SDK communicates with PingAM to perform biometric registration and authentication using the WebAuthn nodes.
Similar to WebAuthn with the Ping SDK for JavaScript, you can configure the nodes in PingAM to request that the SDK
activates authenticators with certain criteria.

The Ping SDKs enable passkey(Z support on supported platforms. Passkeys can be synchronized across a user’s devices
and browsers, simplifying device registration and enabling passwordless experiences.

This feature is available in the ForgeRock SDK for Android 3.0 and the ForgeRock SDK for iOS v3.0 or later. It requires
PingOne Advanced Identity Cloud, or PingAM 7.1 or later.

For more information, refer to What are mobile biometrics?.

Copyright © 2025 Ping Identity Corporation

https://developers.google.com/identity/passkeys
https://developers.google.com/identity/passkeys

Ping SDKs Introducing the Ping SDKs for Authentication Journeys

m} Social authentication

You can authenticate by using a trusted Identity Provider (IdP), like Apple, Facebook, Google, and many others.
These IdPs are used for authentication and identity verification.

This is often referred to as Social Login or Social Authentication.

These IdPs return the necessary information to integrate user information into your user’s profile.

Depending on the device platform (Android, Web or iOS), the user is redirected from the current web application or login
page to the IdP’'s authorization server. Or, if on a native mobile app, the user is directed to the IdP’s authentication SDK, if
available.

Once on the IdP via a web page or SDK, the user will authenticate and provide the necessary consent required for sharing
the information.

When complete, the user is redirected back to your app or to your server to complete the authentication journey.

For more information, refer to Set up social login.

Copyright © 2025 Ping Identity Corporation

Compatibility

M Pingldentity.

Ping SDKs Compatibility

Supported server versions

The Ping SDKs support the following server versions:
* PingOne
* PingOne Advanced Identity Cloud
* PingAM 6.5, 7.0, 7.1,7.2,7.3,7.4,7.5, 8.0, and later

* PingFederate

Supported operating systems and browsers

Select a platform below to view the supported operating systems and browsers.

Copyright © 2025 Ping Identity Corporation

Compatibility Ping SDKs

Android

The Ping SDK for Android supports the following versions of the Android operating system:

Supported Android versions and original release dates

Release API Levels Released
Android 15 35 September, 2024
Android 14 34 October, 2023
Android 13 33 March, 2022
Android 12 31,32 October, 2021
Android 11 30 September, 2020
Android 10 29 September, 2019
Android 9 (Pie) 28 August, 2018

@ Important
Since March 1st, 2025, the Ping SDKs support policy is as follows:

« Every public major release of Android within the last 6 years.

Supported browsers on Android

« Chrome - Two most recent major versions.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Compatibility

i0S

The Ping SDK for iOS supports the following versions of the iOS operating system:

Supported iOS versions and original release dates

Release Released

i0S 18 September, 2024
i0S 17 September, 2023
i0OS 16 September, 2022

@ Important
Since March 1st, 2025, the Ping SDKs support policy is as follows:

+ Every public major release of iOS within the last 3 years.

Supported browsers on iOS

« Safari - Two most recent major versions.

JavaScript / Login Widget

The Ping SDK for JavaScript, and the Ping (ForgeRock) Login Widget support the desktop and mobile browsers listed
below.

Minimum supported Desktop browser versions
* Chrome 83
* Firefox 77
+ Safari 13
* Microsoft Edge 83 (Chromium)
Supported Mobile browsers
+ iOS (Safari) - Two most recent major versions of the operating system.

+ Android (Chrome) - Two most recent major versions of the operating system.

Copyright © 2025 Ping Identity Corporation

Compatibility Ping SDKs

JavaScript Compatibility with WebViews

A WebView allows you to embed a web browser into your native Android or iOS application to display HTML pages, and run
JavaScript apps.

For example, the Android system WebView is based on the Google Chrome engine, and the iOS WebView is based on the Safari
browser engine.

However, it is important to note that WebViews do not implement the full feature set of their respective browsers. For example,
some of the browser-provided APIs that the Ping SDK for JavaScript requires are not available in a WebView, such as the
WebAuthn APIs.

In addition, there are concerns that a WebView does not provide the same level of security as their full browser counterparts.
As the SDK requires full, spec-compliant, browser-supplied APIs for full functionality we do not support usage within a WebView.
We also do not support or test usage with any wrappers around WebViews.

Whilst you might be able to implement simple use-cases using the Ping SDK for JavaScript within a WebView, we recommend that
you use an alternative such as opening a full browser, or using an in-app instance of a full browser such as Custom Tabs(Z for
Android or SFSafariViewController for iOS.

Supported authentication journey callbacks

The Ping SDKs support the following authentication journey callbacks when using the following servers:

* PingOne Advanced Identity Cloud

* PingAM
Callback name Callback description Android ioS JavaScript
BooleanAttributeInputCallback Collects true or false.
SDK 2.1
ChoiceCallback Collects single user input from
available choices, retrieves
i
selected choice from user
interaction.
ConfirmationCallback Retrieve a selected option from a
. . .
list of options.
ConsentMappingCallback Prompts the user to consent to
.) X X
SDK 2.0 share their profile data.
DeviceBindingCallback Cryptographically bind a mobile %
device to a user account. SDK 4.0 SDK 4.0

Copyright © 2025 Ping Identity Corporation

https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

Ping SDKs

Compatibility

Callback name

DeviceProfileCallback
SDK 2.0

DeviceSigningVerifierCallback

HiddenValueCallback

IdPCallback

KbaCreateCallback A SPK 2.0

MetadataCallback ()

NameCallback

NumberAttributeInputCallback
SDK 2.1

PasswordCallback

PingOneProtectEvaluationCallback
SDK 4.4

PingOneProtectInitializeCallback
SDK 4.4

PollingWaitCallback

ReCaptchaCallback

Callback description

Collects meta and/or location data
about the authenticating device.

Verify ownership of a bound device
by signing a challenge.

Returns form values that are not
visually rendered to the end user.

Provides the information required
for connecting to an identity
provider (IdP) for social sign-on.

Collects knowledge-based answers.
For example, the name of your first
pet.

Injects key-value metadata into the
authentication process.

For example, the WebAuthn nodes
use this callback to return the data
the SDK requires to perform
authentication and registration.

Collects a username.

Collects a number.

Collects a password or one-time
pass code.

Collects captured contextual data
from the client to perform risk
evaluations.

Instructs the client to start
capturing contextual data for risk
evaluations

Instructs the client to wait for the
given period and resubmit the
request.

Provides data required to use a
CAPTCHA in your apps.

Android

SDK 4.0

i0S

SDK 4.0

JavaScript

Copyright © 2025 Ping Identity Corporation

Compatibility Ping SDKs

Callback name Callback description Android ioS JavaScript
ReCaptchaEnterpriseCallback Provides data requiredlto use 2)
reCAPTCHA Enterprise in your SDK 4.6 SDK 4.6 SDK 4.6
apps.
RedirectCallback Redirects the user’s browser or
X X)
user-agent.
SelectIdPCallback Provides a list of identity providers
(IdPs) users can choose from to
perform social sign-on.
StringAttributeInputCallback Collects the values of attributes for
:
SDK 2.0 use elsewhere in a tree.
SuspendedTextOutputCallback Pause and resume authentication,
1 n 1 H n
SDK 2.1 sometimes known as "magic links".
TermsAndConditionsCallback Collects a user’s acceptance of the
SDK 2.0 configured Terms & Conditions.
TextInputCallback Collects text input from the end

user. For example, a nickname for
their account.

SDK 4.4 SDK 4.4 SDK 3.4

TextOutputCallback Provides a message to be
displayed to a user with a given
message type.

TextOutputCallback Some nodes use the
(messageType === 4) TextOutputCallback callback to
include JavaScript that is intended
) X X (4
to be run on the client.
In this case the mesageType
property equals 4.
ValidatedPasswordCallback Collects a password value with
SDK 2.0 optional password policy
validation.
ValidatedUsernameCallback Collects a username value with
SDK 2.0 optional username policy
validation.

The table below lists the nodes that might return supported callbacks.

The actual callbacks a node returns depends on its configuration. It might not return all the callbacks listed in this table.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Compatibility

Callback Auth nodes that might return callback

BooleanAttributeInputCallback
» Attribute Collector node™@

ChoiceCallback
» Choice Collector node”

ConfirmationCallback
* LDAP Decision node®

* Message node

* MFA Registration Options node
+ OATH Token Verifier node(

+ Polling Wait node

* Push Wait node@

* WebAuthn Authentication node
* OATH Registration node @

ConsentMappingCallback
» Consent Collector node™

DeviceBindingCallback
* Device Binding node@

DeviceProfileCallback
» Device Profile Collector node™

DeviceSigningVerifierCallback
* Device Signing Verifier node

HiddenValueCallback

* Amster Jwt Decision node @

* Push Wait node”

+ WebAuthn Authentication node”

* WebAuthn Registration node (&
IdPCallback

* Social Provider Handler node
KbaCreateCallback

+ KBA Definition node”
MetaDataCallback

» WebAuthn Authentication node™®
« WebAuthn Registration node (&

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html

Compatibility Ping SDKs

Callback Auth nodes that might return callback

NameCallback
+ Username Collector node™”

* Datastore Decision node @

* OATH Token Verifier node™

* Platform Username node @

» Configuration Provider node

NumberAttributeInputCallback
» Attribute Collector node™@

PasswordCallback
* Create Password node”

» Password Collector node®

« Datastore Decision node &

* KBA Verification node @

* LDAP Decision node@

+ One-time Password Collector Decision node
* Platform Password node @

PingOneProtectEvaluationCallback -
* PingOne Protect Evaluation node

PingOneProtectInitializeCallback
* PingOne Protect Initialization node@

PollingWaitCallback
« Combined MFA Registration node &

* Push Registration node(

ReCaptchaCallback
* CAPTCHA node”

* Legacy CAPTCHA node (deprecated)d

ReCaptchaEnterpriseCallback
* reCAPTCHA Enterprise node @

RedirectCallback
* Provision IDM Account node®
* Identity Assertion node &
* Social Provider Handler node™@
SelectIdPCallback

+ Select Identity Provider node

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html

Ping SDKs Compatibility

Callback Auth nodes that might return callback

StringAttributeInputCallback
+ Attribute Collector node™

SuspendedTextOutputCallback
* Email Suspend node™@

TermsAndConditionsCallback
* Accept Terms and Conditions node@

TextInputCallback
« Configuration Provider node

TextOutputCallback
* Create Password node?

» Display Username node

* LDAP Decision node”

* Message node

* MFA Registration Options node

TextOutputCallback (messageType == 4)
* WebAuthn Authentication node

+ WebAuthn Registration node@

ValidatedPasswordCallback
* Platform Password node™@

ValidatedUsernameCallback
* Platform Username node™”

The table below lists the supported callbacks that a node might return.

The actual callbacks a node returns depends on its configuration. It might not return all the callbacks listed in this table.

Auth node Callbacks the node might return
Accept Terms and Conditions node TermsAndConditionsCallback
Amster Jwt Decision node @ HiddenValueCallback

Attribute Collector node @ BooleanAttributeInputCallback

NumberAttributeInputCallback
StringAttributeInputCallback

CAPTCHA node® ReCaptchaCallback

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-accept-terms-and-conditions.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/amster-jwt-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-attribute-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-captcha.html

Compatibility

Choice Collector node™
Combined MFA Registration node

Configuration Provider node

Consent Collector node@

Create Password node@

Datastore Decision node @

Device Binding node@

Device Profile Collector node (@
Device Signing Verifier node
Display Username node @
Email Suspend node@

Identity Assertion node(J

KBA Definition node

KBA Verification node

LDAP Decision node”

Legacy CAPTCHA node (deprecated)

Message node

MFA Registration Options node @

OATH Registration node

OATH Token Verifier node™®

One-time Password Collector Decision node™

ChoiceCallback

PollingWaitCallback

NameCallback
TextInputCallback

ConsentMappingCallback

PasswordCallback
TextOutputCallback

NameCallback
PasswordCallback

DeviceBindingCallback

DeviceProfileCallback

Ping SDKs

DeviceSigningVerifierCallback

TextOutputCallback

SuspendedTextOutputCallback

RedirectCallback
KbaCreateCallback
PasswordCallback
ConfirmationCallback
PasswordCallback
TextOutputCallback

ReCaptchaCallback

ConfirmationCallback
TextOutputCallback

ConfirmationCallback
TextOutputCallback

ConfirmationCallback

ConfirmationCallback
NameCallback

PasswordCallback

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-choice-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-combined-mfa-registration.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/config-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-consent-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-create-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-device-signing-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-display-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-email-suspend.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-definition.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-kba-verification.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-ldap-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-legacy-captcha.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-message.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-mfa-registration-options.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/oath-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-oath-token-verifier.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-otp-collector-decision.html

Ping SDKs Compatibility

Password Collector node ™ PasswordCallback
PingOne Protect Evaluation node & PingOneProtectEvaluationCallback
PingOne Protect Initialization node @ PingOneProtectInitializeCallback
Platform Password node & PasswordCallback

ValidatedPasswordCallback

Platform Username node@ NameCallback
ValidatedUsernameCallback

Polling Wait node @ ConfirmationCallback
Provision IDM Account node& RedirectCallback
Push Registration node @ PollingWaitCallback
Push Wait node@ ConfirmationCallback
HiddenValueCallback
reCAPTCHA Enterprise node® ReCaptchaEnterpriseCallback
Select Identity Provider node@ SelectIdPCallback
Social Provider Handler node& IdPCallback
RedirectCallback
Username Collector node@ NameCallback
WebAuthn Authentication node™@ ConfirmationCallback
HiddenValueCallback
MetaDataCallback

TextOutputCallback (messageType == 4)

WebAuthn Registration node(” HiddenValueCallback
MetaDataCallback
TextOutputCallback (messageType == 4)

() The WebAuthn Authentication node and the WebAuthn Registration nodeZ both use a MetaDataCallback when the
Return challenge as JavaScript is NOT enabled.

You must not enable this option when handling WebAuthn journeys with the Ping SDK for Android and iOS.

The Ping SDK for JavaScript handles either the MetaDataCallback or the JavaScript-based payload.

(2) Requires the presence of Google Play Services (.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-password-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-polling-wait.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-provision-IDM-account.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-push-wait.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-recaptcha-enterprise.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-select-identity-provider.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-social-provider-handler.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/am-only/auth-node-username-collector.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-auth.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://developers.google.com/android/guides/overview
https://developers.google.com/android/guides/overview

Configure the Ping SDKs for Auth Journeys

M Pingldentity.

Ping SDKs Configure the Ping SDKs for Auth Journeys

The Ping SDKs are designed to be flexible and can be customized to suit many different situations.

Learn more about configuring and customizing the Ping SDKs in the sections below:

oo Configure Ping SDK properties

Learn how to configure properties in the SDKs so they can connect to your authorization server to authenticate your users
and obtain tokens.

Learn more »

nE Configure logging in the Ping SDKs

Utilize logging messages in the Ping SDKs during development an testing to identify, reproduce and fix issues you might
encounter.

Customize the loggers to get exactly the right level of information, in the right formats.

Learn more »

Customize REST requests

Intercept the outgoing REST calls the Ping SDKs make to customize or add data that is important to you or your
environment.

Learn more »

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

Ci Customize how the Ping SDKs store data

There are use cases where you might need to customize how to store data. For example, you might be running on
hardware that provides specialized security features.

For these cases, you can provide your own storage classes.

Learn more »

e Verify servers with SSL/certificate pinning

The Ping SDKs support SSL pinning, sometimes referred to as certificate pinning.

SSL pinning is the security practice of validating the certificates presented by the server against known values, improving
the security of your system.

Learn more »

Configure Ping SDK properties

Applies to:
v Ping SDK for Android
v Ping SDK for iOS

v Ping SDK for JavaScript

You need to configure certain settings in the SDKs so they can connect to your authorization server to authenticate your users
and obtain tokens.

The method you use to configure these settings depends on which SDK you are using.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys
£ ¢

Ping SDK for Android Ping SDK for iOS

Configure Ping SDK for Android properties Configure Ping SDK for iOS properties

Ping SDK for JavaScript

Configure Ping SDK for JavaScript properties

Configure Ping SDK for Android properties

Applies to:
v Ping SDK for Android
X Ping SDK for iOS

X Ping SDK for JavaScript

To configure the Ping SDK for Android, use the FROptionsBuilder methods to build an FROptions object, and pass the object to
the FRAuth.start() method.

Properties

The following properties are available for configuring the Ping SDK for Android:

Server

FROptionsBuilder attribute

server

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

Properties
Property name Description Required
The base URL of the PingAM instance to connect to, including port and
Java deployment path.
setUrl Identity Cloud example: %
Kotlin https://openam-forgerock-sdks.forgeblocks.com/am
url Self-hosted example:
https://openam.example.com:8443/openam
The realm in which the OAuth 2.0 client profile and authentication
Java journeys are configured.
setRealm For example, alpha. v
Kotlin Defaults to the self-hosted top-level realm root .
realm
A timeout, in seconds, for each request that communicates with PingAM.
Java Default: 30
setTimeout %
Kotlin
timeout
The name of the cookie that contains the session token.
Java For example, with a self-hosted PingAM server this value might be
setCookieName iPlanetDirectoryPro.
Kotlin
cookieName 9 T?p .
PingOne Advanced Identity Cloud tenants use a random alpha- o
numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud
tenant, navigate to Tenant settings > Global Settings, and copy the
value of the Cookie property.
Default: iPlanetDirectoryPro
Time, in seconds, to cache the session token cookie in memory.
Java Default: @
setCookieCache %
Kotlin
cookieCache
Journeys

FROptionsBuilder attribute

service

Copyright © 2025 Ping Identity Corporation

Ping SDKs

Properties

Property name

Java

setAuthService
Kotlin

authService
Java

setRegistrationService
Kotlin

registrationService

OAuth 2.0

FROptionsBuilder attribute

oauth

Properties

Property name

Java

setOauthClientId
Kotlin

oauthClientId

Java
setOauthRedirectUri
Kotlin

oauthRedirectUri

Java
setOauthSignOutRedirect
Uri

Kotlin
oauthSignOutRedirectUri

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys

Description Required

The name of a user authentication tree configured in your server.
For example, sdkUsernamePasswordJourney .

X
The name of a user registration tree configured in your server.
For example, sdkRegistrationJourney .
X
Description Required
The client_id of the OAuth 2.0 client profile to use.
For example, sdkNativeClient .
x 1
The redirect_uri as configured in the OAuth 2.0 client profile.
<& Important .
This value must match a value configured in your OAuth 2.0 client. X
For example, org.forgerock.demo://oauth2redirect .
The URI to redirect to after signing the user out of the authorization
server.
For example, org.forgerock.demo://oauth2redirect .
x 1

Configure the Ping SDKs for Auth Journeys

Property name

Java
SetOauthScope

Kotlin
oauthScope

Java
setOauthThreshold

Kotlin
oauthThreshold

Java
setOauthCache

Kotlin

oauthCache

Storage

FROptionsBuilder attribute

store

Properties

Property name

Java
setOidcStorage

Kotlin

oidcStorage

Java
SetSsoTokenStorage

Kotlin

ssoTokenStorage

Description

Ping SDKs

Required

A list of scopes to request when performing an OAuth 2.0 authorization

flow, separated by spaces.
For example, openid profile email address.

x 1

A threshold, in seconds, to refresh an OAuth 2.0 token before the

access_token expires (defaults to 38 seconds).

Time, in seconds, to cache an OAuth 2.0 token in memory (defaults to @

seconds).

Description

Required

A custom class for the storage of OpenID Connect-related items, such as

access tokens.

A custom class for the storage of single sign-on-related items, such as SSO

tokens.

Copyright © 2025 Ping Identity Corporation

Ping SDKs

Property name

Java
SetCookiesStorage
Kotlin

cookiesStorage

SSL pinning

FROptionsBuilder attribute

ss1lPinning

Properties

Property name

Java
setPins
Kotlin

pins

Java

setBuildSteps
Kotlin

buildSteps

Endpoints

FROptionsBuilder attribute

urlPath

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys

Description Required

A custom class for the storage of cookies.

X

Description Required
An array of public key certificate hashes (strings) for trusted sites and
services.

X
An array of BuildStep objects to provide additional SSL pinning
parameters to OkHttpClient instances.

X

Configure the Ping SDKs for Auth Journeys Ping SDKs

Properties
Property name Description Required
Override the path to the authorization server's authenticate endpoint.
Java Default: /json/realms/{forgerock_realm}/authenticate
setAuthenticateEndpoint %
Kotlin
authenticateEndpoint
Override the path to the authorization server's authorize endpoint.
Java Default: /oauth2/realms/{forgerock_realm}/authorize
setAuthorizeEndpoint %
Kotlin
authorizeEndpoint
Override the path to the authorization server's access_token endpoint.
Java Default: /oauth2/realms/{forgerock_realm}/access_token
setTokenEndpoint %
Kotlin
tokenEndpoint
Override the path to the authorization server’'s revoke endpoint.
Java Default: /oauth2/realms/{forgerock_realm}/token/revoke
setRevokeEndpoint %
Kotlin
revokeEndpoint
Override the path to the authorization server's userinfo endpoint.
Java Default: /oauth2/realms/{forgerock_realm}/userinfo
setUserinfoEndpoint %
Kotlin
userinfoEndpoint
Override the path to the authorization server's sessions endpoint.
Java
setSessionEndpoint %
Kotlin
sessionEndpoint

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

@ Note

Session and token lifecycle
The SDK revokes and removes persisted tokens if you programmatically change any of the following properties:

* setUrl / url

* setRealm / realm

* setCookieName / cookieName

* setOauthClientId / oauthClientId

* setOauthRedirectUri / oauthRedirectUri
* setOauthScope / oauthScope

Examples

The following examples show how to configure the Ping SDK in your Android applications:

Android - Java

FROptions options = FROptionsBuilder.build(frOptionsBuilder -> {
frOptionsBuilder.server(serverBuilder -> {
serverBuilder.setUrl("https://tenant.forgeblocks.com/am");
serverBuilder.setRealm("alpha");
serverBuilder.setCookieName("46b42b4229cd7a3") ;
return null;
2
frOptionsBuilder.oauth(oAuthBuilder -> {
oAuthBuilder.setOauthClientId("androidClient");
oAuthBuilder.setOauthRedirectUri("https://localhost:8443/callback");
oAuthBuilder.setOauthScope("openid profile email address");
return null;
1)
frOptionsBuilder.service(serviceBuilder -> {
serviceBuilder.setAuthServiceName("Login");
serviceBuilder.setRegistrationServiceName("Registration”);
return null;
B)5
return null;
B
FRAuth.start(this, options);

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

Android - Kotlin

val options = FROptionsBuilder.build {

server {
url = "https://openam-forgerock-sdks.forgeblocks.com/am"
realm = "alpha"
cookieName = "iPlanetDirectoryPro"

}

oauth {
oauthClientId = "sdkPublicClient"
oauthRedirectUri = "https://localhost:8443/callback”

oauthScope = "openid profile email address"
}
service {
authServiceName = "Login"
registrationServiceName = "Registration"
}

FRAuth.start(this, options);

When the application calls FRAuth.start(), the FRAuth class checks for the presence of an FROptions object. If the object is
not present, static initialization from strings.xml happens. If the object is present, the FRAuth class uses the options object
and calls the same internal initialization method.

The app can call FRAuth.start() multiple times in its lifecycle:

* When the app calls FRAuth.start() for the first time in its lifecycle, the SDK checks for the presence of session and
access tokens in the local storage. If an existing session is present, initialization does not log the user out.

« If the app calls FRAuth.start() again, the SDK checks whether session managers and token managers are initialized, and
cleans the existing session and token storage. This ensures that changes to the app configuration remove and revoke
existing sessions and tokens.

Using the .well-known endpoint

You can configure the SDKs to obtain many required settings from your authorization server's .well-known OpenlID Connect
endpoint.

Settings gathered from the endpoint include the paths to use for OAuth 2.0 authorization requests, and login endpoints.

Use the FROptions.discover method to use the .well-known endpoint to configure OAuth 2.0 paths:

val options =

options.discover("https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/alpha/.well-known/
openid-configuration")

FRAuth.start(context, options)

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

Configure Ping SDK for iOS properties

Applies to:
X Ping SDK for Android
v Ping SDKfor iOS

X Ping SDK for JavaScript

Use the FROptions interface to build an options object and pass the object to the FRAuth.start() method.

Properties

The following properties are available for configuring the Ping SDK for iOS:

Server
Properties
Property name Description Required
The base URL of the PingAM instance to connect to, including port and
FROptions deployment path.
url Identity Cloud example: .
. . v
Propertlesflle https://openam-forgerock-sdks.forgeblocks.com/am
forgerock_url Self-hosted example:
https://openam.example.com:8443/openam
The realm in which the OAuth 2.0 client profile and authentication
FROptions journeys are configured.
realm For example, alpha. vl
Properties file Defaults to the self-hosted top-level realm root .
forgerock_realm
A timeout, in seconds, for each request that communicates with PingAM.
FROptions Default: 30
timeout
. . x
Properties file

forgerock_timeout

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys

Property name

FROptions
cookieName
Properties file

forgerock_cookie_name

FROptions

enableCookie
Properties file

forgerock_enable_cookie

Journeys

Properties

FROptions
authServiceName
Properties file
forgerock_auth_service_
name

FROptions
registrationServiceName

Properties file
forgerock_registration_
service_name

Description

Ping SDKs

Required

The name of the cookie that contains the session token.
For example, with a self-hosted PingAM server this value might be

iPlanetDirectoryPro.

Q Tip

PingOne Advanced Identity Cloud tenants use a random alpha-

numeric string.

To locate the cookie name in an PingOne Advanced Identity Cloud
tenant, navigate to Tenant settings > Global Settings, and copy the

value of the Cookie property.

Default: iPlanetDirectoryPro

When true, enables cookie use.
Default: true

The name of a user authentication tree configured in your server.

For example, sdkUsernamePasswordJourney .

The name of a user registration tree configured in your server.

For example, sdkRegistrationJourney .

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

OAuth 2.0
Properties
The client_id of the OAuth 2.0 client profile to use.
FROptions For example, sdkNativeClient .
oauthClientId
Properties file x 1
forgerock_oauth_client_
id
The redirect_uri as configured in the OAuth 2.0 client profile.
FROptions
oauthRedirectUri | & Important
Properties file This value must match a value configured in your OAuth 2.0 client. % 1
forgerock_oauth_redirec fror example, org.forgerock.demo://oauth2redirect .
t_uri
The URI to redirect to after signing the user out of the authorization
FROptions server.
oauthSignoutRedirectUri For example, org.forgerock.demo://oauth2redirect .
Properties file x

forgerock_oauth_sign_ou
t_redirect_uri

A list of scopes to request when performing an OAuth 2.0 authorization
FROptions flow, separated by spaces.
oauthScope For example, openid profile email address.
Properties file
forgerock_oauth_scope

A threshold, in seconds, to refresh an OAuth 2.0 token before the
FROptions access_token expires (defaults to 38 seconds).
oauthThreshold
Properties file X
forgerock_oauth_thresho
1d

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys

SSL pinning

Properties

FROptions
ss1lPinningPublicKeyHash
es

Properties file
forgerock_ssl_pinning_p
ublic_key_hashes

FROptions
keychainAccessGroup

Properties file
forgerock_keychain_acce
ss_group

Endpoints

Properties

FROptions
authenticateEndpoint

Properties file
forgerock_authenticate_
endpoint

FROptions
authorizeEndpoint
Properties file
forgerock_authorize_end
point

FROptions
tokenEndpoint
Properties file
forgerock_token_endpoin
i

Ping SDKs

An array of public key certificate hashes (strings) for trusted sites and

services.

Keychain access group for the shared keychain.

Override the path to the authorization server's authenticate endpoint.
Default: /json/realms/{forgerock_realm}/authenticate

Override the path to the authorization server's authorize endpoint.
Default: /oauth2/realms/{forgerock_realm}/authorize

Override the path to the authorization server's access_token endpoint.
Default: /oauth2/realms/{forgerock_realm}/access_token

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

FROptions Override the path to the authorization server’'s token/revoke endpoint.
revokeEndpoint Default: /oauth2/realms/{forgerock_realm}/token/revoke

Properties file X
forgerock_revoke_endpoi
nt

Override the path to the authorization server's userinfo endpoint.
FROptions Default: /oauth2/realms/{forgerock_realm}/userinfo
userinfoEndpoint
Properties file X
forgerock_userinfo_endp
oint

Override the path to the authorization server’'s sessions endpoint.
FROptions

sessionEndpoint

Properties file X
forgerock_session_endpo
int

Override the path to the authorization server's endSession endpoint.
FROptions

endSessionEndpoint

Properties file X
forgerock_endsession_en
dpoint

@ Note

Session and token lifecycle
The SDK revokes and removes persisted tokens if you programmatically change any of the following properties:

*url

* realm

* cookieName

* oauthClientId

* oauthRedirectUri
* oauthScope

Example

The following Swift example shows how to configure the Ping SDK in your iOS applications:

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

let options = FROptions(
url: "https://tenant.forgeblocks.com/am",
realm: "alpha",
cookieName: "46b42b4229cd7a3",
oauthClientId: "sdkNativeClient",
oauthRedirectUri: "org.forgerock.demo://oauth2redirect",
oauthScope: "openid profile email address",
authServiceName: "Login",
registrationServiceName: "Register")
try FRAuth.start(options: options)

When the application calls FRAuth.start(), the FRAuth class checks for the presence of an FROptions object.
If the object is not present, the static initialization from FRAuthConfig.plist happens.

If the object is present, the FRAuth class convertsittoa [String, Any] dictionary and calls the same internal initialization
method.

The app can call FRAuth.start() multiple times in its lifecycle:

* When the app calls FRAuth.start() for the first time in its lifecycle, the SDK checks for the presence of session and
access tokens in the local storage.

If an existing session is present, initialization does not log the user out.

« If the app calls FRAuth.start() again, the SDK checks whether session managers and token managers are initialized, and
cleans the existing session and token storage.

This ensures that changes to the app configuration remove and revoke existing sessions and tokens.

Using the .well-known endpoint

You can configure the SDKs to obtain many required settings from your authorization server’s .well-known OpenID Connect
endpoint.

Settings gathered from the endpoint include the paths to use for OAuth 2.0 authorization requests, and login endpoints.
Use the FROptions.discover method to use the .well-known endpoint to configure OAuth 2.0 paths:
let options = try await FROptions(config: config).discover(
discoveryURL: "https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/alpha/.well-known/openid-

configuration")

try FRAuth.start(options: options)

Copyright © 2025 Ping Identity Corporation

Ping SDKs

Configure the Ping SDKs for Auth Journeys

Configure Ping SDK for JavaScript properties

Applies to:

X Ping SDK for Android

X Ping SDK for iOS

v Ping SDK for JavaScript

Configure SDK properties in your JavaScript app by editing a serverConfig object, a parameter of the forgerock.Config.set()

function.

Properties

The following properties are available for configuring the Ping SDK for JavaScript:

Server

Properties

Property

serverConfig

serverConfig: {baseUrl}

serverConfig: {wellknown}

serverConfig: {timeout}

Copyright © 2025 Ping Identity Corporation

Description

An interface for configuring how the SDK contacts the PingAM instance.
Contains baseUrl and timeout .

The base URL of the server to connect to, including port and deployment path.
Identity Cloud example:
https://openam-forgerock-sdks.forgeblocks.com/am

Self-hosted example:

https://openam.example.com:8443/openam

A URL to the server's .well-known/openid-configuration endpoint.

Use the Config.setAsync() method to set SDK configuration using values derived
from those provided at the URL.

Example:
https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/
realms/alpha/.well-known/openid-configuration

Self-hosted example:
https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/
openid-configuration

A timeout, in milliseconds, for each request that communicates with your server.
For example, for 30 seconds specify 30000 .
Defaults to 5000 (5 seconds).

Configure the Ping SDKs for Auth Journeys

Ping SDKs

Property

realmPath

tree

OAuth 2.0

Properties

Property
clientId

redirectUri

scope

oauthThreshold

Description

The realm in which the OAuth 2.0 client profile and authentication journeys are
configured.

For example, alpha.

Defaults to the self-hosted top-level realm root .

The name of the user authentication tree configured in your server.
For example, sdkUsernamePasswordJourney .

Description
The client_id of the OAuth 2.0 client profile to use.

The redirect_uri as configured in the OAuth 2.0 client profile.

Q Ti
Thpe Ping SDK for JavaScript attempts to load the redirect page to capture the
OAuth 2.0 code and state query parameters that the server appended to
the redirect URL.
If the page you redirect to does not exist, takes a long time to load, or runs
any JavaScript you might get a timeout, delayed authentication, or
unexpected errors.
To ensure the best user experience, we highly recommend that you redirect
to a static HTML page with minimal HTML and no JavaScript when obtaining
OAuth 2.0 tokens.

For example, https://localhost:8443/callback.html.

A list of scopes to request when performing an OAuth 2.0 authorization flow,
separated by spaces.
For example, openid profile email address.

A threshold, in seconds, to refresh an OAuth 2.0 token before the access_token
expires.
Defaults to 30 seconds.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys
Storage
Properties
Property Description
tokenStore The API to use for storing tokens on the client:
sessionStorage
Store tokens using the sessionStorage API. The browser clears session
storage when a page session ends.
localStorage
Store tokens using the localStorage API. The browser saves local storage
data across browser sessions. This is the default setting, as it provides the
highest browser compatibility.
{{custom}}
Specify a custom implementation that has functions that can set, retrieve,
and remove, items from a custom storage scheme.
Learn more in Customize storage on JavaScript.
prefix Override the default fr prefix string applied to the keys used for storing data on
the client, such as tokens, device IDs, and information about the steps in a journey.
For example, the key used for storing tokens consists of the prefix, followed by
the ID of the OAuth 2.0 client:
fr-sdkPublicClient.
Logging
Properties
Property Description
logLevel Specify whether the SDK should output its log messages in the console and the
level of messages to display.
One of:
* none (default)
* info
* warn
* error
* debug
logger Specify a function to override the default logging behavior.

Refer to Customize the Ping SDK for JavaScript logger.

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys

General

Properties

Property

platformHeader

Endpoints

Properties

Property

serverConfig: { paths:

{ authenticate }}

serverConfig: { paths:

{ authorize }}

serverConfig: { paths:

{ accessToken }}

serverConfig: { paths

: { revoke }}

serverConfig: { paths:

{ userInfo }}

serverConfig: { paths:

{ sessions }}

serverConfig: { paths:

{ endSession }}

Examples

Ping SDKs

Description

Specify whether to include an X-Requested-Platform header in outgoing
requests.

The server can use the value of this header to alter the logic of an authentication
flow. For example, if the value indicates a JavaScript web app, the journey could
avoid device binding nodes, as they are only supported by Android and iOS apps.
Defaults to false.

Description

Override the path to the authorization server's authenticate endpoint.
Default: json/{realmPath}/authenticate

Override the path to the authorization server's authorize endpoint.
Default: oauth2/{realmPath}/authorize

Override the path to the authorization server's access_token endpoint.
Default: oauth2/{realmPath}/access_token

Override the path to the authorization server’'s revoke endpoint.
Default: oauth2/{realmPath}/token/revoke

Override the path to the authorization server’'s userinfo endpoint.
Default: oauth2/{realmPath}/userinfo

Override the path to the authorization server's sessions endpoint.
Default: json/{realmPath}/sessions

Override the path to the authorization server's endSession endpoint.
Default: oauth2/{realmPath}/connect/endSession

The following examples show how to configure the Ping SDK in your JavaScript applications:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

forgerock.Config.set({
serverConfig: {
baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
timeout: 3000,
paths: {
authenticate: 'iam/endpoints/authN',
authorize: 'iam/endpoints/authZ’
o
b
clientId: 'sdkPublicClient',
scope: 'openid profile email address',
redirectUri: “${window.location.origin}/callback.html’,
realmPath: 'alpha'
2

Using the .well-known endpoint

You can configure the SDKs to obtain many required settings from your authorization server’s .well-known OpenID Connect
endpoint.

Settings gathered from the endpoint include the paths to use for OAuth 2.0 authorization requests, and login endpoints.

Use the Config.setAsync method to use the .well-known endpoint to configure OAuth 2.0 paths:

await Config.setAsync({
serverConfig: {
wellknown: 'https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/alpha/.well-known/openid-
configuration'

Bo

clientId: 'sdkPublicClient',

scope: 'openid profile email address',

redirectUri: “${window.location.origin}/callback.html’

3

Configure logging

Applies to:
v Ping SDK for Android
v Ping SDK for iOS

v Ping SDK for JavaScript

This page covers how to use the default logging in the Ping SDKs, and how to customize logging.

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

ae, «

Ping SDK for Android Ping SDK for iOS

Configure Ping SDK for Android logging Configure Ping SDK for iOS logging

Ping SDK for JavaScript

Configure Ping SDK for JavaScript logging

Android
Configure default Android logging
The Ping SDK for Android does all of its logging through a custom interface called FRLogger . The default implementation of this

interface logs the messages through the native Android Log(Z class. This displays messages from the SDK in real-time in the
Logcat window in Android Studio.

The log severity levels defined in the Ping SDK for Android are as follows:

Log level Description
DEBUG Show debug log messages intended only for development, as well as the message levels lower
in this list; INFO, WARN, and ERROR .

In addition, all network activities of the SDK are included in the logs.

INFO Show expected log messages for regular usage, as well as the message levels lower in this list,
WARN, and ERROR.

WARN Show possible issues that are not yet errors, as well as the messages of ERROR log level.

ERROR Show issues that caused errors.

Copyright © 2025 Ping Identity Corporation

https://developer.android.com/reference/android/util/Log
https://developer.android.com/reference/android/util/Log

Ping SDKs Configure the Ping SDKs for Auth Journeys

Log level Description

NONE No log messages are shown.

@ Note

The log levels are cumulative.

If you select a lower severity level, all messages logged at higher severity levels are also included. For example, if you
select the DEBUG level, the log includes all events logged at the DEBUG, INFO, WARN, and ERROR levels.
By default, the log level of the Ping SDK for Android is set to Logger.Level.WARN.

Customize Android logging

The Ping SDK for Android allows developers to customize the default logger behavior:

1. Create a class that implements the FRLogger interface:

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

import androidx.annotation.Nullable;
import org.forgerock.android.auth.FRLogger;

public class MyCustomlLogger implements FRLogger {
@0override
public void error(@Nullable String tag, @Nullable Throwable t, @Nullable String message, @Nullable
Object... values) {
/// Custom error message handling...

@0verride
public void error(@Nullable String tag, @Nullable String message, @Nullable Object... values) {
/// Custom error message handling...

@0override
public void warn(@Nullable String tag, @Nullable String message, @Nullable Object... values) {
/// Custom warning message handling...

@0override
public void warn(@Nullable String tag, @Nullable Throwable t, @Nullable String message, @Nullable

Object... values) {
/// Custom warning message handling...

@0verride
public void debug(@Nullable String tag, @Nullable String message, @Nullable Object... values) {
/// Custom debug message handling...

@0override
public void info(@Nullable String tag, @Nullable String message, @Nullable Object... values) {
/// Custom info message handling...

@Override
public void network(@Nullable String tag, @Nullable String message, @Nullable Object... values) {
/// Custom network details handling...

@0verride
public boolean isNetworkEnabled() {
return true; // include network call details in the logs

2. In your application, set the custom logger and desired log level:

Logger.setCustomLogger (new MyCustomLogger()); // The default logger will no longer be active
Logger.set(Logger.Level.DEBUG) ;

3. You can now use the Logger interface in your app.

For example:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

String TAG = MainActivity.class.getSimpleName();
Logger.debug (TAG, "Happy logging!");

ioS
Configure the default iOS logging

The Ping SDK for iOS does all of its logging through a custom protocol called FRLogger . The default implementation of the
FRLogger protocol logs the messages through the native iOS FRConsoleLogger [class. This displays messages from the SDK in
real-time in the console window in Xcode.

Each log message has an associated log level that describes the type and the severity of the message. Log levels are helpful tool
for tracking and analyzing events that take place in your app.

The log severity levels defined in the Ping SDK for iOS are as follows:

Log level Description

none Prevent logging

verbose Logs that are not important or can be ignored

info Logs that maybe helpful or meaningful for debugging, or understanding the flow
network Logs for network traffic, including request and response

warning Logs that are a minor issue or an error that can be ignored

error Logs that are a severe issue or a major error that impacts the SDK's functionality or flow
all Logs at all levels

@ Note

The log levels are not cumulative. That is, you should explicitly specify all the log levels you want to record.
For example, if you select the debug level, the output only includes events logged at debug level.

To include other levels, you must specify an array of the required log levels.

By default, the log level of the Ping SDK for iOS is set to LogLevel.none .

Customize iOS logging

The Ping SDK for iOS lets developers customize the default logger behavior:

1. Create a class that conforms to the FRLogger protocol:

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/forgerock-ios-sdk/blob/develop/FRCore/FRCore/Log/FRConsoleLogger.swift
https://github.com/ForgeRock/forgerock-ios-sdk/blob/develop/FRCore/FRCore/Log/FRConsoleLogger.swift

Configure the Ping SDKs for Auth Journeys Ping SDKs

class MyCustomLogger: FRLogger {
func logVerbose(timePrefix: String, logPrefix: String, message: String) {
/// Custom verbose message handling...

func logInfo(timePrefix: String, logPrefix: String, message: String) {
/// Custom info message handling...

func logNetwork(timePrefix: String, logPrefix: String, message: String) {
/// Custom network message handling...

func logWarning(timePrefix: String, logPrefix: String, message: String) {
/// Custom warning message handling...

func logError(timePrefix: String, logPrefix: String, message: String) {
/// Custom error message handling...

2. In your application, set the custom logger and desired log level:

FRLog.setCustomLogger (MyCustomLogger()) // The default logger will no longer be active
FRLog.setLoglLevel([.all])

3. You can now use the FRLog class in your app.

For example:

FRLog.v("Happy logging!")

JavaScript

Configure the default JavaScript logging

The Ping SDK for JavaScript performs logging through the native console class. This displays messages from the SDK in real-time
in the console window provided in many browsers.

The default logLevel is none, which prevents the Ping SDK for JavaScript from logging any messages to the console.
To enable the output of log messages from the Ping SDK for JavaScript, specify a logLevel value other than none.

For example, use the following code to specify the debug level:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

Setting the log level in the Ping SDK for JavaScript configuration

Config.set({
serverConfig: {
baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am/",
timeout: 5000,

Bo
logLevel: 'debug',

Hi

The log severity levels defined in the Ping SDK for JavaScript are as follows:

Log level Description

debug Show debug log messages intended only for development, as well as the message levels lower
in this list; info, warn, and error.
In addition, all network activities of the SDK are included in the logs.

info Show expected log messages for regular usage, as well as the message levels lower in this list,
warn, and error .

warn Show possible issues that are not yet errors, as well as the messages of error log level.
error Show issues that caused errors.
none No log messages are shown. This is the default setting.

@ Note

The log levels are cumulative. If you select a lower severity level, all messages logged at higher severity levels are also
included.

For example, if you select the debug level, the output includes all events logged by the SDK at debug, info, warn,
and error levels.

For more information on configuring the Ping SDK for JavaScript, refer to Ping SDK for JavaScript Properties

Customize JavaScript logging

The Ping SDK for JavaScript allows developers to customize the default logger behavior. For example, you might want to redirect
the logs to an external service.

1. Create a function that implements the LoggerFunctions interface.

For example, the following code adds a prefix to each log message from the SDK and logs it to the console:

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

const customLogger = {
warn: (msg) => console.warn([FR SDK] ${msg}’),
error: (msg) => console.error([FR SDK] ${msg}’)
log: (msg) => console.log([FR SDK] ${msg} ")
info: (msg) => console.info([FR SDK] ${msg}),

The signature of the interface defaults to the following:
(.msgs: unknown[]) = void

You can pass your own type definition into the Generic if required. For example:

// typescript generic example

type YourAsyncLoggerType = LoggerFunctions<
(...msgs: unknown[]) => Promise<void>,
(...msgs: unknown[]) => Promise<void>,
(...msgs: unknown[]) => Promise<void>,
(...msgs: unknown[]) => Promise<void>

>

const customLoggerWithApiCall: YourAsyncLoggerType = {
warn: (msg) => yourAsyncLogFunction.warn([FR SDK] ${msg}’),
error: (msg) => yourAsyncLogFunction.error([FR SDK] ${msg}")
log: (msg) => yourAsyncLogFunction.log([FR SDK] ${msg} ")
info: (msg) => yourAsyncLogFunction.info([FR SDK] ${msg}),

2. In the SDK configuration of your app, specify the custom logger and required log level:

Config.set({
serverConfig: {
baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am/",
timeout: '5600'
b
logLevel: 'error',
logger: customLogger,

3

The SDK redirects its logging output to your custom handler.

Copyright © 2025 Ping Identity Corporation

Ping SDKs

Configure the Ping SDKs for Auth Journeys

Customize REST calls

Applies to:
v Ping SDK for Android
v Ping SDK for iOS

v Ping SDK for JavaScript

The Ping SDKs support modification of REST calls before they are sent.
For example, you can add or customize:

* Query parameters

* Headers

+ Cookies

* Request URLs

* Request methods

+ Body and post data

Request interceptors

Each SDK provides an interface that you can use to customize requests:

Android

public interface FRRequestInterceptor<Action> {
@NonNull Request intercept(Request request, Action action);

}

public class Action {
private String type;
private JSONObject payload;

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

i0S

public protocol RequestInterceptor {
func intercept(request: Request, action: Action) -> Request

public struct Action {
public let type: String
public let payload: [String: Any]?

JavaScript

type RequestMiddleware = (req: RequestObj, action: Action, next: () => RequestObj) => void;
interface RequestObj {
url: URL;
init: RequestInit;
}
interface Action {
type: string;

payload?: any; // optional data
}

Request interceptors have two inputs:
* The Request object
* The Action object

The Request object

Represents the original request, and has information about the body, method type, parameters, and more.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

Android

public class Request {
public URL url();
public Iterator<Pair<String, String>> headers();
public String header(String name);
public List<String> headers(String name);
public String method();
public Object tag();
public Body body();
public Builder newBuilder();

// Use Build to build upon on existing Request
public class Builder {

public Builder url(URL url);

public Builder url(String url);

public Builder header(String name, String value);

public Builder addHeader(String name, String value);

public Builder removeHeader(String name);

public Builder get();

public Builder put(Body body);

public Builder post(Body body) ;

public Builder delete(Body body);

public Builder delete();

public Builder patch(Body body);

public Request build();

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

i0S

public struct Request {
// Properties
public let url: String
public let method: HTTPMethod
private(set) public var headers: [String: String]
public let bodyParams: [String: Any]
public let urlParams: [String: String]
public let responseType: ContentType
public let requestType: ContentType
public let timeoutInterval: Double

public enum ContentType: String {
case plainText = "text/plain”
case json = "application/json"
case urlEncoded = "application/x-www-form-urlencoded"”

public enum HTTPMethod: String {
case GET = "GET"
case PUT = "PUT"
case POST = "POST"
case DELETE = "DELETE"

public func build() -> URLRequest?

JavaScript

Refer to the native JavaScript Request [Z object in the MDN Web Docs.

The Action object

Represents the type of operation the request performs:

Action Description

START_AUTHENTICATE Initial call to an authentication tree
AUTHENTICATE Proceed through an authentication tree flow
AUTHORIZE Obtain authorization token from PingAM
EXCHANGE _TOKEN Exchange authorization code for an access token
REFRESH_TOKEN Refresh an access token

Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request

Ping SDKs Configure the Ping SDKs for Auth Journeys

Action Description

REVOKE_TOKEN Revoke a refresh or access token

LOGOUT Log out a session

USER_INFO Obtain information from the userinfo endpoint

PUSH_REGISTER Register a push device with PingAM; for example, a call to /json/push/sns/

message?_action=register

PUSH_AUTHENTICATE Authenticate using push; for example, a call to /json/push/sns/message?
_action=authenticate

@ Note

The AUTHENTICATE and START_AUTHENTICATE actions have a payload that contains:

tree
The name of the authentication tree being called.

type
Whether the call is to a service, orisin response to composite_advice.

The outcome of applying a request interceptor is the entire modified request object, ready to either be sent to PingAM, or to have
additional request interceptors applied.
Examples

This section covers how to develop request interceptors, referred to as "middleware" in the Ping SDK for JavaScript, and apply
them to outbound requests from your applications.

Ping SDK for Android

Query parameters and headers

The example sets the ForceAuth query parameter to true, and adds an Accept-Language header with a value of en-GB on all
outgoing requests of the START_AUTHENTICATE type:

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

public class QueryParamsAndHeaderRequestInterceptor implements FRRequestInterceptor<Action> {
@NonNull
@Override
public Request intercept(@NonNull Request request, Action tag) {
if (tag.getType().equals(START_AUTHENTICATE)) {
return request.newBuilder ()
// Add query parameter:
.url(Uri.parse(request.url().toString())
.buildUpon()
.appendQueryParameter ("ForceAuth", "true").toString())

// Add additional header:
.addHeader ("Accept-Language"”, "en-GB")

// Construct the updated request:

.build();
}

return request;

To register the request interceptor, use the RequestInterceptorRegistry.getInstance().register() method:

RequestInterceptorRegistry.getInstance().register(new QueryParamsAndHeaderRequestInterceptor())

Any calls the app makes to initiate authentication now have the query parameter ForceAuth=true appended, and include an
accept-language: en-GB header added.

Cookies

The example adds a custom cookie to outgoing requests:

Copyright © 2025 Ping Identity Corporation

Ping SDKs

Configure the Ping SDKs for Auth Journeys

public class CustomCookieInterceptor implements FRRequestInterceptor<Action>, CookieInterceptor {

@NonNull

@Override

public Request intercept(@NonNull Request request) {
return request;

@NonNull
@0Override

public Request intercept(@NonNull Request request, Action tag) {

return request;

@NonNull
@0verride

public List<Cookie> intercept(@NonNull List<Cookie> cookies) {

List<Cookie> newCookies = new ArraylList<>();

newCookies.addAll(cookies);

newCookies.add(

new Cookie.Builder ()

.domain("“example.com")
.name("member") .value("gold")
.httpOnly().secure().build()

)i

return newCookies;

Q Tip

You can register multiple request interceptors as follows:

RequestInterceptorRegistry.getInstance().register(
new QueryParamsAndHeaderRequestInterceptor(),
new CustomCookieInterceptor()

)5

Ping SDK for iOS

Query parameters and headers

The example sets the ForceAuth query parameter to true, and adds an Accept-Language header with a value of en-GB on all

outgoing requests of the AUTHENTICATE or START_AUTHENTICATE type:

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

class QueryParamsAndHeaderRequestInterceptor: RequestInterceptor {
func intercept(request: Request, action: Action) -> Request {
if action.type == "START_AUTHENTICATE" || action.type == "AUTHENTICATE" {
// Add query parameter:
var urlParams = request.urlParams
urlParams|["ForceAuth"] = "true"

// Add additional header:
var headers = request.headers
headers["Accept-Language"] = "en-GB"

// Construct the updated request:

let newRequest = Request(
url: request.url,
method: request.method,
headers: headers,
bodyParams: request.bodyParams,
urlParams: urlParams,
requestType: request.requestType,
responseType: request.responseType,
timeoutInterval: request.timeoutInterval

)

return newRequest
}
else {

return request
}

To register the request interceptor, use the registerInterceptors() method:

FRRequestInterceptorRegistry.shared.registerInterceptors(
interceptors: [
QueryParamsAndHeaderRequestInterceptor()

Any calls the app makes to initiate authentication now have the query parameter ForceAuth=true appended, and include an
accept-language: en-GB header added.

Cookies

The example adds a custom cookie to outgoing requests:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

class CookielInterceptor: RequestInterceptor {
func intercept(request: Request, action: Action) -> Request {
if action.type == "START_AUTHENTICATE" || action.type == "AUTHENTICATE" {

var headers = request.headers
headers["Cookie"] = "member=gold; level=2"

let newRequest = Request(
url: request.url,
method: request.method,
headers: headers,
bodyParams: request.bodyParams,
urlParams: request.urlParams,
requestType: request.requestType,
responseType: request.responseType,
timeoutInterval: request.timeoutInterval)
return newRequest

}
else {

return request
}

Q Tip

You can register multiple request interceptors as follows:

FRRequestInterceptorRegistry.shared.registerInterceptor(
interceptors: [
QueryParamsAndHeaderRequestInterceptor(),
CookieInterceptor()

Ping SDK for JavaScript

The example has two middleware configurations. One sets the ForceAuth query parameter to true, the other adds an Accept-
Language header with a value of en-GB on all outgoing requests of the START_AUTHENTICATE type:

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

const forceAuthMiddleware = (
req: RequestObj,
action: Action,
next: () => RequestObj
): void => {
switch (action.type) {
case 'START_AUTHENTICATE':
req.url.searchParams.set('ForceAuth', 'true');
break;
}
next();
b

const addHeadersMiddleware = (
req: RequestObj,
action: Action,
next: () => RequestObj
): void => {
switch (action.type) {
case 'START_AUTHENTICATE':
const headers = req.init.headers as Headers;
headers.append('Accept-Language', 'en-GB');
break;
}
next();
b

Apply the middleware in the config:

Config.set({
clientId: 'sdkPublicClient’,
middleware: [
forceAuthMiddleware,
addHeadersMiddleware
1P
redirectUri: 'https://localhost:8443/callback.html’,
realmPath: 'alpha',
scope: 'openid profile email address',
serverConfig: {
baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
timeout: 30000
b

tree: 'UsernamePassword'

3

Any calls the app makes to start authentication now have the query parameter and header added.

@ Note

You can only modify headers in certain types of request.
For example START_AUTHENTICATE and AUTHENTICATE types, but not AUTHORIZE types as they occurin an iframe.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

More information

+ Authentication parameters(Z
« Authenticate endpoint parameters@

+ SDK troubleshooting

Customize storage

Applies to:
v Ping SDK for Android
X Ping SDK for iOS

v Ping SDK for JavaScript

Depending on the authentication use case, the SDKs may need to store and retrieve session cookies, ID tokens, access tokens,
and refresh tokens.

Each token is serving a different use case, and as such how the SDKs handle them can be different.

The SDKs employ identity best practices for storing data by default. To learn more about how the SDKs store different data, refer
to Token and key security and Data security.

There are use cases where you might need to customize how to store data. For example, you might be running on hardware that
provides specialized security features, or perhaps target older hardware that cannot handle the latest algorithms.

For these cases, you can provide your own storage classes.

Customize storage on Android

You can configure your Android apps to use customized storage for these types of data:
1. OAuth 2.0 / OpenID Connect 1.0 tokens
2.5S0 data

3. Cookies

Q Tip

Depending on why you want to override storage mechanisms, you might prefer instead to prevent use of StrongBox.
Learn more in Preventing the Keystore System from using StrongBox.

Implement storage override classes

Use the Storage interface to override the different types of storage as follows

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/authn-from-browser.html#authn-from-browser-parameters
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-from-browser.html#authn-from-browser-parameters
https://docs.pingidentity.com/pingam/8/authentication-guide/authenticate-endpoint-parameters.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authenticate-endpoint-parameters.html

Configure the Ping SDKs for Auth Journeys Ping SDKs

OpenlD Connect storage

Storage<AccessToken>
S5O token storage

Storage<SSO0Token>
Cookie storage

Storage<Collection<String>>
You must implement the following functions in each storage class:
save()

Stores an item in the customized storage.
get()

Retrieves an item from the customized storage.

delete()

Removes an item from the customized storage.

Examples:

OpenlID Connect storage

class MyCustomTokenStorage(context: Context) : Storage<AccessToken> {

override fun save(item: AccessToken) {
TODO("Implement save to storage functionality")

}

override fun get(): AccessToken? {
TODO(“Implement retrieve to storage functionality")

override fun delete() {
TODO("Implement remove from storage functionality")

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

SSO token storage

class MyCustomSSOTokenStorage(context: Context) : Storage<SSOToken> {

override fun save(item: SSOToken) {
TODO("Implement save to storage functionality")

override fun get(): SSOToken? {
TODO(“Implement retrieve to storage functionality")

override fun delete() {
TODO("Implement remove from storage functionality")

Cookie storage

class MyCustomCookiesStorage() : Storage<Collection<String>> {

override fun save(item: Collection<String>) {
TODO("Implement save to storage functionality")

override fun get(): Collection<String>? {
TODO("Implement retrieve to storage functionality")

override fun delete() {
TODO("Implement remove from storage functionality")

The SDK includes a basic example of a customized storage class that places data temporarily in memory. Refer to
MemoryStorage.kt(Z in the forgerock-android-sdk GitHub repo.

@ Important

Apps you release that use customized storage will not be able to access existing data that was stored using a different
method.

Previous users of your app will have to log in again after upgrading to an app that is using a different storage
mechanism.

To prevent having to log in again your custom storage could manually migrate any existing data to the new storage
during initialization.

For an example of migrating existing stored data, see SSOTokenStorage.kt (J

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps/blob/main/android/kotlin-ui-prototype/app/src/main/java/com/example/app/storage/MemoryStorage.kt
https://github.com/ForgeRock/sdk-sample-apps/blob/main/android/kotlin-ui-prototype/app/src/main/java/com/example/app/storage/MemoryStorage.kt
https://github.com/ForgeRock/forgerock-android-sdk/blob/3702d36f935c6dec4ad636ebf36a4fdb780b65c2/forgerock-auth/src/main/java/org/forgerock/android/auth/storage/SSOTokenStorage.kt#L42C5-L53C6
https://github.com/ForgeRock/forgerock-android-sdk/blob/3702d36f935c6dec4ad636ebf36a4fdb780b65c2/forgerock-auth/src/main/java/org/forgerock/android/auth/storage/SSOTokenStorage.kt#L42C5-L53C6
https://github.com/ForgeRock/forgerock-android-sdk/blob/3702d36f935c6dec4ad636ebf36a4fdb780b65c2/forgerock-auth/src/main/java/org/forgerock/android/auth/storage/SSOTokenStorage.kt#L42C5-L53C6

Configure the Ping SDKs for Auth Journeys Ping SDKs

Configure storage overrides

Add a store key to the FROptionsBuilder.build parameters to specify which storage types to override, and the class you
created above that provides the implementation:

val options = FROptionsBuilder.build {

server {
url = "https://openam-forgerock-sdks.forgeblocks.com/am"
realm = "alpha"
cookieName = "iPlanetDirectoryPro"

}

oauth {
oauthClientId = "sdkPublicClient"
oauthRedirectUri = "https://localhost:8443/callback"

oauthScope = "openid profile email address"
}
service {
authServiceName = "Login"
registrationServiceName = "Registration”
}
store {

// Default storage settings

// Uses SecureSharedPreferences

// oidcStorage = TokenStorage(ContextProvider.context)

// ssoTokenStorage = SSOTokenStorage(ContextProvider.context)
// cookiesStorage = CookiesStorage(ContextProvider.context)

oidcStorage = MyCustomTokenStorage(ContextProvider.context)

ssoTokenStorage = MyCustomSSOTokenStorage(ContextProvider.context)
cookiesStorage = MyCustomCookiesStorage(ContextProvider.context)

FRAuth.start(this, options);

@ Note

You can only specify the store options when dynamically configuring the Ping SDK for Android.
You cannot add the parameters to the strings.xml file.

Implement storage fallbacks

One use case for providing custom storage is when the device you are targeting might not support the default
SecureSharedPreferences storage methods provided by the SDK.

In this case you can create a fallback mechanism such that if the default storage method produces an error, a second storage
method attempts to save the data.

The following CustomStorageWithFallback.kt example file(Z is available in the forgerock-android-sdk GitHub repo.

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps/blob/main/android/kotlin-ui-prototype/app/src/main/java/com/example/app/storage/CustomStorageWithFallback.kt
https://github.com/ForgeRock/sdk-sample-apps/blob/main/android/kotlin-ui-prototype/app/src/main/java/com/example/app/storage/CustomStorageWithFallback.kt
https://github.com/ForgeRock/sdk-sample-apps/blob/main/android/kotlin-ui-prototype/app/src/main/java/com/example/app/storage/CustomStorageWithFallback.kt

Ping SDKs Configure the Ping SDKs for Auth Journeys

package com.example.app.storage

import android.content.Context

import kotlinx.serialization.Serializable

import org.forgerock.android.auth.AccessToken

import org.forgerock.android.auth.SSOToken

import org.forgerock.android.auth.storage.CookiesStorage
import org.forgerock.android.auth.storage.SSOTokenStorage
import org.forgerock.android.auth.storage.Storage

import org.forgerock.android.auth.storage.TokenStorage

/
* A custom storage implementation that switches to a fallback storage when an error occurs.
*/
class CustomStorageWithFallback<T : @Serializable Any>(
private val context: Context,
private val flag: String, (1)
primary: Storage<T>, (2)
private val fallback: Storage<T> (3)
) : Storage<T> {

@Volatile
private var current: Storage<T> = primary (4)

/
* Save an item to the current storage. If an error occurs, switch to the fallback storage.
*
* @param item The item to be saved.
27
override fun save(item: T) {
try {
// Save the item to the current storage.
current.save(item) (5)
} catch (e: Throwable) {
// If an error occurs, switch to the fallback storage.
context.getSharedPreferences("storage-control”, Context.MODE_PRIVATE).edit()
.putInt(flag, 1).apply() (6)
fallback.save(item) (7)
current = fallback

/

* Retrieve an item from the current storage.
*

* @return The retrieved item, or null if no item is found.
*/
override fun get(): T? {
return current.get()

/
* Delete an item from the current storage.
&
override fun delete() {
current.delete()

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

Load the SSO token storage with a fallback mechanism.

*
*
* @param context The application context.
* @return The storage instance for SSO tokens.
*/
fun loadSSOTokenStorage(context: Context): Storage<SSOToken> { (8)
return loadStorage(
context,
"ssoStorage",
{ SSOTokenStorage(context) },

{ MemoryStorage() }

/
* Load the token storage with a fallback mechanism.
*
* @param context The application context.
* @return The storage instance for tokens.
=
fun loadTokenStorage(context: Context): Storage<AccessToken> { (9)
return loadStorage(
context,
"tokenStorage",
{ TokenStorage(context) },
{ MemoryStorage() }

/
* Load the cookies storage with a fallback mechanism.
*
* @param context The application context.
* @return The storage instance for cookies.
&
fun loadCookiesStorage(context: Context): Storage<Collection<String>> { (10)
return loadStorage(
context,
"cookiesStorage",
{ CookiesStorage(context) },
{ MemoryStorage() }

)
}
/
* Load a storage instance with a fallback mechanism.
*
* @param T The type of object to be stored.
* @param context The application context.
* @param flag A flag used to control the storage type.
* @param primary A function to initialize the primary storage.
* @param fallback A function to initialize the fallback storage.
* @return The storage instance.
&7/

inline fun <reified T : Any> loadStorage((11)
context: Context,
flag: String,
primary: () — Storage<T>,
fallback: () — Storage<T>
) : Storage<T> {
val control = context.getSharedPreferences("storage-control”, Context.MODE_PRIVATE)
// Get the storage type from the control flag. @: primary, 1: fallback.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

val storageType = control.getInt(flag, ©)
return when (storageType) {
// Use the primary storage.
0 — CustomStorageWithFallback(context,
flag,

primary(),
fallback())

// Use the fallback storage.
else —» fallback()

Flag whether the code should use the primary storage mechanism, or the fallback
The class to use as the primary storage mechanism

The class to use as the fallback storage mechanism

Initially, set the primary mechanism as current

Attempt to save with the current mechanism

If it fails, set flag to 1

Attempt to save with the fallback mechanism

00 N O 1l A WIN =

Create an SSO token wrapper function to load the primary and fallback mechanisms
9 Create an OIDC token wrapper function to load the primary and fallback mechanisms
10 Create a Cookie wrapper function to load the primary and fallback mechanisms

11 Create a function to load the customized storage wrappers

Configure your SDK application as follows to use the customized storage with fallback functionality:

store {
oidcStorage = loadTokenStorage(ContextProvider.context)
ssoTokenStorage = loadSSOTokenStorage(ContextProvider.context)
cookiesStorage = loadCookiesStorage(ContextProvider.context)

Preventing the Keystore System from using StrongBox

Devices running Android 9 or higher might be able to use a keystore system backed by StrongBox 2.

Storing keys, tokens, and secrets by using StrongBox offers the highest level of security for your app, and is the default option in
the Ping SDK for Android.

However, using StrongBox can be slower, and more resource-intensive. When using StrongBox on certain devices the
performance and responsiveness of your app may drop below acceptable levels. To learn more, refer to the device requirements
for StrongBox ([in the Android Source documentation.

The Ping SDK for Android provides a strongBoxPreferred flag you can use to avoid the use of StrongBox if required. The flag
only applies to the storage mechanisms built-in to the Ping SDK for Android. You do not have to provide your own custom storage
to use the strongBoxPreferred flag.

Copyright © 2025 Ping Identity Corporation

https://developer.android.com/privacy-and-security/keystore#StrongBoxKeyMint
https://developer.android.com/privacy-and-security/keystore#StrongBoxKeyMint
https://source.android.com/docs/compatibility/15/android-15-cdd#9112_strongbox
https://source.android.com/docs/compatibility/15/android-15-cdd#9112_strongbox
https://source.android.com/docs/compatibility/15/android-15-cdd#9112_strongbox

Configure the Ping SDKs for Auth Journeys Ping SDKs

@ Important

If your app is using customized storage and you switch to using the built-in storage mechanisms the app will not be

able to access the existing tokens and keys.
To avoid this, first call FRAuth.start with the original configuration and the customized storage, then call it a second

time with the new store configuration and strongBoxPreferred flag.

Use the following code to use the built-in storage mechanisms prevent use of StrongBox:

Preventing use of StrongBox for storage

val myConfig = FROptionsBuilder.build {
server {

}
oauth {

}
store {
oidcStorage = TokenStorage(
encryptor = EncryptorDelegate(
SecretKeyEncryptor {

context = <application context> (1)
keyAlias = "<key alias>" (2)
strongBoxPreferred = false (3)

}

)

ssoTokenStorage = SSOTokenStorage(
encryptor = EncryptorDelegate(
SecretKeyEncryptor {
context = <application context> (1)
keyAlias = "<key alias>" (2)
strongBoxPreferred = false (3)

}

)

cookiesStorage = CookiesStorage(
encryptor = EncryptorDelegate(
SecretKeyEncryptor {
context = <application context> (1)
keyAlias = "<key alias>" (2)
strongBoxPreferred = false (3)

1 For <application context> enter the application context, such as ContextProvider.context.
For <key alias> enter a string used as the alias for the key the Ping SDK creates.
You can use any value that does not clash with any other key names. A common pattern is <top-1level-domain>.<company-
name>.<version>.KEYS.
For example, com.example.v1.KEYS.
3 To prevent use of StrongBox, set the strongBoxPreferred boolean to false.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

If not specified or setto true, the Ping SDK for Android will use StrongBox when configured to use the built-in storage
mechanisms.

Some devices implement StrongBox, but are not optimal. You can use the Build (J class to conditionally apply the
strongBoxPreferred flag based on the device manufacturer, model, or other properties:

Conditionally applying flags based on device properties

store {
if (Build.MANUFACTURER.contains("Example")) {
oidcStorage = TokenStorage(
encryptor = EncryptorDelegate(SecretKeyEncryptor {
context = ContextProvider.context
keyAlias = "com.example.v1.KEYS"
strongBoxPreferred = false
})
)
}
}

Customize storage on JavaScript
The Ping SDK for JavaScript provides two built-in storage schemes for OAuth 2.0 tokens:
Session storage
Store tokens using the sessionStorage API.
The browser clears session storage when a page session ends.
Local storage

Store tokens using the localStorage API.

The browser saves local storage data across browser sessions. This is the default setting, as it provides the highest
browser compatibility.

You can configure your JavaScript apps to use customized storage if required.
Implement storage functions
You must implement the following functions in your custom storage scheme:

set(clientId, tokens)

Store a tokens object in the customized storage for a particular client.

get(clientId)

Retrieves the tokens object from the customized storage for a particular client.

Copyright © 2025 Ping Identity Corporation

https://developer.android.com/reference/android/os/Build
https://developer.android.com/reference/android/os/Build
https://developer.android.com/reference/android/os/Build

Configure the Ping SDKs for Auth Journeys Ping SDKs

remove(clientId)
Remove all items from the customized storage for a particular client.

Example:

let inMemoryTokens;

myTokenStore = {
get(clientId) {
console.log('Custom token getter used.');
// Return a promise that resolves to any tokens stored in memory
return Promise.resolve(inMemoryTokens) ;
Yo
set(clientId, tokens) {
console.log('Custom token setter used.');
// Example of storing tokens in memory
inMemoryTokens = tokens;
return Promise.resolve(undefined);
bo
remove(clientId) {
console.log('Custom token remover used.');
// Reset the in-memory store
inMemoryTokens = undefined;
return Promise.resolve(undefined);
Jo
b

Enable the custom storage

Use the tokenStore configuration property to configure the Ping SDK for JavaScript to use your custom storage object:

forgerock.Config.set({
serverConfig: {
baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am',
timeout: 3000,

b

clientId: 'sdkPublicClient',

scope: 'openid profile email address’,
redirectUri: ${window.location.origin}/callback.html,
tokenStore: myTokenStore

Enable SSL pinning

Applies to:
v Ping SDK for Android
v Ping SDKfor iOS

X Ping SDK for JavaScript

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

The Ping SDKs support SSL pinning, sometimes referred to as certificate pinning. SSL pinning is the security practice of validating
the certificates presented by the server against known values.

When the SDK attempts to make an HTTPS connection to your authorization server, it first verifies that a hash of the server's
public key (obtained from the server’s SSL certificate) matches a set of hashes defined within your app. This SSL pinning reduces
the chance of a man-in-the-middle (MITM) attack, improving the security of your app.

If the hash does not match, your app does not connect to the authorization server, and an error is returned instead. Note that if

your public key changes, you will need to rebuild and re-release your app with the new hash included.

Get a hash of the public key from your server

To enable SSL pinning you need a hash of your server’s public key. You can use the openssl tool to extract this from your
server's SSL certificate and create the hash value.

In the following command, replace <tenant-env-fqdn> with the fully-qualified domain name of your server, for example, my-
company.forgeblocks.com:

echo | openssl s_client -servername <tenant-env-fqdn> -connect <tenant-env-fqdn>:443 | openssl x509 -pubkey -noout |
openssl rsa -pubin -outform der | openssl dgst -sha256 -binary | openssl enc -base64

The command outputs a hash of the public key extracted from the certificate:
S4kZuhQQ1DPcXBSWFQXDOgG+UW7usdbVx6roNWpR165I=

Use this value in the next steps to configure SSL pinning.

&s, «

Ping SDK for Android Ping SDK for iOS
Configure SSL pinning in your Android Configure SSL pinning in your iOS application.
application.

Configure SSL pinning in Android

To enable SSL pinning in the Ping SDK for Android, add the hash of the public keys for any PingAM authorization servers your
application will contact to your app’s configuration.

Add the hashes to an array named forgerock_ssl_pinning_public_key_hashes inyour strings.xml file:

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

<string-array name="forgerock_ssl_pinning_public_key_hashes">
<item>S4kZuhQQ1DPcXBSWFQXDBgG+UW7usdbVx6roNWpR165I=</item>
</string-array>

If the public key you use to obtain SSL certificates for the PingAM servers change, you can update this property
programmatically.

Override default implementation of SSL pinning for Android

You can override how the Ping SDK for Android performs SSL pinning by registering your own implementation.

To override the default SSL pinning, you create your own implementation of checkServerTrusted() :

try {
final TrustManager myCustomTrustManager = new X509TrustManager() {
@0Override
public void checkClientTrusted(java.security.cert.X509Certificate[] chain, String authType) {}
@0verride
public void checkServerTrusted(java.security.cert.X509Certificate[] chain, String authType) {
// Provide custom SSL Pinning handling
}
@Override
public java.security.cert.X509Certificate[] getAcceptedIssuers() {
return new java.security.cert.X509Certificate[] {};
}
b

SSLContext sslContext = SSLContext.getInstance("SSL");

sslContext.init(null, new TrustManager[] { myCustomTrustManager }, new java.security.SecureRandom());

Config.getInstance().reset();

Config.getInstance().init(this, null);

Config.getInstance().setBuildSteps(Collections.singletonList(builder1 -> {
builder1.sslSocketFactory(sslContext.getSocketFactory(), (X509TrustManager) myCustomTrustManager);
builderi.hostnameVerifier((s, sslSession) -> true);

)

} catch (NoSuchAlgorithmException | KeyManagementException e) {
runOnUiThread(() -> content.setText(e.getMessage()));

Alternatively, you can override the SDK's SSL pinning functionality:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Configure the Ping SDKs for Auth Journeys

val myCustomTrustManager: TrustManager = object : X569TrustManager {
override fun checkClientTrusted(chain: Array<X569Certificate>, authType: String) {}
override fun checkServerTrusted(chain: Array<X509Certificate>, authType: String) {
// Provide custom SSL Pinning handling
}
override fun getAcceptedIssuers(): Array<X509Certificate> {
return arrayOf()

}
val sslContext = SSLContext.getInstance("SSL")
sslContext.init(null, arrayOf(myCustomTrustManager), SecureRandom())

val option = FROptionsBuilder.build {

server {
forgerock_url = "https://custom.example.com"
forgerock_realm = "prod"

}

sslPinning {
buildSteps = listOf(object: BuildStep<OkHttpClient.Builder> {
override fun build(builder1: OkHttpClient.Builder) {
builder1.sslSocketFactory(
sslContext.socketFactory,
myCustomTrustManager as X509TrustManager

)

builder1.hostnameVerifier { s, sslSession -> true }

})
forgerock_ssl_pinning_public_key_hashes = emptylList()

Configure SSL pinning in iOS

To enable SSL pinning in the Ping SDK for iOS, add the hash of the public keys for any PingAM authorization servers your
application will contact to your app’s configuration.

Add the hashes to an array named forgerock_ssl_pinning_public_key_hashes inyour FRAuthConfig.plist file:
<key>forgerock_ssl_pinning_public_key_hashes</key>
<array>

<string>S4kZuhQQ1DPcXBSWFQXDBgG+UW7usdbVx6roNWpR165I=</string>
</array>

If the public key you use to obtain SSL certificates for the PingAM servers change, you can update this property
programmatically.

Override default implementation of SSL pinning for iOS

You can override how the Ping SDK for iOS performs SSL pinning by registering your own implementation.

To override the default SSL pinning, create a new CustomPinningHandler subclass of the default
FRURLSessionSSLPinningHandler class. Override the implementation of the urlSession functions:

Copyright © 2025 Ping Identity Corporation

Configure the Ping SDKs for Auth Journeys Ping SDKs

class CustomPinningHandler: FRURLSessionSSLPinningHandler {
override func urlSession(_ session: URLSession, didReceive challenge: URLAuthenticationChallenge,
completionHandler: @escaping (URLSession.AuthChallengeDisposition, URLCredential?) -> Void) {
// Provide Custom SSL Pinning handling

override func urlSession(_ session: URLSession, task: URLSessionTask, didReceive challenge:
URLAuthenticationChallenge, completionHandler: @escaping (URLSession.AuthChallengeDisposition, URLCredential?) ->
Void) {
// Provide Custom SSL Pinning handling

Add your new custom handler as part of the configuration:

let customPinningHandler = CustomPinningHandler (frSecurityConfiguration: nil)
RestClient.shared.setURLSessionConfiguration(config: nil, handler: customPinningHandler)

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials

M Pingldentity.

Ping SDK for Auth Journey tutorials Ping SDKs

Follow these tutorials integrate your apps with Authentication journeys, also known as Intelligent Authentication in the following
servers:

* PingOne Advanced Identity Cloud

* PingAM

Ping SDK tutorials

Follow these core Ping SDK tutorials to integrate your apps with Authentication journeys, also known as Intelligent
Authentication in the following servers:

ae, «

Ping SDK for Android Ping SDK for iOS

Ping SDK for JavaScript

Integrating Ping SDKs into other platforms

Follow these tutorials to leverage the Ping SDKs in other platforms or languages, to support Authentication journeys, also known
as Intelligent Authentication in your apps.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

A %

Angular Flutter (iOS)

< <

React)S React Native (iOS)

Ping SDK for Auth Journey tutorials

Follow these core Ping SDK tutorials to integrate your apps with Authentication journeys, also known as Intelligent
Authentication in the following servers:

* PingOne Advanced Identity Cloud

* PingAM
PN -
‘

Ping SDK for Android Ping SDK for iOS

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Ping SDK for JavaScript

Ping SDK for Android Auth Journey tutorials

Follow these tutorials integrate your Android apps with Authentication journeys, also known as Intelligent Authentication in the
following servers:

* PingOne Advanced Identity Cloud
* PingAM

Ping SDK for Android Tutorials

DD G

Quick start Deep dive
In this quick start tutorial you update one This deep dive tutorial guides you through
of our sample applications. creating a Ping SDK-enabled Android app

from beginning to end.
The app steps through a simple authentication

journey and displays a basic prototype Ul to You'll step through the user authentication
gather user credentials. journey and display the appropriate user
interface, meaning you get to implement the
design to your specific requirements.

Authentication journey quick start for Android

Prepare > Download » Configure > Run

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

In this quick start tutorial you update one of our sample applications to connect to your PingOne Advanced Identity Cloud
tenant or PingAM server to authenticate a user.

The app steps through a simple authentication journey and returns a session token. The app is then able to obtain user info from
the server, and finally sign out to terminate the session.

Q Tip

To learn how to create an app from scratch to authenticate your users, try the Authentication journey deep-dive
tutorial for Android.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need an OAuth 2.0 client application set up, as well as an authentication journey for the app to
navigate.

Complete prerequisites »

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 »

Step 2. Configure connection properties

In this step, you configure the "kotlin-ui-prototype" sample app to connect to the OAuth 2.0 application you created in
PingOne Advanced Identity Cloud or PingAM.

Start step 2 »

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Step 3. Test the app

In this step, you will test your application.

You run it in the emulator or on your Android device, perform authentication with a demo user, obtain OAuth 2.0 tokens,
and then log out the user.

Test app »

Before you begin
Prepare > Download > Configure > Run

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

The tutorial also requires a configured server.

Compatibility

Android
This sample requires at least Android 9 (Pie) - API level 28.

For more information, refer to Supported operating systems and browsers.

Java

This sample requires at least Java 8 (v1.8).

Prerequisites

Android Studio

Download and install Android Studio (5, which is available for many popular operating systems.

An Android emulator or physical device

To try the quick start application as you develop it, you need an Android device. To add a virtual, emulated Android device
to Android Studio, refer to Create and manage virtual devicesZ, on the Android Developers website.

Copyright © 2025 Ping Identity Corporation

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

Ping SDKs Ping SDK for Auth Journey tutorials

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne]
Advanced Identity Cloud PingAM

PingAM
PingOne Advanced Identity Cloud

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2.In the left panel, click Identities > Manage.

3. Click + New Alpha realm - User.
4. Enter the following details:
° Username = demo
o First Name = Demo
° Last Name = User
o Email Address = demo.user@example.com
o Password = Ch4ng3it!
5. Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration referenceZ in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:
1. In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.
2. Enter a name, such as sdkUsernamePasswordJourney and click Save.

The authentication journey designer appears.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDK for Auth Journey tutorials Ping SDKs

3. Drag the following nodes into the designer area:
° Page Node
o Platform Username
° Platform Password
o Data Store Decision

4. Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

< Journeys sdkUsernamePasswordjourney ®

+ Add Nodes @ Q rs 22]

Page Node

Data Store Decision

» Platform Userna...
True

False
Platform Passwo... ‘

Figure 1. Example username and password authentication journey
6. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2.In the left panel, click Applications.
3. Click + Custom Application.
4. Select OIDC - Openld Connect as the sign-in method, and then click Next.
5. Select Native / SPA as the application type, and then click Next.

6.In Name, enter a name for the application, such as Public SDK Client.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

7.1n Owners, select a user that is responsible for maintaining the application, and then click Next.

Q Tip

When trying out the SDKs, you could select the demo user you created previously.

8. In Client ID, enter sdkPublicClient, and then click Create Application.
PingOne Advanced Identity Cloud creates the application and displays the details screen.
9. On the Sign On tab:
1. In Sign-In URLs, enter the following values:
org.forgerock.demo://oauth2redirect

@ Important

Also add any other domains where you host SDK applications.

2. In Grant Types, enter the following values:
Authorization Code
Refresh Token

3. In Scopes, enter the following values:
openid profile email address

10. Click Show advanced settings, and on the Authentication tab:

1. In Token Endpoint Authentication Method, select none .

2. In Client Type, select Public.

3. Enable the Implied Consent property.

11. Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

1. In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.
2. In the left panel, click ¥ Services.

3. In the list of services, click OAuth2 Provider.

4. 0On the Core tab, ensure Issue Refresh Tokens is enabled.

5. On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

6. Click Save Changes.
PingAM

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Identities, and then click + Add Identity.
3. Enter the following details:
° User ID = demo
o Password = Ch4ng3it!
o Email Address = demo.user@example.com
4. Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration referenceZ in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKSs, follow these steps:
1. Under Realm Overview, click Authentication Trees, then click Create Tree.
2. Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.
The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

3. Drag the following nodes from the Components panel on the left side into the designer area:
° Page Node
o Username Collector
° Password Collector
° Data Store Decision

4. Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDKs Ping SDK for Auth Journey tutorials

. Start @ N) Page Node [3 —@ Data Store Decision
- | True @— —@ Success
Username Collector || False @ T T

Password Collector ‘
@ Failure |

Figure 2. Example username and password authentication tree

6. Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

Q Tip

You can configure the node properties by selecting a node and altering properties in the right-hand panel.

One of the samples uses this specific value to determine the custom Ul to display.
7. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Applications > OAuth 2.0 > Clients, and then click + Add Client.
3.In Client ID, enter sdkPublicClient.
4. Leave Client secret empty.
5. In Redirection URIs, enter the following values:
org.forgerock.demo://oauth2redirect

@ Important

Also add any other domains where you will be hosting SDK applications.
6. In Scopes, enter the following values:
openid profile email address
7. Click Create.
PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.
8. On the Core tab:

1. In Client type, select Public.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

2. Disable Allow wildcard ports in redirect URIs.
3. Click Save Changes.

9. On the Advanced tab:
1. In Grant Types, enter the following values:

Authorization Code
Refresh Token

2. In Token Endpoint Authentication Method, select None .
3. Enable the Implied consent property.
10. Click Save Changes.
The provider specifies the supported OAuth 2.0 configuration options for a realm.
To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.
4. On the Core tab, ensure Issue Refresh Tokens is enabled.
5. On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

Step 1. Download the samples

Prepare > Download » Configure > Run

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.
1. In a web browser, navigate to the SDK Sample Apps repository (5.
2. Download the source code using one of the following methods:
Download a ZIP file
1. Click Code, and then click Download ZIP.
2. Extract the contents of the downloaded ZIP file to a suitable location.
Use a Git-compatible tool to clone the repo locally

1. Click Code, and then copy the HTTPS URL.

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Ping SDKs Ping SDK for Auth Journey tutorials

2. Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties
Prepare > Download > Configure > Run

In this step, you configure the "kotlin-ui-prototype" sample to connect to your server.
1. In Android Studio, open the sdk-sample-apps/android/kotlin-ui-prototype folder you cloned in the previous step.

2. In the Project pane, switch to the Android view.

-O0- Project PC
Packages
o
oo es

Project Files

3‘} Production

Tests

co g Project Source Files
Project Non-Source Files
Open Files

Scratches and Consoles

Android &

Figure 1. Switching the project pane to Android view.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

3. In the Android view, navigate to app > kotlin+java > com.example.app > env, and open EnvViewModel.kt .

This file has the server environments the sample app uses. Each specifies the properties using the
FROptionsBuilder.build method.

// Example values for a PingAM instance
val PingAM = FROptionsBuilder.build {

server {
url = "https://openam.example.com:8443/openam"
realm = "root"
cookieName = "iPlanetDirectoryPro"
timeout = 50
}
oauth {
oauthClientId = "sdkPublicClient"
oauthRedirectUri = "org.forgerock.demo://oauth2redirect"
oauthScope = "openid profile email address”
oauthSignOutRedirectUri = "org.forgerock.demo://oauth2redirect"
}
service {
authServiceName = "sdkUsernamePasswordJourney"
}

// Example values for a Ping Advanced Identity Cloud instance
val PingAdvancedIdentityCloud = FROptionsBuilder.build {

server {
url = "https://openam-forgerock-sdks.forgeblocks.com/am"
realm = "alpha"

cookieName = "29cd7a346b42b42"
timeout = 50

}
oauth {
oauthClientId = "sdkPublicClient"
oauthRedirectUri = "org.forgerock.demo://oauth2redirect"
oauthScope = "openid profile email address"
oauthSignOutRedirectUri = "org.forgerock.demo://oauth2redirect"
}
service {
authServiceName = "sdkUsernamePasswordJourney"
}

4. Update the PingAM or PingAdvancedIdentityCloud example configuration values to match your server environment:
url
The URL of the server to connect to, including the deployment path of the Access Management component.
Identity Cloud example:
https://openam-forgerock-sdks.forgeblocks.com/am
Self-hosted example:

https://openam.example.com:8443/openam

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

realm
The realm in which the OAuth 2.0 client profile and authentication journeys are configured.
Usually, root for AM and alpha or bravo for Advanced Identity Cloud.

cookieName
The name of the cookie that contains the session token.

For example, with a self-hosted PingAM server this value might be iPlanetDirectoryPro.

Q Tip

PingOne Advanced Identity Cloud tenants use a random alpha-numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud tenant, navigate to Tenant settings >
Global Settings, and copy the value of the Cookie property.

oauthClientld
The client ID of your OAuth 2.0 application in PingOne Advanced Identity Cloud or PingAM.

For example, sdkPublicClient

oauthRedirectUri

The redirect URI or sign-in URL as configured in the OAuth 2.0 client profile.

@ Note

This value must exactly match a value configured in your OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect .

oauthScope
The scopes you added to your OAuth 2.0 application in PingOne Advanced Identity Cloud.

For example, openid profile email address

oauthRedirectUri

The sign-out URL as configured in the OAuth 2.0 client profile.

@ Note

This value must exactly match a value configured in your OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect .
authServiceName

The authentication tree or journey you created earlier.

For example, sdkUsernamePasswordJourney

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials

Ping SDKs

The result will resemble the following:

// Example values for a Ping Advanced Identity Cloud instance
val PingAdvancedIdentityCloud = FROptionsBuilder.build {

server {
url = "https://openam-forgerock-sdks.forgeblocks.com/am"
realm = "alpha"

cookieName = "ch15fefc5407912"
timeout = 50

}
oauth {
oauthClientId = "sdkPublicClient"
oauthRedirectUri = "org.forgerock.demo://oauth2redirect"
oauthScope = "openid profile email address”
oauthSignOutRedirectUri = "org.forgerock.demo://oauth2redirect"
}
service {
authServiceName = "sdkUsernamePasswordJourney"
}

5. Save your changes.

With the sample configured, you can proceed to Step 3. Test the app.

Step 3. Test the app

Prepare > Download » Configure > Run

In this step, you run and test the sample app.
You run it in the emulator or on your Android device and perform authentication with a demo user.

1. In Android Studio, select Run > Run 'app".

2.In the sample app, on the Environment page, select the environment you configured in the last step.

3. Tap the menu icon (), tap 57 Launch Journey, and then tap Submit.
4. Sign on as a demo user:

> Name: demo

o Password: Ch4ng3it!

5. After successful authentication the app displays the session token:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

¥4 0100%

"SessionToken":
"BQVV_NsxQ9uB4w4GLozKII2CRE4*AAJTSQA
CMDIAAINLABWITM FpVGd4TzBgMWS5LRktze
HIrNjIHUXZZTOO9AAROeXBIAANDVFMAAIMX
AAIWMQ.*",

"successUrl": "\/enduser\/?realm=Valpha",

"realm": "\/alpha"

}

Show Userlinfo

Figure 1. Viewing a user’s session token in the Android sample app.

6. Tap Show Userinfo.

The app displays the user info for the account.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

¥4 0100%

Demo User",

"family_name": "User",

"given_name": "Demo",

"email": "demo.user@example.com",

"sub'":
"868f5ea0-ac4c-43b8-ba55-c1a93dfe9679",

"subname":
"868f5ea0-ac4c-43b8-ba55-c1a93dfe9679"
}

Show Userlnfo

Figure 2. Viewing userinfo for an account in the Android sample app.
7. Tap the menu icon (), and then tap @! Show Token.

The app displays the access, refresh, and ID tokens for the account. You can also view the scopes granted to the user.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

®.40100%

Demo App

= Access Token >

YXRpdmVDbGIIbnQiLCIndWQIiOiJzZGtOYXRp
dmVDbGIIbnQiLCIuYmMYiOjE3Mzk4Nzg4MTES
IMdyYW50X3R5cCGUiIOiJhdXRob3IpemFOaw9
UX2NVZGUILCIZY29WZSI6WyYIhZGRYZXNzliwi
b3BlbomlkliwicHIvZmIsZSIsimVtYWIsllOsImF1
dGhfdGltZSI16MTczOTg30DgwOCwicmVhbGO
iOilvYWxwaGEiLCIleHAIOJE3Mzk4ODIOMTESsI
mIhdCl16MTczOTg30DgxMSwiZXhwaX3Jlc19pbi
16MzYwMCwianRpljoiVVhULUUwbHFBQXIkX
2XCbjB6RXphRVNaOUtnIN0.VedlyjUOzosWKz
5yZ0XSoib9xh9Xf8IEEcdciUlSaru",
"tokenType": "Bearer",
"scope": [
"address",
"openid",

"profile",

"email"
Il
"expiresin": 3599,

"refreshToken":
"eyJ0eXAiOiIKVIQiILCIhbGciOiJlUzIINiJ9.eylz
dWIiOil14NjhmNWVhMCThYZRjLTQzYjgtYmE1
NSIJMWESM2RmMZTk2NzkiLCIjdHMIOiJPQVV
USDIJIfUIRBVEVMRVNTX0dSQU5UIliwiYXVOaF9
sZXZIbCleMCwiYXVkaXRUcmFja2luZOolkljoiND
RIYZNiIMzYtMzA2YiO0YzAy LTgXNjAtOGRIMTUS

Figure 3. Viewing OAuth 2.0 tokens for an account in the Android sample app.

8. Tap the menu icon (), and then tap B Logout.

The app terminates the user session and returns to the Launch Journey page.

Authentication journey deep-dive tutorial for Android

This tutorial guides you through creating a Ping SDK-enabled Android app from beginning to end. The app connects to a
PingOne Advanced Identity Cloud tenant or PingAM server to authenticate a user using an authentication journey.

You'll step through the user authentication journey and display the appropriate user interface, meaning you get to implement the
design to your requirements.

Q Tip

To get up and running in the shortest time, try the Authentication journey quick start for Android.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need an OAuth 2.0 client application set up, as well as an authentication journey for the app to
navigate.

Complete prerequisites »

Step 1. Configure the development environment

In this step, you set up your environment to create Android applications using the freely-available Android Studio IDE.
You then create a new application project and configure it to use the Ping SDK for Android.

Start step 1 »

Step 2. Configure connection properties

In this step, you provide your application with the settings it needs to connect to your PingOne Advanced Identity Cloud or
PingAM instance.

For example, which authentication tree to use, and the realm it is a part of.

Start step 2 »

Step 3. Initialize the SDK

In this step, you enable debug logging during development.

You then and add a call to the FRAuth.start() method, which initializes the SDK and loads the configuration you have
defined in the previous step.

Start step 3 »

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Step 4. Create a status view

In this step, you create a layout and add buttons to log in and log out your user, as well as a text view field to show their
current authentication status.

You also add the code to update the value displayed in the text view.

Start step 4 »

Step 5. Add login and logout calls

In this step, you update the app with the NodeListener interface, which manages the client side of the authentication
journey.

Start step 5 »

Step 6. Create Ul to handle the callbacks

In this step, you add a Ul fragment to obtain credentials from the user, and code to open that fragment when the callback
is received.

You also add code to populate the callback with the credentials and return it to the server, completing the authentication
journey.

Start step 6 »

Step 7. Test the app

In this step, you will test your application.

You run it in the emulator or on your Android device, perform authentication with a demo user, check the log for success
messages, and then log out the user.

Test app »

Before you begin

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

The tutorial also requires a configured server.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Compatibility

Android

This sample requires at least Android API 23 (Android 6.0)

Java

This sample requires at least Java 8 (v1.8).

Prerequisites

Android Studio

Download and install Android StudioZ, which is available for many popular operating systems.

An Android emulator or physical device

To try the quick start application as you develop it, you need an Android device. To add a virtual, emulated Android device
to Android Studio, refer to Create and manage virtual devices U, on the Android Developers website.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne .
Advanced Identity Cloud PingAM

PingOne Advanced Identity Cloud

PingAM

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test

authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2.In the left panel, click Identities > Manage.

3. Click + New Alpha realm - User.

Copyright © 2025 Ping Identity Corporation

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

Ping SDKs Ping SDK for Auth Journey tutorials

4. Enter the following details:
° Username = demo
° First Name = Demo
° Last Name = User
o Email Address = demo.user@example.com
o Password = Ch4ng3it!
5. Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(J in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:
1. In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.
2. Enter a name, such as sdkUsernamePasswordJourney and click Save.
The authentication journey designer appears.

3. Drag the following nodes into the designer area:
o Page Node
° Platform Username
o Platform Password
o Data Store Decision

4. Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDK for Auth Journey tutorials Ping SDKs

< Journeys sdkUsernamePasswordjourney ®

+ Add Nodes Q Q

rm
L

E u}

Page Node

Data Store Decision

> Platform Userna...
True

False
Platform Passwo... ‘

Figure 1. Example username and password authentication journey

6. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. In the left panel, click Applications.
3. Click + Custom Application.
4. Select OIDC - Openld Connect as the sign-in method, and then click Next.
5. Select Native / SPA as the application type, and then click Next.
6. In Name, enter a name for the application, such as Public SDK Client.

7.1n Owners, select a user that is responsible for maintaining the application, and then click Next.

Q Tip

When trying out the SDKs, you could select the demo user you created previously.

8.In Client ID, enter sdkPublicClient, and then click Create Application.
PingOne Advanced Identity Cloud creates the application and displays the details screen.
9. On the Sign On tab:
1. In Sign-In URLs, enter the following values:

org.forgerock.demo://oauth2redirect

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@ Important

Also add any other domains where you host SDK applications.

2.In Grant Types, enter the following values:
Authorization Code
Refresh Token
3. In Scopes, enter the following values:
openid profile email address
10. Click Show advanced settings, and on the Authentication tab:
1. In Token Endpoint Authentication Method, select none .
2.In Client Type, select Public .
3. Enable the Implied Consent property.
11. Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

1. In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.
4. 0On the Core tab, ensure Issue Refresh Tokens is enabled.
5. On the Consent tab, ensure Allow Clients to Skip Consent is enabled.
6. Click Save Changes.
PingAM

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Identities, and then click + Add Identity.
3. Enter the following details:

o User ID = demo

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

o Password = Ch4ng3it!
o Email Address = demo.user@example.com
4. Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(J in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:
1. Under Realm Overview, click Authentication Trees, then click Create Tree.
2. Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.
The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

3. Drag the following nodes from the Components panel on the left side into the designer area:
o Page Node
o Username Collector
o Password Collector
o Data Store Decision

4. Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

Start @ - Page Node [= ~@ Data Store Decision
True @— —@ Success
Username Collector Fass @i & Il .

Password Collector
® Failure

Figure 2. Example username and password authentication tree

6. Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

Q Tip

You can configure the node properties by selecting a node and altering properties in the right-hand panel.

One of the samples uses this specific value to determine the custom Ul to display.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDKs Ping SDK for Auth Journey tutorials

7. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B3 Applications > OAuth 2.0 > Clients, and then click + Add Client.
3.In Client ID, enter sdkPublicClient .
4. Leave Client secret empty.
5. In Redirection URIs, enter the following values:
org.forgerock.demo://oauth2redirect

@ Important

Also add any other domains where you will be hosting SDK applications.

6. In Scopes, enter the following values:
openid profile email address
7. Click Create.
PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.
8. On the Core tab:
1. In Client type, select Public.
2. Disable Allow wildcard ports in redirect URIs.
3. Click Save Changes.
9. On the Advanced tab:
1.In Grant Types, enter the following values:

Authorization Code
Refresh Token

2. In Token Endpoint Authentication Method, select None .
3. Enable the Implied consent property.
10. Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.
4. 0n the Core tab, ensure Issue Refresh Tokens is enabled.
5. On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

Step 1. Configure the development environment

In this step, you set up your environment to create Android applications using the freely-available Android Studio IDE.

You then create a new application project and configure it to use the Ping SDK for Android.

Prerequisites

Android Studio
Download and install Android Studio (5, which is available for many popular operating systems.
An Android emulator or physical device

To try the quick start application as you develop it, you need an Android device. To add a virtual, emulated Android device
to Android Studio, refer to Create and manage virtual devicesZ, on the Android Developers website.

Create a new project

1. In Android Studio, select File > New > New Project.
2. 0n the New Project screen, select Empty Views Activity, and then click [Next].
3. On the next screen:
° In the Name field, enter Ping SDK for Android Quick Start.
° In the Package name field, enter com.example.quickstart.
° In the Save location field, enter the location in which to create the project.
° In the Language drop-down, select Java .

° In the Minimum SDK drop-down, select API 23: Android 6.0 (Marshmallow) .

Copyright © 2025 Ping Identity Corporation

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

Ping SDKs Ping SDK for Auth Journey tutorials

o Click [Finish].

Android Studio creates a simple application that you can now configure to use the Ping SDK for Android.

Configure compile options

The Ping SDK for Android requires at least Java 8 (v1.8).

Configure compile options in your project to use this version of Java, or later:
1. In the Android view of your project, right-click app, and then click Open module settings.
2. In the Project Structure dialog, navigate to Modules > app > Properties.

3. In the Source Compatibility and Target compatibility drop-downs, select the version of Java to use for the project:

[NN) Project Structure
l\iodules Properties Default Config Signing Configs
Project y .
‘ [~ app Build Tools Version
SDK Location v
Variables
NDK Version
Modules v
Dependencies (- o Y
Source Compatibility
Build Variants .
$JavaVersion.VERSION_17 : 17 (Java 17) v
Suggestions Target Compatibility
$JavaVersion.VERSION_17] v
1.6 (Java 6)
1.7 (Java 7)
1.8 (Java 8)
11 (Java 11)
17 (Java 17)
¢ X J
Retain information about dependencies in the bundle
Cancel Apply

Figure 1. Selecting the Java version for a project in Android Studio

4. Click OK.

Add build dependencies

To use the Ping SDK for Android, add the relevant dependencies to your project:

1. In the Project tree view of your Android Studio project, open the Gradle Scripts/build.gradle file for the module.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs
2.Inthe dependencies section, add the following:

implementation 'org.forgerock:forgerock-auth:4.8.1"'
Example of the dependencies section after editing:

dependencies {
implementation 'org.forgerock:forgerock-auth:4.8.1"

implementation 'androidx.appcompat:appcompat:1.6.1"

implementation 'com.google.android.material:material:1.8.0'
implementation 'androidx.constraintlayout:constraintlayout:2.1.4"

(Optional) Enable optional clear traffic and location support

If you are not using the PingOne Advanced Identity Cloud but rather a local PingAM server that does not use the HTTPS protocol,
you can edit your project manifest file to allow cleartext connections.

@ Important

You should only configure this property during development against a local PingAM server.
Do not configure this property in your production applications.

1. Open the project manifest file.
For example, app > manifests > AndroidManifest.xml.

2.Add an android:usesCleartextTraffic="true" attribute to the <application> element.

(Optional) Enable location permissions

If you intend for your application to use any of the Android location services; for example, the SDK's location matching or
geofencingJ features, add one of the relevant properties to the project manifest file

1. Open the project's manifest file.
For example, app > manifests > AndroidManifest.xml.
2. Add the relevant properties as a child of the <manifest> element:

1. Coarse location access

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingoneaic/latest/solution-configure-device-profiling.html
https://docs.pingidentity.com/pingoneaic/latest/solution-configure-device-profiling.html
https://docs.pingidentity.com/pingoneaic/latest/solution-configure-device-profiling.html

Ping SDKs Ping SDK for Auth Journey tutorials

2. Fine location access (requires both permissions)

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

For information about which permission to use, see Location permissions(Z in the Google Developer Documentation.

Example completed manifest file

The following shows an example AndroidManifest.xml file with support for cleartext traffic and fine location access enabled:

AndroidManifest.xml

<?xml version="1.8" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools">

<application
android:allowBackup="true"
android:dataExtractionRules="@xml/data_extraction_rules"
android:fullBackupContent="@xml/backup_rules"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.ForgeRockSDKForAndroidQuickStart"
tools:targetApi="31"
android:usesCleartextTraffic="true">
<activity
android:name=".MainActivity"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

<meta-data
android:name="android.app.lib_name"
android:value="" />
</activity>
</application>

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

</manifest>

Copyright © 2025 Ping Identity Corporation

https://developers.google.com/maps/documentation/android-sdk/location#location_permissions
https://developers.google.com/maps/documentation/android-sdk/location#location_permissions

Ping SDK for Auth Journey tutorials Ping SDKs

Check point

In Android Studio, select Run > Run 'app'.
Android Studio builds the application and runs it in the default emulator.

As you have not yet added any Ul, the app displays only "Hello World!".

5G .4 0100%

Hello World!

You have now configured your Android app development environment, created a new project, and configured it with the required
dependencies and build options.

In the next step, you configure your application with the settings it needs to connect to your PingOne Advanced Identity Cloud or
PingAM instance.
Step 2. Configure connection properties

In this step, you provide your application with the settings it needs to connect to your PingOne Advanced Identity Cloud or
PingAM instance.

For example, which authentication tree to use and the realm it is a part of.

Copyright © 2025 Ping Identity Corporation

Ping SDKs

Ping SDK for Auth Journey tutorials

For this quick start guide, you must provide at least the following properties:

Property

forgerock_oauth_client
_id

forgerock_oauth_redire

ct_uri

forgerock_oauth_scope

forgerock_url

forgerock_realm

forgerock_auth_service

forgerock_cookie_name

Property

forgerock_oauth_thresh
old

forgerock_timeout

Description

The client_id of the OAuth 2.0 client profile to use.

The redirect_uri as configured in the OAuth 2.0 client profile.
This value must match a value configured in your OAuth 2.0 client, but is not actually used by the
Android application.

A list of scopes to request when performing an OAuth 2.0 authorization flow.

The URL of the PingOne Advanced Identity Cloud or PingAM instance.

For example, https://openam-forgerock-sdks.forgeblocks.com/am

If you are not using PingOne Advanced Identity Cloud, specify the port and deployment path.
For example, https://openam.example.com:8443/openam.

The realm in which the OAuth 2.0 client profile is configured.

For example, alpha

If you are not using PingOne Advanced Identity Cloud, specify the default PingAM the top-level
realm; root.

The name of the journey to use for authentication.
For example, sdkUsernamePasswordJourney

The name of the cookie that contains the session token. To obtain the name of the cookie in the
PingOne Advanced Identity Cloud:

1. Click your user in the top-right corner and select Tenant settings.
2. On the Global Settings tab, copy the value of the Cookie property.

The value is a random string of characters, such as 29cd7a346b42b42 .
If you are not using PingOne Advanced Identity Cloud, the cookie name is usually
iPlanetDirectoryPro.

Description

A threshold, in seconds, to refresh an OAuth 2.0 token before the access_token expires
(defaults to 38 seconds).

Atimeout, in seconds, for each request that communicates with PingAM.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Add required connection settings to your app

1. In the Project tree view of your Android Studio project, navigate to app > res > values, and then open the strings.xml
file.

2.Inside the <resources> element, add the following elements, adjusting the values for your deployment:
<!-- OAuth 2.0 client details -->
<string name="forgerock_oauth_client_id" translatable="false">sdkPublicClient</string>
<string name="forgerock_oauth_redirect_uri" translatable="false">https://sdkapp.example.com:8443/callback</
string>
<string name="forgerock_oauth_scope" translatable="false">openid profile email address</string>
<!-- PingOne Advanced Identity Cloud details -->
<string name="forgerock_url" translatable="false">https://openam-forgerock-sdks.forgeblocks.com/am</string>
<string name="forgerock_cookie_name" translatable="false">iPlanetDirectoryPro</string>

<string name="forgerock_realm" translatable="false">alpha</string>

<!-- Journey details -->
<string name="forgerock_auth_service" translatable="false">sdkUsernamePasswordJourney</string>

Check point

You have now configured your application with the settings it needs to connect to your PingOne Advanced Identity Cloud or
PingAM instance.

In the next step, you add debug logging and initialize the SDK.

Step 3. Initialize the SDK

In this step, you enable debug logging during development.

You then add a call to the FRAuth.start() method, which initializes the SDK and loads the configuration you have defined in the
previous step.

Enable debug logging and initialize the SDK

1. Open the project’'s MainActivity class file.
For example, app > java > com.example.quickstart > MainActivity.

2. Enable debug logging and initialize the SDK in the onCreate() method after the generated code:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@0verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// Add these lines:
Logger.set(Logger.Level.DEBUG);
FRAuth.start(this);

3. Add the required import statements for org.forgerock.android.auth.FRAuth and
org.forgerock.android.auth.Logger .

import org.forgerock.android.auth.FRAuth;
import org.forgerock.android.auth.Logger;

Check point

You have now added debug logging to your app and initialized the SDK.
1. To test the setup so far, in Android Studio, select Run > Run 'app".
If everything is configured correctly, the app builds, and the default emulator will run the application.
2. Open the Logcat pane. The SDK will generate output similar to the following if everything is configured correctly:

-- PROCESS STARTED (14305) for package com.example
[4.8.1] [DefaultTokenManager]: Using SharedPreference: StorageDelegate

Q Tip

In the Logcat filter bar, enter tag:ForgeRock to only view output from the SDK.
If you get errors when running the app, check the app > res > values > strings.xml has the correct values. Refer to Step 2.
Configure connection properties.

In the next step, you create the initial user interface to display the current authentication status, and add buttons to log in and log

out.

Step 4. Create a status view

In this step, you create a layout and add buttons to log in and log out your user, as well as a text view field to show their current
authentication status.

You also add the code to update the value displayed in the text view.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Create a layout for the status view

1. Navigate to app > res > layout and open activity_main.xml.
2. Select and delete the existing TextView element that contains the text Hello World! .
3. From the Palette pane, drag a new TextView element to the canvas:
o id: textViewUserStatus
o text: User status
4. From the Palette pane, drag a new Button element to the canvas:
° id: buttonLogin
o text: Log in
5. From the Palette pane, drag a second new Button element to the canvas:
° id: buttonLogout
o text: Log out
6. Layout the elements on the canvas to your liking.

The following screenshot shows one possibility:

‘—fdser status

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

<?xml version="1.8" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/main"
android:layout_width="match_parent"
android:layout_height="match_parent”
tools:context=".MainActivity">

<TextView
android:id="@+id/textViewUserStatus"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginStart="16dp"
android:layout_marginTop="16dp"
android:layout_marginEnd="16dp"
android:text="User status"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />

<Button
android:id="@+id/buttonLogin”
android:layout_width="0dp"
android:layout_height="wrap_content”
android:layout_marginStart="16dp"
android:layout_marginTop="16dp"
android:layout_marginEnd="8dp"
android:text="Log in"
app:layout_constraintEnd_toStartOf="@+id/buttonLogout"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/textViewUserStatus" />

<Button

android:id="@+id/buttonLogout"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginStart="8dp"
android:layout_marginTop="16dp"
android:layout_marginEnd="16dp"
android:text="Log out"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@+id/buttonLogin"
app:layout_constraintTop_toBottomOf="@+id/textViewUserStatus" />

</androidx.constraintlayout.widget.ConstraintLayout>

Add a function to update the status view

1. Open the project's MainActivity class file.
For example, app > java > com.example.quickstart > MainActivity.

2. Add the following statements before the definition of the onCreate() function:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

private TextView status;
private Button loginButton;
private Button logoutButton;

3. Add import statements for the FRUser module, and for android.widget.Button and android.widget.TextView.

import org.forgerock.android.auth.FRUser;
import android.widget.Button;
import android.widget.TextView;

4.1n the onCreate() function, after the call to FRAuth.start(), add references to the elements on the status view layout:

// Add references to status view elements
status = findViewById(R.id.textViewUserStatus);
loginButton = findViewById(R.id.buttonLogin);
logoutButton = findViewById(R.id.buttonLogout);
updateStatus();

5. Add the following function after the existing onCreate() function:

private void updateStatus() {
runOnUiThread(() -> {

if (FRUser.getCurrentUser() == null) {
status.setText("User is not authenticated.");
loginButton.setEnabled(true);
logoutButton.setEnabled(false);

} else {
status.setText("User is authenticated.");
loginButton.setEnabled(false);
logoutButton.setEnabled(true);

3

Check point

In Android Studio, select Run > Run 'app'.
If everything is configured correctly, the app builds, and the default emulator runs the application.

The app shows the [Log in] and [Log out] buttons, as well as a text view element that displays User is not authenticated:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

123 %) 5G4 0100%

User is not authenticated.

In the next step, you create and attach functions to the buttons to start the authentication journey, or begin the logout process.

Step 5. Add login and logout calls

In this step, you update the app with the NodeListener interface, which manages the client side of the authentication journey.
The interface provides methods to handle the results of the authentication journey:
onSuccess()
The authentication journey is complete and an FRUser object is now available for further use.
For example, you could display the user's name in your app.
onCallbackReceived()
Recursively handle each step within the authentication journey, by completing and returning any callbacks received.

For example, in this quick start guide we receive NameCallback and PasswordCallback callbacks. In the next step, we
create the Ul to request these credentials from the user.

onException()

Handle any errors.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Implement NodeListener and methods

1. Edit the MainActivity class so thatitimplements NodeListener<FRUser> :

public class MainActivity extends AppCompatActivity implements NodelListener<FRUser> {

2. Add import statements for org.forgerock.android.auth.NodeListener and org.forgerock.android.auth.Node:

import org.forgerock.android.auth.NodelListener;
import org.forgerock.android.auth.Node;

3. At the bottom of the MainActivity class, add the handler methods from the NodelListener interface:

public class MainActivity extends AppCompatActivity implements NodelListener<FRUser> {

/] .
1
/] .

@0verride
public void onSuccess(FRUser result) {
updateStatus();
}

@0verride
public void onCallbackReceived(Node node) {

// Display appropriate UI to handle callbacks
}

@Override

public void onException(Exception e) {
Logger.error(TAG, e.getMessage(), e);

}

4. Attach FRUser.login() and FRUser.logout() calls to the appropriate buttons, after the updateStatus() call:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Logger.set(Logger.Level.DEBUG) ;
FRAuth.start(this);
// Add references to status view elements
status = findViewById(R.id.textViewUserStatus);
loginButton = findViewById(R.id.buttonLogin);
logoutButton = findViewById(R.id.buttonLogout);
updateStatus();

// Attach 'FRUser.login()' to 'loginButton'’
loginButton.setOnClickListener(view - FRUser.login(getApplicationContext(), this));

// Attach 'FRUser.getCurrentUser().logout()' to 'logoutButton'
logoutButton.setOnClickListener(view — {

FRUser.getCurrentUser().logout();
updateStatus();

3

Check point

1. In Android Studio, select Run > Run 'app'.
If everything is configured correctly, the app builds, and the emulator runs the application.
2.In the Emulator, click the [Log in] button.

In the Run pane, you should see the following to indicate that the journey was found and the callbacks were returned. In
our case, a NameCallback and PasswordCallback callback, as configured in the page node:

[4.8.1] [AuthServiceResponseHandler]: Journey callback(s) received.

In the next step, you add a Ul fragment to obtain credentials from the user, and code to open that fragment when the callback is
received.

You also add code to populate the callback with the credentials and return it to the server, completing the authentication journey.

Step 6. Create Ul to handle the callbacks

In this step, you add a Ul fragment to obtain credentials from the user, and code to open that fragment when a callback is
received.

The authentication journey in this quick start guide sends the NameCallback and PasswordCallback callbacks.

For demonstration purposes, this application uses a DialogFragment to collect the username and password.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

You also add code to populate the callback with the credentials and return it to the server, completing the authentication journey.

Create a Ul fragment

1. Navigate to app > res.
2. Right-click layout and select New > Fragment > Fragment (Blank).
3. In the New Android Component dialog, enter the following values, and then click [Finish]:
° Fragment Name: usernamePasswordFragment
° Fragment Layout Name: fragment_username_password
° Source Language: Java
4. Navigate to app > res > layout and open fragment_username_password.xml .
5. Select and delete the existing TextView element that contains the text Hello blank fragment .

6. In the Component Tree pane, right-click the FrameLayout component, select Convert FramelLayout to ConstraintLayout,
and then click [OK].

7.In the Palette pane, from the Text category drag a Plain Text input element to the canvas:
° id: inputUsername
o text: Username
8. Drag a Password element to the canvas:
° id: inputPassword
° hint: Password
9. In the Palette pane, from the Button category, drag a Button element to the canvas:
° id: buttonCancel
° text: Cancel
10. Drag a second Button element to the canvas:
° id: buttonContinue
o text: Continue
11. Layout the elements on the canvas to your liking.

The following screenshot shows one possibility:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Continue

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

<?xml version="1.8" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/frameLayout"
android:layout_width="match_parent"
android:layout_height="match_parent”
tools:context=".usernamePasswordFragment">

<EditText
android:id="@+id/inputUsername"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginStart="16dp"
android:layout_marginTop="16dp"
android:layout_marginEnd="16dp"
android:ems="10"
android:inputType="text"
android:text="Username"
app :layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />

<EditText
android:id="@+id/inputPassword"
android:layout_width="edp"
android:layout_height="wrap_content"
android:layout_marginStart="16dp"
android:layout_marginTop="16dp"
android:layout_marginEnd="16dp"
android:ems="10"
android:hint="Password"
android:inputType="textPassword"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/inputUsername" />

<Button
android:id="@+id/buttonCancel”
android:layout_width="0dp"
android:layout_height="wrap_content”
android:layout_marginStart="16dp"
android:layout_marginTop="16dp"
android:layout_marginEnd="8dp"
android:text="Cancel"
app:layout_constraintEnd_toStartOf="@+id/buttonContinue’
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/inputPassword"
tools:text="Cancel" />

<Button
android:id="@+id/buttonContinue"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginStart="8dp"
android:layout_marginTop="16dp"
android:layout_marginEnd="16dp"

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

android:text="Continue"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@+id/buttonCancel"
app:layout_constraintTop_toBottomOf="@+id/inputPassword" />
</androidx.constraintlayout.widget.ConstraintLayout>

Configure the fragment code

1. Open usernamePasswordFragment.java
For example, app > java > com.example.quickstart > usernamePasswordFragment.

2. Update the class to extend DialogFragment rather than Fragment, which makes opening and closing the fragment
easier:
public class usernamePasswordFragment extends DialogFragment {
3. Add import statements for androidx.fragment.app.DialogFragment :
import androidx.fragment.app.DialogFragment;

4. Within the usernamePasswordFragment class, initialize required variables:

private MainActivity listener;
private Node node;

5. Update the newInstance method to accept a node object as its only parameter:

public static usernamePasswordFragment newInstance(Node node) {
usernamePasswordFragment fragment = new usernamePasswordFragment();
Bundle args = new Bundle();
args.putSerializable("NODE", node);
fragment.setArguments(args);
return fragment;

6. Insert an onResume() method below the newInstance() method. This correctly sizes the fragment dialog when
displayed:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@0Override
public void onResume() {
super.onResume() ;
ViewGroup.LayoutParams params = getDialog().getWindow().getAttributes();
params.width = ViewGroup.lLayoutParams.MATCH_PARENT;
params.height = ViewGroup.LayoutParams.WRAP_CONTENT;
getDialog().getWindow().setAttributes((android.view.WindowManager.LayoutParams) params);

7. Delete the onCreate() function.

8. Update the onCreateView method to capture the values from the fields in the fragment and populate the callbacks the
node returned:

@0override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
// Inflate the layout for this fragment
View view = inflater.inflate(R.layout.fragment_username_password, container, false);
node = (Node) getArguments().getSerializable("“NODE");
AppCompatEditText username = view.findViewById(R.id.inputUsername) ;
AppCompatEditText password = view.findViewById(R.id.inputPassword);
Button next = view.findViewById(R.id.buttonContinue);
next.setOnClickListener(v -> {
dismiss();
node.getCallback(NameCallback.class)
.setName(username.getText().toString());
node.getCallback(PasswordCallback.class)
.setPassword(password.getText().toString().toCharArray());
node.next(getContext(), listener);
Y)i
Button cancel = view.findViewById(R.id.buttonCancel);
cancel.setOnClickListener(v -> {
dismiss();
B

return view;

9. Add an onAttach() method after the onCreatevView() method. This ensures the fragment is correctly connected to the
main activity:

@0verride
public void onAttach(@NonNull Context context) {
super.onAttach(context);
if (context instanceof MainActivity) {
listener = (MainActivity) context;

10. Add any missing required import statements:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

import android.content.Context;
import android.os.Bundle;

import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;
import android.widget.Button;

import androidx.annotation.NonNull;
import androidx.appcompat.widget.AppCompatEditText;
import androidx.fragment.app.DialogFragment;

import org.forgerock.android.auth.Node;
import org.forgerock.android.auth.callback.NameCallback;
import org.forgerock.android.auth.callback.PasswordCallback;

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

package com.example.quickstart;

import android.os.Bundle;

import androidx.fragment.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import androidx.fragment.app.DialogFragment;

import android.content.Context;

import android.widget.Button;

import androidx.annotation.NonNull;

import androidx.appcompat.widget.AppCompatEditText;
import org.forgerock.android.auth.Node;

import org.forgerock.android.auth.callback.NameCallback;
import org.forgerock.android.auth.callback.PasswordCallback;

/**

* A simple {@link Fragment} subclass.

* Use the {@link usernamePasswordFragment#newInstance} factory method to
* create an instance of this fragment.

=

public class usernamePasswordFragment extends DialogFragment {

private MainActivity listener;
private Node node;

public usernamePasswordFragment() {
// Required empty public constructor

public static usernamePasswordFragment newInstance(Node node) {
usernamePasswordFragment fragment = new usernamePasswordFragment();
Bundle args = new Bundle();
args.putSerializable("NODE", node);
fragment.setArguments(args) ;
return fragment;

@0override
public void onResume() {
super.onResume() ;
ViewGroup.LayoutParams params = getDialog().getWindow().getAttributes();
params.width = ViewGroup.LayoutParams.MATCH_PARENT;
params.height = ViewGroup.LayoutParams.WRAP_CONTENT;
getDialog() .getWindow() .setAttributes((android.view.WindowManager .LayoutParams) params);

@0override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
// Inflate the layout for this fragment
View view = inflater.inflate(R.layout.fragment_username_password, container, false);
node = (Node) getArguments().getSerializable("NODE");
AppCompatEditText username = view.findViewById(R.id.inputUsername);
AppCompatEditText password = view.findViewById(R.id.inputPassword);
Button next = view.findViewById(R.id.buttonContinue);
next.setOnClickListener(v -> {
dismiss();
node.getCallback(NameCallback.class)
.setName(username.getText().toString());

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

node.getCallback(PasswordCallback.class)
.setPassword(password.getText().toString().toCharArray());
node.next(getContext(), listener);
2
Button cancel = view.findViewById(R.id.buttonCancel);
cancel.setOnClickListener (v -> {

dismiss();
P
return view;
}
@0Override

public void onAttach(@NonNull Context context) {
super.onAttach(context);
if (context instanceof MainActivity) {
listener = (MainActivity) context;

Open the fragment when receiving callbacks

1. Open the project’'s MainActivity class file.
For example, app > java > com.example.quickstart > MainActivity.

2. Update the onCallbackReceived() method to open the fragment to gather the credentials:

@0verride

public void onCallbackReceived(Node node) {
usernamePasswordFragment fragment = usernamePasswordFragment.newInstance(node);
fragment.show(getSupportFragmentManager(), usernamePasswordFragment.class.getName());

Check point

You have now completed the quick start application.
You added a Ul fragment to obtain credentials from the user, and code to open that fragment when the callback is received.

You also added code to populate the callback with the credentials and return it to the server, completing the authentication
journey.

In the next step, you test the application by authenticating a user, checking the logs, and then logging out.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Step 7. Test the app

In this step, you run and test your application.

You run it in the emulator or on your Android device, perform authentication with a demo user, check the log for success
messages, and then log out the user.

Log in as a demo user

1. In Android Studio, select Run > Run 'app".
2. Click[Login].

The fragment dialog appears, with fields for both name and password, as well as continue and cancel buttons:

5G .4 01100%

Username

Password

Cancel Continue

3. Sign on as a demo user:
°© Name: demo

o Password: Ch4ng3it!

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

4. Click [Continue].
If authentication is successful, the application returns to the main screen, and displays User is authenticated.
5. Open the Logcat pane.
If authentication was successful, the log contains entries similar to the following:
[4.8.1] [AuthServiceResponseHandler]: Journey finished with Success outcome.
[4.8.1] [AuthServiceResponseHandler]: SSO Token received.
If authentication fails:
o Check the credentials you are using are correct.
For example, attempt to log directly into your ID Cloud or PingAM instance using them.
o Check your strings.xml has the correct values for your environment
6. Click the [Log out] button.
If logout is successful, the application displays User is not authenticated.
The Logcat pane contains entries similar to the following:

[4.6.0] [OAuth2ResponseHandler]: Revoke success
[4.6.0] [DefaultTokenManager]: Revoking AccessToken & Refresh Token Success

You have successfully completed the tutorial.

Next Steps

+ Update your app to handle additional supported callbacks.
* Improve the security of your application by adding SSL pinning.
+ Add the ability to update your configuration without reinstalling the app.

+ Offer "magic links" to your users by adding support for suspending and resuming authentication.

Authentication journey tutorial for iOS

Prepare > Download » Configure > Run

In this tutorial you update a sample app to step through an authentication journey, meaning you get to design and
implement the user interface to your requirements.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

The sample navigates through a simple authentication journey, and obtains OAuth 2.0 tokens for the user.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need an OAuth 2.0 client application set up, as well as an authentication journey for the app to
navigate.

Complete prerequisites »

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 »

Step 2. Configure connection properties

In this step, you configure the "uikit-quickstart" sample app to connect to the OAuth 2.0 application you created in PingOne
Advanced Identity Cloud or PingAM.

Start step 2 »

Step 3. Test the app

In this step, you will test your application.

You run it in the emulator or on your iOS device, perform authentication with a demo user, check the log for success
messages, and then log out the user.

Test app »

Before you begin

Prepare > Download > Configure > Run

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

The tutorial also requires a configured server.

Compatibility
ioS
This sample app is compatible with iOS 12 and later.

Prerequisites

Xcode
You can download the latest version for free from https://developer.apple.com/xcode/ .

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne]
Advanced Identity Cloud PingAM

PingAM
PingOne Advanced Identity Cloud

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2.In the left panel, click Identities > Manage.
3. Click + New Alpha realm - User.
4. Enter the following details:
° Username = demo
° First Name = Demo
° Last Name = User
o Email Address = demo.user@example.com
o Password = Ch4ng3it!

5. Click Save.

Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Ping SDK for Auth Journey tutorials Ping SDKs

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes

rather than just success or failure. For details, see the Authentication nodes configuration reference(Z in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:
1. In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.
2. Enter a name, such as sdkUsernamePasswordJourney and click Save.
The authentication journey designer appears.

3. Drag the following nodes into the designer area:
° Page Node
° Platform Username
° Platform Password
o Data Store Decision

4. Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

< Journeys sdkUsernamePasswordjourney @

+ Add Nodes Q Q - & (]

Page Node

Data Store Decision
N Platform Userna...

True

False
Platform Passwo... ‘

Figure 1. Example username and password authentication journey

6. Click Save.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDKs Ping SDK for Auth Journey tutorials

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2.In the left panel, click Applications.
3. Click + Custom Application.
4. Select OIDC - Openld Connect as the sign-in method, and then click Next.
5. Select Native / SPA as the application type, and then click Next.
6.In Name, enter a name for the application, such as Public SDK Client.
7.In Owners, select a user that is responsible for maintaining the application, and then click Next.
Q Tip
) When trying out the SDKSs, you could select the demo user you created previously.
8.In Client ID, enter sdkPublicClient, and then click Create Application.
PingOne Advanced Identity Cloud creates the application and displays the details screen.
9. On the Sign On tab:
1. In Sign-In URLs, enter the following values:
org.forgerock.demo://oauth2redirect

@ Important

Also add any other domains where you host SDK applications.

2. In Grant Types, enter the following values:
Authorization Code
Refresh Token

3. In Scopes, enter the following values:
openid profile email address

10. Click Show advanced settings, and on the Authentication tab:

1. In Token Endpoint Authentication Method, select none .

2.In Client Type, select Public.

3. Enable the Implied Consent property.

11. Click Save.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

1. In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.
2. In the left panel, click ¥ Services.

3. In the list of services, click OAuth2 Provider.

4. 0n the Core tab, ensure Issue Refresh Tokens is enabled.

5. 0n the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

PingAM

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Identities, and then click + Add Identity.
3. Enter the following details:
o User ID = demo
o Password = Ch4ng3it!
o Email Address = demo.user@example.com
4. Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(Z in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:
1. Under Realm Overview, click Authentication Trees, then click Create Tree.

2. Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDKs Ping SDK for Auth Journey tutorials

The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.
3. Drag the following nodes from the Components panel on the left side into the designer area:
° Page Node
° Username Collector
° Password Collector
o Data Store Decision

4. Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

Start @ ® Page Node o 4 Data Store Decision
True @ -0 Success
Username Collector False @

Password Collector
© Failure

Figure 2. Example username and password authentication tree
6. Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .
Q Tip
You can configure the node properties by selecting a node and altering properties in the right-hand panel.
One of the samples uses this specific value to determine the custom Ul to display.
7. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Applications > OAuth 2.0 > Clients, and then click + Add Client.
3. In Client ID, enter sdkPublicClient.
4. Leave Client secret empty.
5. In Redirection URIs, enter the following values:

org.forgerock.demo://oauth2redirect

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@ Important

Also add any other domains where you will be hosting SDK applications.

6. In Scopes, enter the following values:
openid profile email address
7. Click Create.
PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.
8. On the Core tab:
1. In Client type, select Public.
2. Disable Allow wildcard ports in redirect URIs.
3. Click Save Changes.
9. On the Advanced tab:
1. In Grant Types, enter the following values:

Authorization Code
Refresh Token

2. In Token Endpoint Authentication Method, select None .
3. Enable the Implied consent property.
10. Click Save Changes.
The provider specifies the supported OAuth 2.0 configuration options for a realm.
To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.
4. 0n the Core tab, ensure Issue Refresh Tokens is enabled.
5. On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

Step 1. Download the samples

Prepare > Download » Configure > Run

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

To complete this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.
1. In a web browser, navigate to the SDK Sample Apps repository (5.
2. Download the source code using one of the following methods:
Download a ZIP file
1. Click Code, and then click Download ZIP.
2. Extract the contents of the downloaded ZIP file to a suitable location.
Use a Git-compatible tool to clone the repo locally
1. Click Code, and then copy the HTTPS URL.
2. Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:
git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties
Prepare > Download > Configure > Run

In this step, you configure the "uikit-quickstart" sample app to connect to the OAuth 2.0 application you created in PingOne
Advanced Identity Cloud or PingAM.

1. In Xcode, on the File menu, click Open.

2. Navigate to the sdk-sample-apps folder you cloned in the previous step, navigate to i0S > uikit-quickstart >
Quickstart.xcodeproj , and then click Open.

3. Choose how you want to configure the sample app. You can either configure the sample by using dynamic configuration,
or by updating an Apple PLIST file.

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Ping SDK for Auth Journey tutorials Ping SDKs

Dynamic configuration

1. In the Project Navigator pane, navigate to Quickstart > Quickstart, and open the LoginViewController
file.
2. Replace the call to try FRAuth.start() with the following code:
let options = FROptions(
url: "{as_url}",
cookieName: "{cookie_name}",
realm: "{realm_path}",
oauthClientId: "{oauth2_client_id}",
oauthRedirectUri: "{oauth2_redirect}",
oauthScope: "{oauth2_scopes}",
authServiceName: "Login",

registrationServiceName: "Register")

try FRAuth.start(options: options)

3. Replace the following strings with the values you obtained when you registered the OAuth 2.0 application:
{as_url}
The base URL of the server to connect to.
Identity Cloud example:
https://openam-forgerock-sdks.forgeblocks.com/am
Self-hosted example:

https://openam.example.com:8443/openam
{cookie_name}
The name of the cookie that contains the session token.
For example, with a self-hosted PingAM server this value might be iPlanetDirectoryPro.
Q Tip
PingOne Advanced Identity Cloud tenants use a random alpha-numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud tenant, navigate to

Tenant settings > Global Settings, and copy the value of the Cookie property.
For example, ch15fefc5487912

{realm_path}
The realm in which the OAuth 2.0 client profile and authentication journeys are configured.
Usually, root for AM and alpha or bravo for Advanced Identity Cloud.

{oauth2 client id}

The client ID of your OAuth 2.0 application in PingOne Advanced Identity Cloud or PingAM.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

For example, sdkNativeClient

{oauth2_redirect}

The redirect_uri as configured in the OAuth 2.0 client profile.

@ Note

This value must exactly match a value configured in your OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect .

{oauth2_scopes}
The scopes you added to your OAuth 2.0 application in PingOne Advanced Identity Cloud.
For example, address email openid phone profile

The result resembles the following:

let options = FROptions(
url: "https://openam-forgerock-sdks.forgeblocks.com/am",
cookieName: "ch15fefc5407912",
realm: "alpha",
oauthClientId: "sdkPublicClient",
oauthRedirectUri: "org.forgerock.demo://oauth2redirect",
oauthScope: "openid profile email address",
authServiceName: "Login",
registrationServiceName: "Register")

try FRAuth.start(options: options)

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

PLIST file

1. In the navigator pane in Xcode, right-click FRAuthConfig and select Open As > Source Code.

2. Replace the existing file content with the following:

<?xml version="1.8" encoding="UTF-8"?7>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/

PropertylList-1.0.dtd">

<plist version="1.0">

<dict>
<key>forgerock_url</key>
<string>{as_url}</string>
<key>forgerock_cookie_name</key>
<string>{cookie_name}</string>
<key>forgerock_realm</key>
<string>{realm_path}</string>
<key>forgerock_oauth_client_id</key>
<string>{oauth2_client_id}</string>
<key>forgerock_oauth_redirect_uri</key>
<string>{oauth2_redirect}</string>
<key>forgerock_oauth_scope</key>
<string>openid profile email address</string>
<key>forgerock_oauth_threshold</key>
<string>60</string>
<key>forgerock_timeout</key>
<string>60</string>
<key>forgerock_auth_service_name</key>
<string>sdkUsernamePasswordJourney</string>
<key>forgerock_registration_service_name</key>
<string>Registration</string>
</dict>
</plist>

3. Replace the following strings with the values you obtained when you registered the OAuth 2.0 application:
{as_url}
The base URL of the server to connect to.
Identity Cloud example:
https://openam-forgerock-sdks.forgeblocks.com/am
Self-hosted example:
https://openam.example.com:8443/openam
{cookie_name}
The name of the cookie that contains the session token.

For example, with a self-hosted PingAM server this value might be iPlanetDirectoryPro.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Q Tip

PingOne Advanced Identity Cloud tenants use a random alpha-numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud tenant, navigate to
Tenant settings > Global Settings, and copy the value of the Cookie property.

{realm_path}
The realm in which the OAuth 2.0 client profile and authentication journeys are configured.

Usually, root for AM and alpha or bravo for Advanced Identity Cloud.
{oauth2_client id}
The client ID of your OAuth 2.0 application in PingOne Advanced Identity Cloud or PingAM.

For example, sdkNativeClient

{oauth2_redirect}

The redirect_uri as configured in the OAuth 2.0 client profile.

@ Note

This value must exactly match a value configured in your OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect .

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

The result resembles the following:

<?xml version="1.8" encoding="UTF-8"?7>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/

PropertylList-1.0.dtd">

<plist version="1.0">

<dict>
<key>forgerock_url</key>
<string>https://openam.example.com:8443/openam</string>
<key>forgerock_cookie_name</key>
<string>iPlanetDirectoryPro</string>
<key>forgerock_realm</key>
<string>alpha</string>
<key>forgerock_oauth_client_id</key>
<string>sdkNativeClient</string>
<key>forgerock_oauth_redirect_uri</key>
<string>org.forgerock.demo://oauth2redirect</string>
<key>forgerock_oauth_scope</key>
<string>openid profile email address</string>
<key>forgerock_oauth_threshold</key>
<string>60</string>
<key>forgerock_timeout</key>
<string>60</string>
<key>forgerock_auth_service_name</key>
<string>sdkUsernamePasswordJourney</string>
<key>forgerock_registration_service_name</key>
<string>Registration</string>
</dict>
</plist>

4. Save your changes.

With the sample configured, you can proceed to Step 3. Test the app.

Step 3. Test the app

Prepare > Download » Configure > Run

In the following procedure, you run the sample app that you configured in the previous step. The app steps through the login
journey, rendering a Ul to collect the required data for each node, for example a username and password node, together inside a
page node.

1. In Xcode, select Product > Run.

Xcode launches the sample app in the iPhone simulator.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

D))
)

User is not authenticated

Login

Figure 1. Starting the quickstart app in an iOS simulator
2. In the sample app on the iPhone simulator, tap the Login button.

The app displays fields to input the user's credentials:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

User Authentication

‘ pser Name

‘ Password

Cancel

Figure 2. Login as your demo user
3. Sign on using the credentials of your demo user, and then click Next. For example:
° User Name: demo
o Password: Ch4ng3it!

If authentication is successful the app displays a message that the user is authenticated and enables the Logout button:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

)
]

User is authenticated

Logout

Figure 3. Login as your demo user

The console in Xcode outputs the access token, as well as a message that the user is authenticated:

[FRCore][4.8.0] [@® - Network] Response | [200]
https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/alpha/access_token in 77 ms
Response Header: [
AnyHashable("x-forgerock-transactionid"): 670c-c3e9,
AnyHashable("Content-Type"): application/json;charset=UTF-8,
AnyHashable("Date"): Tue, 12 Nov 2024 15:36:27 GMT,
Response Data: {
"access_token":"eyJ0.Pc8k",
"refresh_token":"eyJo.dnA4",
"scope" :"address openid profile email",
"id_token":"eyJ0..czkQ",
"token_type":"Bearer",
"expires_in":3598

User is authenticated

4. Tap Logout to revoke the tokens, end the session, and return to the initial screen.

The console in Xcode outputs the calls to the /sessions and /revoke endpoints:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Logout button is pressed

[FRCore][4.8.0] [® - Network] Request | [POST]
https://openam-forgerock-sdks.forgeblocks.com/am/json/realms/alpha/sessions
Additional Headers: [

"accept-api-version": "resource=3.1",
"8a92ca506c38f08": "qc7z.MQ.."]
URL Parameters: ["_action": "logout"]

Body Parameters: ["tokenId": "qc7z.MQ.."]

[FRCore][4.8.0] [® - Network] Request | [POST]
https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/alpha/token/revoke
Body Parameters: [
"token": "eyJ0..dnA4",
"client_id": "sdkPublicClient"]

[FRCore][4.8.0] [® - Network] Response | [200]
https://openam-forgerock-sdks.forgeblocks.com/am/json/realms/alpha/sessions?_action=1logout in 117 ms
Response Data: {

"result":"Successfully logged out"}

[FRCore][4.8.0] [® - Network] Response | [200]
https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/alpha/token/revoke in 113 ms
Response Data: {}

Authentication journey tutorial for JavaScript
Prepare > Download > Install > Configure > Run

In this tutorial you update a sample app to step through an authentication journey, meaning you get to design and
implement the user interface to your requirements.

The sample navigates through a simple authentication journey, and obtains OAuth 2.0 tokens for the user.

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need to configure CORS, have an OAuth 2.0 client application set up, as well as an authentication
journey for the app to navigate.

Complete prerequisites »

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 »

Step 2. Install the dependencies

The sample projects need a number of dependencies that you can install by using the npm command.
For example, the Ping SDK for JavaScript itself is one of the dependencies.

Start step 2 »

Step 3. Configure connection properties

In this step, you configure the "embedded-login" sample app to connect to the OAuth 2.0 application you created in
PingOne Advanced Identity Cloud or PingAM.

Start step 3 »

Step 4. Test the app

The final step is to run the sample app. The sample connects to your server and walks through your authentication journey
or tree.

After successful authentication, the sample obtains an OAuth 2.0 access token and displays the related user information.

Test app »

Before you begin

Prepare > Download > Install > Configure > Run

To successfully complete this tutorial refer to the prerequisites in this section.

The tutorial also requires a configured server.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Prerequisites

Node and NPM

The SDK requires a minimum Node.js version of 18, and is tested on versions 18 and 28 . To get a supported version of
Node.js, refer to the Node.js download page .

You will also need npm to build the code and run the samples.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne .
Advanced Identity Cloud PingAM

PingAM
PingOne Advanced Identity Cloud

PingOne Advanced Identity Cloud

Cross-origin resource sharing[(CORS) lets user agents make cross-domain server requests. In PingOne Advanced Identity Cloud,
you can configure CORS to allow browsers from trusted domains to access PingOne Advanced Identity Cloud protected resources.
For example, you might want a custom web application running on your own domain to get an end-user’s profile information
using the PingOne Advanced Identity Cloud REST API.

The Ping SDK for JavaScript samples and tutorials use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different domain for hosting SDK applications, ensure you add them to the CORS configuration as accepted
origin domains.

To update the CORS configuration in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. At the top right of the screen, click your name, and then select Tenant settings.
3. On the Global Settings tab, click Cross-Origin Resource Sharing (CORS).
4. Perform one of the following actions:
o If available, click ForgeRockSDK.

o If you haven't added any CORS configurations to the tenant, click + Add a CORS Configuration, select Ping SDK,
and then click Next.

5.Add https://localhost:8443 and any DNS aliases you use to host your Ping SDK for JavaScript applications to the
Accepted Origins property.

6. Complete the remaining fields to suit your environment.

Copyright © 2025 Ping Identity Corporation

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Ping SDKs Ping SDK for Auth Journey tutorials

This documentation assumes the following configuration, required for the tutorials and sample applications:

Property Values
Accepted Origins https://localhost:8443
Accepted Methods GET
POST
Accepted Headers accept-api-version

x-requested-with
content-type
authorization

if-match
x-requested-platform
iPlanetDirectoryPro (1l
ch15fefc5407912 [2

Exposed Headers authorization
content-type

Enable Caching True
Max Age 600
Allow Credentials True

Q Tip

Click Show advanced settings to be able to edit all available fields.

7. Click Save CORS Configuration.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. In the left panel, click Identities > Manage.
3. Click + New Alpha realm - User.
4. Enter the following details:
° Username = demo
° First Name = Demo
o Last Name = User

o Email Address = demo.user@example.com

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

o Password = Ch4ng3it!

5. Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes

rather than just success or failure. For details, see the Authentication nodes configuration referenceZ in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:
1. In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.
2. Enter a name, such as sdkUsernamePasswordJourney and click Save.
The authentication journey designer appears.

3. Drag the following nodes into the designer area:
° Page Node
° Platform Username
° Platform Password

o Data Store Decision

4. Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

< Journeys sdkUsernamePasswordjourney ®
+ Add Nodes Q Q e 23]] ®
Page Node

Data Store Decision
» Platform Userna...

True

False
Platform Passwo... :

Figure 1. Example username and password authentication journey

6. Click Save.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDKs Ping SDK for Auth Journey tutorials

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2.In the left panel, click Applications.
3. Click + Custom Application.
4. Select OIDC - Openld Connect as the sign-in method, and then click Next.
5. Select Native / SPA as the application type, and then click Next.
6.In Name, enter a name for the application, such as Public SDK Client.
7.In Owners, select a user that is responsible for maintaining the application, and then click Next.
Q Tip
) When trying out the SDKSs, you could select the demo user you created previously.
8.In Client ID, enter sdkPublicClient, and then click Create Application.
PingOne Advanced Identity Cloud creates the application and displays the details screen.
9. On the Sign On tab:
1. In Sign-In URLs, enter the following values:
https://localhost:8443/callback.html

@ Important

Also add any other domains where you host SDK applications.

2. In Grant Types, enter the following values:
Authorization Code
Refresh Token

3. In Scopes, enter the following values:
openid profile email address

10. Click Show advanced settings, and on the Authentication tab:

1. In Token Endpoint Authentication Method, select none .

2.In Client Type, select Public.

3. Enable the Implied Consent property.

11. Click Save.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

1. In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.
2. In the left panel, click ¥ Services.

3. In the list of services, click OAuth2 Provider.

4. 0n the Core tab, ensure Issue Refresh Tokens is enabled.

5. 0n the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

PingAM

Cross-origin resource sharing[Z (CORS) lets user agents make cross-domain server requests. In PingAM, you can configure CORS
to allow browsers from trusted domains to access PingAM protected resources. For example, you might want a custom web
application running on your own domain to get an end-user’s profile information using the PingAM REST API.

The Ping SDK for JavaScript samples and tutorials all use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different URL for hosting SDK applications, ensure you add them to the CORS configuration as accepted origin
domains.

To enable CORS in PingAM, and create a CORS filter to allow requests from your configured domain names, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.

2. Navigate to Configure > Global Services > CORS Service > Configuration, and set the Enable the CORS filter property to
true.

@ Important

If this property is not enabled, CORS headers are not added to responses from PingAM, and CORS is disabled
entirely.

3. On the Secondary Configurations tab, click Click Add a Secondary Configuration.
4. In the Name field, enter ForgeRockSDK .
5.in the Accepted Origins field, enter any DNS aliases you use for your SDK apps.

This documentation assumes the following configuration:

Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Ping SDKs Ping SDK for Auth Journey tutorials

Property Values
Accepted Origins https://localhost:8443
Accepted Methods GET
POST
Accepted Headers accept-api-version

x-requested-with
content-type
authorization

if-match
x-requested-platform
iPlanetDirectoryPro (1l
ch15fefc5407912 [

Exposed Headers authorization
content-type
6. Click Create.
PingAM displays the configuration of your new CORS filter.

7.0n the CORS filter configuration page:

1. Ensure Enable the CORS filter is enabled.

2. Set the Max Age property to 600

3. Ensure Allow Credentials is enabled.
8. Click Save Changes.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B Identities, and then click + Add Identity.
3. Enter the following details:
° User ID = demo
o Password = Ch4ng3it!
o Email Address = demo.user@example.com
4. Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(Z in the PingAM

documentation.
To create a simple tree for use when testing the Ping SDKs, follow these steps:
1. Under Realm Overview, click Authentication Trees, then click Create Tree.
2. Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.
The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.
3. Drag the following nodes from the Components panel on the left side into the designer area:
° Page Node
o Username Collector
o Password Collector

o Data Store Decision

4. Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on

the same page when logging in.

5. Connect the nodes as follows:

Start @— @ Page Node o —@ Data Store Decision
‘ True @— —@ Success
Username Collector || Fase @i~ . . | 'Ll

Password Collector
@ Failure

Figure 2. Example username and password authentication tree
6. Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .
Q Tip
You can configure the node properties by selecting a node and altering properties in the right-hand panel.
One of the samples uses this specific value to determine the custom Ul to display.

7. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile

device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:

1. Log in to the PingAM admin Ul as an administrator.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDKs Ping SDK for Auth Journey tutorials

2. Navigate to B8 Applications > OAuth 2.0 > Clients, and then click + Add Client.
3.In Client ID, enter sdkPublicClient.

4. Leave Client secret empty.

5. In Redirection URIs, enter the following values:

https://localhost:8443/callback.html

Q Tip

The Ping SDK for JavaScript attempts to load the redirect page to capture the OAuth 2.0 code and state
query parameters that the server appended to the redirect URL.

If the page you redirect to does not exist, takes a long time to load, or runs any JavaScript you might get a
timeout, delayed authentication, or unexpected errors.

To ensure the best user experience, we highly recommend that you redirect to a static HTML page with minimal
HTML and no JavaScript when obtaining OAuth 2.0 tokens.

@ Important

Also add any other domains where you will be hosting SDK applications.

6. In Scopes, enter the following values:
openid profile email address
7. Click Create.
PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.
8. On the Core tab:
1. In Client type, select Public.
2. Disable Allow wildcard ports in redirect URIs.
3. Click Save Changes.
9. On the Advanced tab:
1. In Grant Types, enter the following values:

Authorization Code
Refresh Token

2. In Token Endpoint Authentication Method, select None .
3. Enable the Implied consent property.
10. Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.
4. 0n the Core tab, ensure Issue Refresh Tokens is enabled.
5. 0n the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

1. Cookie name value in PingAM servers.
2. In PingOne Advanced Identity Cloud tenants, go to Tenant Settings > Global Settings > Cookie to find this dynamic cookie
name value.

Step 1. Download the samples

Prepare > Download > Install » Configure > Run

Q Tip

Check that you have completed the prerequisites before starting the tutorial.

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.
1. In a web browser, navigate to the SDK Sample Apps repository (4.
2. Download the source code using one of the following methods:
Download a ZIP file
1. Click Code, and then click Download ZIP.
2. Extract the contents of the downloaded ZIP file to a suitable location.
Use a Git-compatible tool to clone the repo locally
1. Click Code, and then copy the HTTPS URL.
2. Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:
git clone https://github.com/ForgeRock/sdk-sample-apps.git

The result of these steps is a local folder named sdk-sample-apps .

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Ping SDKs Ping SDK for Auth Journey tutorials

Step 2. Install the dependencies

Prepare > Download » Install » Configure > Run

In the following procedure, you install the required modules and dependencies, including the Ping SDK for JavaScript.
1. In a terminal window, navigate to the sdk-sample-apps/javascript folder.

2. Toinstall the required packages, enter the following:
npm install

The npm tool downloads the required packages, and places them inside a node_modules folder.

Step 3. Configure connection properties

Prepare > Download > Install > Configure > Run

In this step, you configure the sample app to connect to the authentication tree/journey you created when setting up your server
configuration.

1. Choose how you want to configure the sample app. You can either configure the sample by using dynamic configuration,
or by create a .env file.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Dynamic configuration

1. Open the /sdk-sample-apps/javascript/embedded-login/src/main.js file.

2. Replace the call to forgerock.Config.set() with the following code:

await forgerock.Config.setAsync({
serverConfig: {
wellknown: '{WELL_KNOWN}"'

B
clientId: '{WEB_OAUTH_CLIENT}',

tree: '{TREE}',
scope: '{SCOPE}"',
redirectUri: “${window.location.origin}/callback.html’

3

3. Replace the placeholder strings with the values you obtained when preparing your environment.

{WELL_KNOWN}
The .well-known endpoint of your server.
PingOne Advanced Identity Cloud example:

https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/

alpha/.well-known/openid-configuration

You can view the .well-known endpoint for an OAuth 2.0 client in the PingOne Advanced Identity
Cloud admin console:

1. Log in to your PingOne Advanced Identity Cloud administration console.

2. Click Applications, and then select the OAuth 2.0 client you created earlier. For example,
sdkPublicClient.

3. On the Sign On tab, in the Client Credentials section, copy the Discovery URI value.
PingAM example:

https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-

configuration
{WEB_OAUTH_CLIENT}
The client ID from your OAuth 2.0 application.
For example, sdkPublicClient
{TREE}
The simple login journey or tree you created earlier.

For example sdkUsernamePasswordJourney .

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

{SCOPE}
The scopes you added to your OAuth 2.0 application.
For example, address email openid phone profile

The result resembles the following:

main.js

await Config.setAsync({

serverConfig: {

wellknown: 'https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/

alpha/.well-known/openid-configuration'

Yo

clientId: 'sdkPublicClient',

tree: 'sdkUsernamePasswordJourney',

scope: 'openid profile email address',

redirectUri: “${window.location.origin}/callback.html’

D

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Create a .env file

1. Copy the .env.example file in the /sdk-sample-apps/javascript/embedded-login folder and save it with
the name .env within this same directory.

Your .env file has the following initial contents:

Initial .env file

SERVER_URL=$SERVER_URL
REALM_PATH=SREALM_PATH
SCOPE=$SCOPE

TIMEOUT=$TIMEOUT

TREE=STREE
WEB_OAUTH_CLIENT=$WEB_OAUTH_CLIENT

2. Replace the placeholder strings with the values you obtained when preparing your environment.

$SERVER_URL
The base URL of the server to connect to
Identity Cloud example:
https://openam-forgerock-sdks.forgeblocks.com/am
Self-hosted example:
https://openam.example.com:8443/openam
$REALM_PATH
The realm in your server.
Usually, root for AM and alpha or bravo for Advanced Identity Cloud.
$SCOPE
The scopes you added to your OAuth 2.0 application.

For example, address email openid phone profile

$TIMEOUT

The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .

$TREE

The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .

$WEB_OAUTH_CLIENT

The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Here's an example; your values may vary:

AM_URL=https://openam-forgerock-sdks.forgeblocks.com/am
REALM_PATH=alpha

SCOPE=openid profile email address

TIMEOUT=5000

TREE=sdkUsernamePasswordJourney
WEB_OAUTH_CLIENT=sdkPublicClient

Here are descriptions for some of the values:
TREE

The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .
REALM_PATH

The realm of your server.

Usually, root for AM and alpha or bravo for Advanced Identity Cloud.

Step 4. Test the app
Prepare > Download » Install » Configure > Run

In the following procedure, you run the sample app that you configured in the previous step. The sample connects to your server
and walks through the authentication journey you created in an earlier step.

After successful authentication, the sample obtains an OAuth 2.0 access token and displays the related user information.
1.In a terminal window, navigate to the /javascript folder in your sdk-sample-apps project.

2. To run the embedded login sample, enter the following:

npm run start:embedded-login

3. In a web browser:

1. Ensure you are NOT currently logged into the server instance.

@ Note

If you are logged into the PingAM instance in the browser, the sample will not work. Logout of the
PingAM instance before you run the sample.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

2. Navigate to the following URL:
https://localhost:8443

A form appears with "Username" and "Password" fields, as defined by the page node in the
sdkUsernamePasswordJourney you created in a previous step:

Username

Password

3. Authenticate as a non-administrative user, and click Sign In.
Default login credentials:
m "Username" - demo
m "Password" - Ch4ng3it!

If the app displays the user information, authentication was successful:

Your user information:

{

"address": {
"formatted": "99 Letsbe Avenue, Trumpton, Camberwick Green, London, L@1 NDN"

}
"phone_number": "0117 244 1124",
""given_name": "Demo",
"family_name'": "User",
"name": "Demo User",
"email": "demo.user@example.com",
"sub": "demo"

}

Q Tip

To see the application calling the authorize and authenticate endpoints, open the Network
tab of your browser's developer tools.

4. To revoke the OAuth 2.0 token, click the Sign Out button.

The application calls the endSession endpoint to revoke the OAuth 2.0 token, and returns to the sign-in form.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Recap

Congratulations!
You have now used the Ping SDK for JavaScript to authenticate to your server instance.

You have seen how to obtain OAuth 2.0 tokens, view the related user information, and log a user out of the server.

More information

« AP| reference: FRAuth
* APl reference: TokenManager (5

« API reference: UserManager U

Ping SDKs platform integrations for auth journeys

Follow these tutorials to leverage the Ping SDKs in other platforms or languages, to support Authentication journeys, also known
as Intelligent Authentication in your apps.

These tutorials support the following servers:
* PingOne Advanced Identity Cloud

* PingAM

Al “

Angular Flutter (iOS)

@b b

React)S React Native (iOS)

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/fr-auth.FRAuth.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/fr-auth.FRAuth.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/fr-auth.FRAuth.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/token-manager.TokenManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/classes/user-manager.UserManager.html

Ping SDK for Auth Journey tutorials Ping SDKs

Authentication journey tutorial for Angular

In this tutorial you build out a sample Angular SPA and make use of a Node.js REST API server sample app.
This guide uses the Ping SDK for JavaScript to implement the following application features:

* Dynamic authentication form for login.

* OAuth/OIDC token acquisition through the Authorization Code Flow with PKCE.

* Protected client-side routing.

* Resource requests to a protected REST API.

* Log out - revoke tokens and end session.

- & ForacRock: A Sample Angular |

< C' A Not Secure | https://angular.example.com:8443/todos h v OB » J :

(/' + g A Home & Todos e

Your Todos

Create and manage your todos.

Nhat needs doing?

O Protect the todo app

Hello, World!

The Angular name and logomark are properties of Google LLC, and their use herein
is for learning and illustrative purposes only.

Figure 1. The Todo page of the sample app.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need to configure CORS, have an OAuth 2.0 client application set up, as well as an authentication
journey for the app to navigate.

Complete prerequisites »

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 »

Step 2. Configure connection properties

Configure both the Todo client app, and the APl backend server app to connect to the OAuth 2.0 application you created in
PingOne Advanced Identity Cloud or PingAM.

Start step 2 »

Step 3. Build and run the projects

In this step you build and run the APl backend server app, and then the Todo client app.
There are also troubleshooting tips if the apps do not start as expected.

Start step 3 »

Step 4. Implement the Ping SDK

In this final step you implement the Ping SDK into the Todo client app, so that it handles the responses from your PingOne
Advanced Identity Cloud tenant or PingAM server, can get tokens and user information, and supports logging out.

Start step 4 »

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.
The tutorial also requires a configured server.

Prerequisites

Node and NPM

The SDK requires a minimum Node.js version of 18, and is tested on versions 18 and 28 . To get a supported version of
Node.js, refer to the Node.js download page (.

You will also need npm version 7 or newer to build the code and run the samples.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne .
Advanced Identity Cloud PingAM

PingAM
PingOne Advanced Identity Cloud

PingOne Advanced Identity Cloud

Cross-origin resource sharing(J (CORS) lets user agents make cross-domain server requests. In PingOne Advanced Identity Cloud,
you can configure CORS to allow browsers from trusted domains to access PingOne Advanced Identity Cloud protected resources.
For example, you might want a custom web application running on your own domain to get an end-user’s profile information
using the PingOne Advanced Identity Cloud REST API.

The Ping SDK for JavaScript samples and tutorials use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different domain for hosting SDK applications, ensure you add them to the CORS configuration as accepted
origin domains.

For example, for this tutorial you should also add the host domain used by the todo API backend server, which defaults to
http://localhost:9443 .

To update the CORS configuration in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. At the top right of the screen, click your name, and then select Tenant settings.

3. On the Global Settings tab, click Cross-Origin Resource Sharing (CORS).

Copyright © 2025 Ping Identity Corporation

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Ping SDKs Ping SDK for Auth Journey tutorials

4. Perform one of the following actions:
o If available, click ForgeRockSDK.

o If you haven't added any CORS configurations to the tenant, click + Add a CORS Configuration, select Ping SDK,
and then click Next.

5. Add https://localhost:8443 and any DNS aliases you use to host your Ping SDK for JavaScript applications to the
Accepted Origins property.

6. Add the URL used by the todo APl backend server, which defaults to http://localhost:9443.
7. Complete the remaining fields to suit your environment.

This documentation assumes the following configuration, required for the tutorials and sample applications:

Property Values

Accepted Origins https://localhost:8443
http://localhost:9443

Accepted Methods GET
POST
Accepted Headers accept-api-version

x-requested-with
content-type
authorization

if-match
x-requested-platform
iPlanetDirectoryPro (1
ch15fefc5407912 [

Exposed Headers authorization
content-type

Enable Caching True
Max Age 600
Allow Credentials True

Q Tip

Click Show advanced settings to be able to edit all available fields.

8. Click Save CORS Configuration.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. In the left panel, click Identities > Manage.

3. Click + New Alpha realm - User.
4. Enter the following details:
° Username = demo
° First Name = Demo
© Last Name = User
o Email Address = demo.user@example.com
o Password = Ch4ng3it!
5. Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(J in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:
1. In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.
2. Enter a name, such as sdkUsernamePasswordJourney and click Save.
The authentication journey designer appears.

3. Drag the following nodes into the designer area:
o Page Node
° Platform Username
o Platform Password
o Data Store Decision

4. Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDKs Ping SDK for Auth Journey tutorials

< Journeys sdkUsernamePasswordjourney ®

+ Add Nodes Q Q

rm
L

E u}

Page Node

Data Store Decision

> Platform Userna...
True

False
Platform Passwo... ‘

Figure 1. Example username and password authentication journey

6. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. In the left panel, click Applications.
3. Click + Custom Application.
4. Select OIDC - Openld Connect as the sign-in method, and then click Next.
5. Select Native / SPA as the application type, and then click Next.
6. In Name, enter a name for the application, such as Public SDK Client.

7.1n Owners, select a user that is responsible for maintaining the application, and then click Next.

Q Tip

When trying out the SDKs, you could select the demo user you created previously.

8.In Client ID, enter sdkPublicClient, and then click Create Application.
PingOne Advanced Identity Cloud creates the application and displays the details screen.
9. On the Sign On tab:
1. In Sign-In URLs, enter the following values:

https://localhost:8443/callback

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@ Important

Also add any other domains where you host SDK applications.

2.In Grant Types, enter the following values:
Authorization Code
Refresh Token
3. In Scopes, enter the following values:
openid profile email address
10. Click Show advanced settings, and on the Authentication tab:
1. In Token Endpoint Authentication Method, select none .
2.In Client Type, select Public.
3. Enable the Implied Consent property.
11. Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

Confidential clients are able to securely store credentials and are commonly used for server-to-server communication. For
example, the "Todo" APl backend provided with the SDK samples uses a confidential client to obtain tokens.

The following tutorials and integrations require a confidential client:
+ Authentication journey tutorial for Angular
+ Authentication journey tutorial for React)S
* Build advanced token security in a JavaScript SPA

To register a confidential OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these
steps:

1. Log in to your PingOne Advanced Identity Cloud tenant.

2. In the left panel, click Applications.

3. Click 4+ Custom Application.

4. Select OIDC - Openld Connect as the sign-in method, and then click Next.

5. Select Web as the application type, and then click Next.

6.In Name, enter a name for the application, such as Confidential SDK Client.

7.1n Owners, select a user responsible for maintaining the application, and then click Next.

Q Tip

When trying out the SDKs, you could select the demo user you created previously.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

8. On the Web Settings page:
1. In Client ID, enter sdkConfidentialClient

2.In Client Secret, enter a strong password and make a note of it for later use.

@ Important

The client secret is not available to view after this step.
If you forget it, you must reset the secret and reconfigure any connected clients.

3. Click Create Application.
PingOne Advanced Identity Cloud creates the application and displays the details screen.
9. On the Sign On tab, click Show advanced settings, and on the Access tab:
1. In Default Scopes, enter am-introspect-all-tokens.
10. Click Save.
The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

1. In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.
2. In the left panel, click ¥ Services.

3. In the list of services, click OAuth2 Provider.

4. 0n the Core tab, ensure Issue Refresh Tokens is enabled.

5. 0n the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

PingAM

Cross-origin resource sharing[Z (CORS) lets user agents make cross-domain server requests. In PingAM, you can configure CORS
to allow browsers from trusted domains to access PingAM protected resources. For example, you might want a custom web
application running on your own domain to get an end-user’s profile information using the PingAM REST API.

The Ping SDK for JavaScript samples and tutorials all use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different URL for hosting SDK applications, ensure you add them to the CORS configuration as accepted origin
domains.

For example, for this tutorial you should also add the host domain used by the todo API backend server, which defaults to
http://localhost:9443.

Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Ping SDK for Auth Journey tutorials Ping SDKs

To enable CORS in PingAM, and create a CORS filter to allow requests from your configured domain names, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.

2. Navigate to Configure > Global Services > CORS Service > Configuration, and set the Enable the CORS filter property to

true.
@ Important
If this property is not enabled, CORS headers are not added to responses from PingAM, and CORS is disabled
entirely.

3. On the Secondary Configurations tab, click Click Add a Secondary Configuration.
4. In the Name field, enter ForgeRockSDK .
5.in the Accepted Origins field, enter any DNS aliases you use for your SDK apps.

This documentation assumes the following configuration:

Property Values

Accepted Origins https://localhost:8443
http://localhost:9443

Accepted Methods GET
POST
Accepted Headers accept-api-version

x-requested-with
content-type
authorization

if-match
x-requested-platform
iPlanetDirectoryPro (1l
ch15fefc5407912 [2

Exposed Headers authorization
content-type
6. Click Create.
PingAM displays the configuration of your new CORS filter.

7. 0n the CORS filter configuration page:

1. Ensure Enable the CORS filter is enabled.

2. Set the Max Age property to 600

3. Ensure Allow Credentials is enabled.

8. Click Save Changes.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials
The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Identities, and then click + Add Identity.
3. Enter the following details:
° User ID = demo
o Password = Ch4ng3it!
o Email Address = demo.user@example.com
4. Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(Z in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKSs, follow these steps:
1. Under Realm Overview, click Authentication Trees, then click Create Tree.
2. Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.
The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

3. Drag the following nodes from the Components panel on the left side into the designer area:
° Page Node
o Username Collector
o Password Collector
o Data Store Decision

4. Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDK for Auth Journey tutorials Ping SDKs

. Start @ N) Page Node [3 —@ Data Store Decision
- | True @— —@ Success
Username Collector || False @ T T

Password Collector ‘
@ Failure |

Figure 2. Example username and password authentication tree

6. Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

Q Tip

You can configure the node properties by selecting a node and altering properties in the right-hand panel.

One of the samples uses this specific value to determine the custom Ul to display.
7. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Applications > OAuth 2.0 > Clients, and then click + Add Client.
3.In Client ID, enter sdkPublicClient.
4. Leave Client secret empty.
5. In Redirection URIs, enter the following values:
https://localhost:8443/callback

@ Important

Also add any other domains where you will be hosting SDK applications.
6. In Scopes, enter the following values:
openid profile email address
7. Click Create.
PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.
8. On the Core tab:

1. In Client type, select Public.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

2. Disable Allow wildcard ports in redirect URIs.
3. Click Save Changes.

9. On the Advanced tab:
1. In Grant Types, enter the following values:

Authorization Code
Refresh Token

2. In Token Endpoint Authentication Method, select None .
3. Enable the Implied consent property.
10. Click Save Changes.
The provider specifies the supported OAuth 2.0 configuration options for a realm.
To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.
4. On the Core tab, ensure Issue Refresh Tokens is enabled.
5. On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

1. Cookie name value in PingAM servers.
2.In PingOne Advanced Identity Cloud tenants, go to Tenant Settings > Global Settings > Cookie to find this dynamic cookie
name value.

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.
Within the repo are two branches related to this tutorial:

build-protected-app/start

Contains all the source files you need to follow this tutorial, but without the actual implementation of the Ping SDK
functionality.

Use this branch if you want to complete the tutorial step-by-step, adding the code the tutorial provides.

build-protected-app/complete

The same source files but with the Ping SDK code already implemented.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Use this branch if you want to skip ahead of the tutorial, or if you want to compare your work with the completed version
for troubleshooting.

To get a copy of the tutorial source code:
1. In a web browser, navigate to the SDK Sample Apps repository (5.
2. Download the source code using one of the following methods:

Download a ZIP file

1. Select which branch to download:

(/' sdk-sample-apps Public < EditPins v ®Watch 9 ~ % Fork 8 v Starred 4 -
¥ build-protected-ap... ~ ¥ © Q Gotofile t + <> Code ~ About by
Switch branches/tags X Repo containing all the SDK sample

le... X 80cc0a5 - 2 months ago @ 18 Commits apps
Q Find or create a branch...
ydo-api and render.yml 2 years ago A Activity
Branches Tags &) Custom properties
tample and README fixes 2 months ago
) ¢ 4 stars
main default
\tings): update settings across... 2 years ago ® 9 watching
build-protected-app/complete
ings): update settings across. 2 years ago ¥ 8forks
v build-protected-app/start 9s): up ing y 9)
Report repository
tample and README fixes 2 months ago
View all branches
- wuv-apl nAuuing readme files and updating t... 3 months ago Releases
. . . No releases published
D .eslintrc.js add todo-api and render.yml 2 years ago Create a new release
[.gitignore Updating readme and removing "co... 3 months ago
Packages
.node-version fix(settings): update settings across... 2 years ago
No packages published
.prettierrc init commit 2 years ago Bublish your first package
package-lock.json fix start branch 2 years ago Contributors 14

package.json fix(settings): update settings across... 2 years ago Q ‘ ' a e
Ey 2% :.‘
render.yaml| add reactjs sample 2 years ago Lol = I » y >
-ar -ar

2. Click Code, and then click Download ZIP.

0O 0 0 0 O

3. Extract the contents of the downloaded ZIP file to a suitable location.
Use a Git-compatible tool to clone the repo locally

1. Click Code, and then copy the HTTPS URL.

2. Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Ping SDKs Ping SDK for Auth Journey tutorials

3. Checkout which branch you want to work on.

For example, from the command-line you could run:

git checkout build-protected-app/start

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties
There are two projects in this tutorial that require configuration:
Client Angular app
The front-end client app, written in Angular, that handles the Ul and authentication journeys.
Backend API server

A backend REST API server that uses a confidential OAuth 2.0 client to contact the authorization server. The API server
handles storage and retrieval of your personal "Todo" items.

Configure the Angular client app

Copy the .env.example file in the sdk-sample-apps/angular-todo folder and save it with the name .env within this same
directory.

Add your relevant values to this new file because it provides all the important configuration settings to your applications.

Example client . env file

AM_URL=https://openam-forgerock-sdks.forgeblocks.com/am
APP_URL=https://localhost :8443
API_URL=http://localhost:9443
DEBUGGER_OFF=true
JOURNEY_LOGIN=sdkUsernamePasswordJourney
JOURNEY_REGISTER=Registration
REALM_PATH=alpha
WEB_OAUTH_CLIENT=sdkPublicClient
PORT=9443
REST_OAUTH_CLIENT=sdkConfidentialClient
REST_OAUTH_SECRET=ch4ng3it!

Here are descriptions for some of the values:
* DEBUGGER_OFF : set to true, to disable debug statements in the app.
These statements are for learning the integration points at runtime in your browser.

When you open the browser’s developer tools, the app pauses at each integration point. Code comments are placed
above each one explaining their use.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

+ JOURNEY_LOGIN : The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .
+ JOURNEY_REGISTER : The registration journey or tree.

You can use the default built-in Registration journey.
« REALM_PATH : The realm of your server.

Usually, root for AM and alpha or bravo for Advanced Identity Cloud.

Configure the APl server app

Copy the .env.example file in the sdk-sample-apps/todo-api folder and save it with the name .env within this same
directory.

Add your relevant values to this new file as it will provide all the important configuration settings to your applications.

Example API server .env file

AM_URL=https://openam-forgerock-sdks.forgeblocks.com/am
DEVELOPMENT=true

PORT=9443

REALM_PATH=alpha
REST_OAUTH_CLIENT=sdkConfidentialClient
REST_OAUTH_SECRET=ch4ng3it!

Step 3. Build and run the projects

In this step you build and run the APl backend, and the "Todo" client app project.

1. Open a terminal window at the root directory of the SDK samples repo, and then run the following command to start both
the API backend server and the "Todo" client:

npm run start:angular-todo

2.1n a different browser than the one you are using to administer the server, visit the following URL: https://localhost:
8443 .

The app renders a home page explaining the purpose of the project:

Copyright © 2025 Ping Identity Corporation

Ping SDKs

Ping SDK for Auth Journey tutorials

- & ForgeRock: A Sample Angular - X

< C' A Not Secure | https:/fangular.example.com:8443/home hD ST B N J :

@ Note

(/' + m Sign In

Protect with ForgeRock;
Develop with Angular

Learn how to develop ForgeRock
protected, web apps with the
Angular framework and our
JavaScript SDK .

About this project

The purpose of this sample web app is to demonstrate how the
ForgeRock JavaScript SDK is implemented within a fully-functional
application using a popular framework. The source code for this
project can be found on Github and run locally for experimentation.
For more on our SDKSs, you can find our official SDK documentation
here.

Getting started

To use this app, create an account now! Already have an account?

Sign in tn gat thinas donal

Figure 1. The home page of the sample app.

Only the home page renders successfully. The login page functionality is not yet functional. You will develop
this functionality later in this tutorial.

Troubleshooting

If the home page doesn’t render due to errors, here are a few tips:

* Visit http://localhost:9443/healthcheckZ in the same browser you use for the Angular app; ensure it responds with

"OK".

* Ensure your hosts file has the correct aliases.

+ Look for error output in the terminal that is running the start command.

+ Ensure you are not logged into the server within the same browser as the sample app; logout if you are and use a different

browser.

Copyright © 2025 Ping Identity Corporation

http://localhost:9443/healthcheck
http://localhost:9443/healthcheck

Ping SDK for Auth Journey tutorials Ping SDKs

Step 4. Implement the Ping SDK

Now that you have the environment and servers setup you can build the Ping SDK into the app to handle callbacks, display Ul,
and other tasks.

Set configuration from the ENV file

Within your IDE of choice, navigate to the sdk-sample-apps/angular-todo directory. This directory is where you will spend the
rest of your time.

First, open up the src/app/app.component.ts file, import the Config object from the Ping SDK for JavaScript and call the set
function on this object.

To import the Config object, modify the list of imports as follows:

import { Component, OnInit } from '@angular/core';
import { environment } from '../environments/environment';
import { UserService } from './services/user.service';

+ import { Config, UserManager } from ‘'@forgerock/javascript-sdk';

@@ collapsed @@
Now configure the SDK using the set function by adding the following code to the ngonInit function:

@@ collapsed @@
async ngOnInit(): Promise<void> {
+ Config.set({
+ clientId: environment.WEB_OAUTH_CLIENT,
+ redirectUri: environment.APP_URL,
+ scope: 'openid profile email address',
+ serverConfig: {
+ baseUrl: environment.AM_URL,
+ timeout: 306000, // 90000 or less
+)
+ realmPath: environment.REALM_PATH,
+ tree: environment.JOURNEY_LOGIN,
+ 1)
@@ collapsed @@

The use of set() should always be the first SDK method called and is frequently done at the application’s top-level file.

To configure the SDK to communicate with the journeys, OAuth clients, and realms of the appropriate server, pass a configuration
object with the appropriate values.

The configuration object you are using in this instance pulls most of its values out of the .env variables you previously setup.
The variables map to constants within the environment.ts file generated when the project is built.

Go back to your browser and refresh the home page. There should be no change to what's rendered, and no errors in the
console. Now that the app is configured to your server, let's wire up the simple login page!

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Build the login page

Consider how the application renders the home page:

HomeComponent consists of src/app/views/home/home.component.html (HTML template with Angular directives), and src/app/
views/home/home.component.ts (Angular component).

For the login page, the same pattern applies:

LoginComponent consists of src/app/views/login/login.component.html and src/app/views/login/login.component.ts.
This is a simple view component, which includes FormComponent which actually invokes the SDK - more on that shortly.

Navigate to the app’s login page within your browser. You should see a "loading" spinner and message that's persistent since it
doesn’t have the data needed to render the form. To ensure the correct form is rendered, the initial data needs to be retrieved
from the server. That is the first task.

- (l' ForgeRock: A Sample Angular =~ X + v

& C A Not Secure | https://angular.example.com:8443/login h N S BN

@

< Home

Checking your session ...

Don't have an account? Sign up here!

Figure 1. Login page with spinner

Since most of the action is taking place in src/app/features/journey/form/form.component.html and src/app/features/
journey/form/form.component.ts, open both and add the SDK import to form.component.ts:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

import { Component, Input, OnInit } from '@angular/core’;
import { Router } from '@angular/router’;
import { environment } from '../../../../environments/environment';
import { UserService } from 'src/app/services/user.service';
- import { FRLoginFailure, FRLoginSuccess, FRStep } from '@forgerock/javascript-sdk';

+ import { FRAuth, FRLoginFailure, FRLoginSuccess, FRStep } from '@forgerock/javascript-sdk';
@@ collapsed @@

FRAuth is the first object used as it provides the necessary methods for authenticating a user against the Login Journey/Tree.
Use the start() method of FRAuth as it returns data we need for rendering the form.

Add the following code to the nextStep function to call the start function, initiating the authentication attempt using the SDK:
@@ collapsed @@

async nextStep(step?: FRStep): Promise<void> {
this.submittingForm = true;

+ try {
+ let nextStep = await FRAuth.next(step, { tree: this.tree });
+ } catch (err) {
+ console.log(err);
+ } finally {
+ this.submittingForm = false;
+)
}

@@ collapsed @@

The result of this initial request is stored in a variable named nextStep . We now need to work out whether this is a login failure,
success, or step with instructions for what needs to be rendered to the user for input collection.

To handle these outcomes, add the following code after the code you added above:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@
async nextStep(step?: FRStep): Promise<void> {
this.submittingForm = true;

try {
let nextStep = await FRAuth.next(step, { tree: this.tree });

switch (nextStep.type) {
case 'LoginFailure':

this.handleFailure(nextStep);
break;

case 'LoginSuccess':
this.handleSuccess(nextStep);
break;

case 'Step':
this.handleStep(nextStep);
break;

default:
this.handleFailure();

+ + + + + + + + + + + + +

}
} catch (err) {
console.log(err);
} finally {
this.submittingForm = false;

}
@@ collapsed @@

Since the nextStep type is likely a Step with instructions for rendering and collecting user input, we call the handleStep()
function. We also set the step variable on the component ready for the template to process.

To process the step, we build a form that uses the *ngFor and ngSwitch directives to iterate over the callbacks and switch
based on the callback type. This lets us use the appropriate component to render something to the user. Once the user provides
their input and submits the form, we catch the submission and invoke the nextStep function again.

So starting with the form submission, we add the following code inside the <div id="callbacks"> tagin the FormComponent
template (src/app/features/journey/form/form.component.html)

@@ collapsed @@
<div id="callbacks">

+ <form #callbackForm (ngSubmit)="nextStep(step)" ngNativeValidate class="cstm_form">
+ <app-button [buttonText]="buttonText" [submittingForm]="submittingForm">
+ </app-button>
+ </form>
</div>

@@ collapsed @@

The form should now catch submissions. To iterate through the callbacks, add the following code inside the <form> tag you just
added, just before the <app-button> tag:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@@ collapsed @@
<div id="callbacks">
<form #callbackForm (ngSubmit)="nextStep(step)" ngNativeValidate class="cstm_form">
<div *ngFor="let callback of step?.callbacks" v-bind:key="callback.payload._id">
</div>
<app-button [buttonText]="buttonText" [submittingForm]="submittingForm">
</app-button>
</form>
</div>
@@ collapsed @@

To switch based on the type of the callback, add the following code within the <div> tag you just added:

@@ collapsed @@
<div *ngFor="let callback of step?.callbacks" v-bind:key="callback.payload._id">
+ <container-element [ngSwitch]="callback.getType()">
+ </container-element>
</div>
@@ collapsed @@

Finally, to render something appropriate to the user based on the callback type (and handle unknown callbacks), add the below
code within the <container-element> tagyou just added.

@@ collapsed @@
<container-element [ngSwitch]="callback.getType()">
+ <app-text *ngSwitchCase="'NameCallback'" [callback]="S8any(callback)" [name]="callback?.payload?.input?.
[0]?.name" (updatedCallback)="$8any(callback).setName(Sevent)">
+ </app-text>

+ <app-password *ngSwitchCase="'PasswordCallback'" [callback]="Sany(callback)" [name]="callback?.payload?.input?.
[0]?.name" (updatedCallback)="$any(callback).setPassword($Sevent)">
+ </app-password>

+ <app-unknown *ngSwitchDefault [callback]="callback"></app-unknown>
</container-element>
@@ collapsed @@

Refresh the page, and you should now have a dynamic form that reacts to the callbacks returned from our initial call to PingAM or
PingOne Advanced Identity Cloud.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

- & ForgeRock: A Sample Angular . X

< C A Not Secure | https://angular.example.com:8443/login h % OB N 3 H
< Home
Sign In
User Name @2
Password 2 o

Don't have an account? Sign up here!

Figure 2. Login page form

Refresh the login page and use the test user to login. You should get a mostly blank login page if the user’s credentials are valid
and the journey completes. You can verify this by going to the Network panel within the developer tools and inspecting the last /
authenticate request. It should have a tokenId and successUrl property.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

- (’l ForgeRock: A Sample Angular X

< C' A Not Secure | https://angular.example.com:8443/login h SE N J

< Home

Don't have an account? Sign up here!

Figure 3. Successful request without handling render

You may ask, “How are the user's input values added to the step object?” Let's take a look at the component for rendering the
username input. Open up the Text component: src/app/features/journey/text/text.component.ts and
src/app/features/journey/text/text.component.html:

<input
@@ collapsed @@
(input)="updateVvalue(Sevent)"
@@ collapsed @@

/>

When the user changes the value of the input, the (input) event fires and calls updateVvalue() . This in turn uses the
EventEmitter defined in the @Output directive to emit the updated value to the parent component - in this case, the
FormComponent . From here, the FormComponent calls the appropriate convenience method in the SDK to set the value for the
callback. This final piece is shown below (this is already in your project so no need to copy it):

<app-text *ngSwitchCase=""'NameCallback'" [callback]="8any(callback)" [name]="callback?.payload?.input?.
[6]?.name" (updatedCallback)="S$any(callback).setName(Sevent)"
</app-text>

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Each callback type has its own collection of methods for getting and setting data in addition to a base set of generic callback
methods. The SDK automatically adds these methods to the callback prototype. For more information about these callback
methods, see our APl documentation”(Z, or the source code in GitHub [, for more details.

Now that the form is rendering and submitting, add conditions to the FormComponent template (src/app/features/journey/
form/form.component.html), to handle the success and error response from PingAM or PingOne Advanced Identity Cloud. This
code should be inserted towards the top of the file, inside the <ng-container> tag:

<ng-container
[ngTemplateOutlet]="success ? successMessage : failure ? failureMessage : step ? callbacks : loading"

<ng-template #successMessage>
+ <app-loading [message]="'Success! Redirecting ...'"></app-loading>
</ng-template>

<ng-template #failureMessage>

+ <app-alert [message]="failure?.getMessage()" [type]="'error'"></app-alert>
</ng-template>

@@ collapsed @@

Once you handle the success and error condition, return back to the browser and remove all cookies created from any previous
logins (2. Refresh the page and login with your test user created in the Setup section above. You should see a “Success!” alert
message. Congratulations, you are now able to authenticate users!

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks
https://developer.chrome.com/docs/devtools/storage/cookies/
https://developer.chrome.com/docs/devtools/storage/cookies/
https://developer.chrome.com/docs/devtools/storage/cookies/

Ping SDK for Auth Journey tutorials Ping SDKs

- 4 ForgeRock: A Sample Angular x [E v

< C' A Not Secure | https://angular.example.com:8443/login h SE N é

< Home

Success! Redirecting ...

Don't have an account? Sign up here!

Figure 4. Login page with successful authentication
Continue to the OAuth 2.0 flow

At this point, the user is authenticated. The session has been created and a session cookie has been written to the browser. This
is "session-based authentication", and is viable when your system (apps and services) can rely on cookies as the access artifact.
However, there are increasing limitations with the use of cookies(Z. In response to this, and other reasons, it's common to add
an additional step to your authentication process: the “OAuth” or “OIDC flow".

The goal of this flow is to attain a separate set of tokens, replacing the need for cookies as the shared access artifact. The two
common tokens are the access token and the ID Token. We focus on the access token in this guide. The specific flow that the SDK
uses to acquire these tokens is called the Authorization Code Flow with PKCE.

To start, import the TokenManager and UserManager objects from the Ping SDK into the same src/app/features/journey/
form.component.ts file - replace the import you added earlier with the following code:

import { Component, Input, OnInit } from '@angular/core’;

import { Router } from '@angular/router';

import { environment } from '../../../../environments/environment';

import { UserService } from 'src/app/services/user.service';
- import { FRAuth, FRLoginFailure, FRLoginSuccess, FRStep } from '@forgerock/javascript-sdk';
+ import { FRAuth, FRLoginFailure, FRLoginSuccess, FRStep, TokenManager, UserManager, } from '@forgerock/javascript-
sdk ' ;

@@ collapsed @@

Copyright © 2025 Ping Identity Corporation

https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/

Ping SDKs Ping SDK for Auth Journey tutorials

In addition to the components that we were already importing, we have now imported the TokenManager and UserManager
from the SDK.

Only an authenticated user that has a valid session can successfully request OAuth/OIDC tokens. We must therefore make sure
we make this asynchronous token request after we get a 'LoginSuccess' back from the authentication journey. In the code we
wrote in the previous section, our processing of the response means that a 'LoginSuccess' results in a call to the currently-
empty function handleSuccess .

Let's invoke the OAuth 2.0 flow from here. Note that since the getTokens requestis asynchronous, handleSuccess has been
marked async .

Add the following code to the try block within handleSuccess to start the flow:

@@ collapsed @@
async handleSuccess(success?: FRLoginSuccess) {
this.success = success;

try {
await TokenManager.getTokens({ forceRenew: true });

} catch (err) {
console.error(err);
}

}
@@ collapsed @@

+ + 4+ + +

Once the changes are made, return back to your browser and remove all cookies created from any previous logins. Refresh the
page and verify the login form is rendered. If the success message continues to display, make sure “third-party cookies” are also
removed.

Login with your test user. You should get a success message like you did before, but now check your browser’s console log. You
should see an additional entry of an object that contains your idToken and accessToken . Since the SDK handles storing these
tokens for you, which are in localStorage, you have completed a full login and OAuth/OIDC flow.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

- 4 ForgeRock: A Sample Angular x [E v

<« C' A Not Secure | https://angular.example.com:8443/login h N OB » a‘

< Home

Success! Redirecting ...

Don't have an account? Sign up here!

(R @] @ | Eements Console Recorder & Sources Network Performance Memory Application Security Lighthouse Adblock Plus T - S
® O ¥ Q | (OPreservelog | (J Disablecache Nothrotling v = | 4+ # £
Filter (O Invert () Hide data URLs All | Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other (] Has blocked cookies (] Blocked Requests (] 3rd-party requests
| 50ms. 100 ms. 150 ms. 200 ms 250 ms 300 ms 350 ms 400 ms 450 ms 500 ms s50ms 600ms 650 ms 700ms 750 ms 800 ms 850 ms 900 ms 950 ms 1000ms |
e =
Name X Headers Payload Preview Response Initiator Timing
polyfills js F
vendorjs “access_token": "eyJ0eXAL01JKV1QiLCIhbGCi0iJIUZIINIIY. ey)zdWIi0il4N]M2NDIyZi02NT2L TRNZWULYWI2MC1YZ

“scope": "openid profile email,
J0eXA101IKV1Q1LCI raWQi0iIQTUIWTNRRVMLVMZhIZDVSSKN1VINEVWRNZOUIT iwiYHxnTjoiUIMYNTY Q.1

main.js
styles.js
[7] memtYaGs126MiZpBA-UFUICVXSCEkx2cmavXIWqWuUBFxZCJgg.woff2
[1] memvYaGs126MiZpBA-UvWbX2vWnXBbObj20VTS-mu0SC551.woff2
[0 access_token
[J userinfo

e

44 requests | 3.2 MB transferred | 7.2 MB resources | Finish: 906 ms | DOMContentLoaded: 371 ms | Load: 385 {} Line 1, Column 1

Figure 5. Login page with OAuth success
Request user information
Now that the user is authenticated and an access token is attained, you can now make your first authenticated request.

The SDK provides a convenience method for calling the /userinfo endpoint, a standard OAuth endpoint for requesting details
about the current user. The data returned from this endpoint correlates with the "scopes" set within the SDK configuration.

The scopes profile and email allow the inclusion of user’s first and last name as well as their email address.

To retrieve user information, add another single line of code to invoke the getCurrentUser() function of the SDK, underneath
the getTokens() call:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@
async handleSuccess(success?: FRLoginSuccess) {
this.success = success;

try {
await TokenManager.getTokens({ forceRenew: true });

+ let info = await UserManager.getCurrentUser();
} catch (err) {
console.error(err);
}

}
@@ collapsed @@

We want to store the fact that the user is authenticated, together with the user information we retrieved, in a state that can be
shared with other Angular components in our app. To do this, we have injected the service UserService into FormComponent .
This service is also injected into other components that should need access to authentication status and user information.

To update the UserService and redirect the user to the home page, add the following code below the getCurrentUser() call:

@@ collapsed @@
async handleSuccess(success?: FRLoginSuccess) {
this.success = success;

try {
await TokenManager.getTokens({ forceRenew: true });

let info = await UserManager.getCurrentUser();
this.userService.info = info;
this.userService.isAuthenticated = true;

+ this.router.navigateByUrl('/");
} catch (err) {
console.error(err);

}
@@ collapsed @@

Revisit the browser, clear out all cookies, storage and cache, and log in with your test user. Once you have landed on the home
page you should notice that the page looks slightly different with an added success alert and message with the user’s full name.
This is due to the app “reacting” to the state in the UserService that we set just before the redirection.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

- ('I ForgeRock: A Sample Angular X

< C' A Not Secure | https://angular.example.com:8443/home h SE N é

(/' + g A Home & Todos 8

a Welcome back, Dave Adams! Manage your todos here

Protect with ForgeRock;
Develop with Angular

Lasavn haw +a davalan EavaaDarcl,

(R @] @ | Eements Console Recorder & Sources Network Performance Memory Application Security Lighthouse Adblock Plus & %
® O | ¥ Q | OPreservelog | () Disablecache Nothrotting v % @ £ ¥ o
Filter O Invert () Hide data URLs All | Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other (] Has blocked cookies (] Blocked Requests (] 3rd-party requests
| 50ms 100ms. 150 ms 200ms 250 ms 300ms 350 ms 400 ms 450 ms 500 ms 550 ms 600 ms 6501]
Name X Headers Preview Response Initiator ~Timing Cookies
polyfills.js 1 {"given_name":"Dave","family_name":"Adams","name":"Dave Adams","email": "davegexample.com","sub":"8636422
vendorjs
main.js
styles.js
[T memvYaGs126MiZpBA-UvWbX2vVnXBbObj20VTS-mu0SC55l.woff2
Ows
[userinfo

[J favicon-32x32.png

22 requests = 3.2 MB transferred = 3.8 MB resources = Finish: 518 ms = DOMContentLoaded: 408 ms | Load: 432 {}

Figure 6. Home page with userinfo
React to the presence of the access token

To ensure your app provides a good user-experience, it's important to have a recognizable, authenticated experience, even if the
user refreshes the page or closes and reopens the browser tab. This makes it clear to the user that they are logged in.

Currently, if you refresh the page, the authenticated experience is lost. Let's fix that!

If the user is logged in, there are tokens in the browser. To ensure the tokens are valid and the user information is available to the
rest of the page, we use the getCurrentUser() function of the SDK. The function determines if the tokens are still valid. The
function also retrieves the user information for use in the rest of the app.

To do this, add the following code to the ngonInit() function in the main component - src/app/app.component.ts . This should
provide what we need to re-initialise the user’s authentication status:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@
async ngOnInit(): Promise<void> {

Config.set({
clientId: environment.WEB_OAUTH_CLIENT,
redirectUri: environment.APP_URL,
scope: 'openid profile email address',
serverConfig: {
baseUrl: environment.AM_URL,
timeout: 30000, // 90000 or less
)2
realmPath: environment.REALM_PATH,
tree: environment.JOURNEY_LOGIN,
)5

try {
const tokens: Tokens = await TokenStorage.get();
if (tokens !'== undefined) {
// Assume user is likely authenticated if there are tokens
const info = await UserManager.getCurrentUser();
this.userService.isAuthenticated = true;
this.userService.info = info;
}
} catch (err) {
// User likely not authenticated
console.log(err);

}

+ + + + + + + + o+ + o+ o+

}
@@ collapsed @@

With a global state APl available to the app using UserService, different components can pull this state in and use it to
conditionally render a set of Ul elements. Navigation elements and the displaying of profile data are good examples of such
conditional rendering. Examples of this can be found by reviewing src/app/layout/header/header.component.ts and
src/app/views/home/home.component.ts.

Validate the access token

The presence of the access token can be a good hint for authentication, but it doesn't mean the token is actually valid. Tokens can
expire or be revoked on the server-side.

We are now focusing on protecting a particular page in our app (todos), so we may want to be sure that the user has valid
tokens. We are currently just checking that there are tokens in the browser and redirecting to the login page. This is a reasonable
approach and is quick since there are no network requests involved. However we have no assurance that the tokens are still valid.
We could ensure that the tokens are still valid with the use of getCurrentUser() method as we do in the main component.
However as this now requires a network request to complete before the page loads, it could impact on the speed at which the
page loads. This is a decision that you must make for your implementation, depending on your requirements.

In this example, instead of just checking for presence of tokens, we prioritize security over speed by making sure that the token is
valid before the page is rendered.

To protect a route by ensuring the user has a valid access token, open the src/app/auth/auth.guard.ts file which uses the
CanActivate interface, and import the UserManager from the SDK:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@@ collapsed @@
import { UserService } from '../services/user.service';
- import { Tokens, TokenStorage } from '@forgerock/javascript-sdk';
+ import { Tokens, TokenStorage, UserManager } from '@forgerock/javascript-sdk';
@@ collapsed @@

Then, replace the code within canActivate as follows:

@@ collapsed @@
// Assume user is likely authenticated if there are tokens
const tokens: Tokens = await TokenStorage.get();

+ const info = await UserManager.getCurrentUser();

- if (tokens === undefined) {

+ if (tokens === undefined || info === undefined) {
return loginUrl;

@@ collapsed @@

Revisit the browser and refresh the page. Navigate to the Todos page. You should notice a quick spinner and text communicating
that the app is "verifying access". Once the server responds, the Todos page renders. The consequence of this is the protected
route now has to wait for the server to respond, but the user’s access has been verified by the server.

Request protected resources with an access token

Once the Todos page renders, notice how the the Todo collection appears empty. This is due to the request function in the
TodoService beingincomplete.

To make resource requests to a protected endpoint, we have an HttpClient module that provides a simple wrapper around the
native fetch() method of the browser. When you call the request() method, it should retrieve the user’s access token, and
attach it as a Bearer Token to the request as an authorization header. This is what the resource server uses to make its own
request to the server to validate the user’s access token.

All requests to the Todos backend live in the TodoService, which is injected into the TodosComponent which renders the /todos
page. Each of the functions dedicated to a particular backend request, call the convenience function request() , which needs to
use the Ping SDK HttpClient .

To use the HttpClient, add the following import statement to the top of src/app/services/todo.service.ts:

import { Injectable } from '@angular/core';

import { Todo } from '../features/todo/todo";

import { environment } from '../../environments/environment';
+ import { HttpClient } from '@forgerock/javascript-sdk';
@@ collapsed @@

Now, complete the request() function to use the HttpClient to make requests to the Todos backend - replace the existing
return statement with the following:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@
request(resource: string, method: string, data?: Todo): Promise<Response> {
return new Promise((resolve, reject) => reject('Method not implemented'));
return HttpClient.request({
url: resource,
init: {
headers: {
'Content-Type': 'application/json'
Vo
body: JSON.stringify(data),
method: method,
B
timeout: 5000,
)5
}
@@ collapsed @@

+ + + + + + + + + + o+

At this point, the user can login, request access tokens, and access the page of the protected resources (todos). Now, revisit the
browser and clear out all cookies, storage, and cache. Keeping the developer tools open and on the network tab, log in with you
test user. Once you have been redirected to the home page, do the following:

1. Click on the “Todos" item in the navigation bar - you should see that a lot of network activity should be listed.
2. Find the network call to the /todos endpoint (http://localhost:9443/todos).
3. Click on that network request and view the request headers.

4. Notice the authorization header with the bearer token; that's the HttpClient in action.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials

Ping SDKs

_ & ForgeRock: A sample Angular -

<« c (A Not Secure | https://angular.example.com:8443/todos [} ‘&) S » §

Update

(/’ + g A Home & Todos e

Your Todos

Create and manage your todos.

What needs doing?

No todos yet. Create one above!

[O] @ | FElements Console Recorder & Sources Network Performan Memory App \ Security Lighthouse ~ Adblock Plus D X
® 0 v Q Preservelog | (J Disable cache Nothrotting v = | # ¥ o
Filter O Invert (J Hide data URLs All | Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other (J Has blocked cookies (J Blocked Requests () 3rd-party requests

50 ms 100 ms 150 ms 200ms 250 ms 300 ms 350 ms 400 ms 450 ms 500 ms 550 ms 600 ms 6501

Name

css2?family=Open+Sans:ital, wght@0,300;0,400;0,700;1,300;1,400&display=swap

[icon?family=Material+Icons
[styles.css
runtime.js
polyfills.js
vendor,js
main.js
styles.js
[T memvYaGs126MiZpBA-UvWbX2vWnXBbObj20VTS-mu0SC551.woff2
0 ws
[J userinfo
[J userinfo
[favicon-32x32.png

X Headers Preview Response Initiator Timing
Vary: Urigin
X-Powered-By: Express

v Request Headers View source
Accept: x/x
Accept-Encoding: gzip, deflate, br
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8
authorization: Bearer eyJ@eXAi0iJKV1QiLCIhbGci0iJIUzIINi)9.eyJzdWIiOiI4NjM2NDIyZi0zNTg2LTRmZWUtYWI2MC11Y2zI1MzI40DkzMWYiLCIjdHMi0iIP
QVVUSDI fU1RBVEVMRVNTX@dSQUSUI iwiYXV@aF9sZXZ1bCIBMCwiYXVkaXRUcmFja2luZ@1kIjoiYzQzODE4ZWYtZGFi0COONTAYLTkzZTItODF LYWY30WVhMWI2LTEXN
ZI2NSISInN1YmShbWUiOiI4NjM2NDIyZi@zNTg2LTRMZWUtYWI2MC11YZzI1MzI40DkzMWYiLCIpc3Mi0iJodHRwezovL29wZWShbS1kYXZpZC12ZGsuZm9yZ2VibG9ja3
MuY29t0jQOMy9hbSIVYXVeaDIvemVhbG1zL3Ivb3QvemVhbG1zL2FscGhhIiwidGIrZWS0YW11IjoiYWNjZXNzX3Rva2VuliwidGIrZW5fdHIwZSI6IkIYXIlcilsImF
1dGhHcmFudElkIjoianU1Z31rQ@tRcnISQVNFN2t3Rz IWdHIhcVVVIiwiYXVKIjoiV2ViT@F1dGhDbG11bnQilCIuYmYi0jE2NDgXNDE2MjQsImdyYWS@X3R5cGUi0ilh
dXRob3JpemFOaWIuX2NvZGUiLCIzY29wZSI6WyIvcGVuaWQil CiwemImakx LI iwiZWlhaWwiXSwiYXVeaF90aW1lljoxNjQ4MTQxNjIzLCIyZWFsbSI6Ii9hbHBoYSIST
mV4cCIGMTYOODEONTIYNCwiaWFOIjoxNjQ4MTQxNjIOLCI leHBpemVzX2luljozNjAwLCIqdGki0iIFalB6CEZQdWIWWGhAT3dtR1EYVUdTZ29rM2s1fQ. rRIBoi8vdKt

TeLu9eVatGtg2ze-RLIVYNOSIGGchG

24 requests = 3.4 MB transferred = 3.8 MB resources = Finish: 625 ms

Handle logout request

DOMContentLoaded: 391 ms | Load: 404 Gonnection: keep-alive

Figure 7. Todos page with successful request

Of course, you can't have a protected app without providing the ability to log out. Luckily, this is a fairly easy task using the SDK.

Open up the LogoutComponent file src/app/features/logout/logout.component.ts and import FRUser from the Ping SDK:

@@ collapsed @@

import { Component, OnInit } from '@angular/core';
import { Router } from '@angular/router’;

import { UserService } from

./../services/user.service';

+ import { FRUser } from '@forgerock/javascript-sdk';

@@ collapsed @@

Logging the user out and revoking their tokens is easy using the logout() function of FRUser . Once this async call returns, we
then remove any user information from UserService (and therefore other parts of the application since this is injected in other
components). To do this, add the following code to logout() :

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@
async logout() {

+ try {
+ await FRUser.logout();
+ this.userService.info = undefined;
+ this.userService.isAuthenticated = false;
+ setTimeout(() => this.redirectToHome(), 1000);
+ } catch (err) {
+ console.error(Error: logout did not successfully complete; ${err}’);
+)
}

@@ collapsed @@
Test the app

To test the app return to your browser, empty the local storage and cache, and reload the page.

You should now be able to log in with the demo user, navigate to the Todos page, add and edit some "Todos", and logout by
selecting the profile icon in the top-right and clicking Sign Out.

- #) ForgeRock: A Sample Angular = X + v

< C' A Not Secure | https://angular.example.com:8443/logout hw B J

You're being logged out ...

Figure 8. Logout page

Congratulations, you just built a protected app with Angular!

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Authentication journey tutorial for an iOS Flutter app

This tutorial covers the basics of developing a protected mobile app with Flutter. It focuses on developing the iOS bridge code
along with a minimal Flutter Ul to authenticate a user.

Bridge code development is a concept common to mobile apps built using hybrid technologies. Hybrid is a term used when a
portion of the mobile app uses a language that is not native to the platform (Android and Java or iOS and Swift).

Flutter is an open source framework by Google for building beautiful, natively compiled, multi-platform applications from a single
codebase. Flutter requires this bridging code to provide the hybrid layer (Dart) access to native APIs (Swift in this case) or
dependencies.

This guide uses the Ping SDK to implement the following application features:
1. Authentication through a simple journey/tree.
2. Requesting OAuth/OIDC tokens.
3. Requesting user information.
4. Logging a user out.

10:53 ?%

Todo list

© Welcome back, George Bafaloukas

G Blog post

o

W &

To-Dos Log out

Figure 1. The to-do sample app

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need to configure CORS, have an OAuth 2.0 client application set up, as well as an authentication
journey for the app to navigate.

Complete prerequisites »

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 »

Step 2. Configure the projects

In this step you install the dependencies the projects require, and configure the connection properties.

Start step 2 »

Step 3. Configure connection properties

In this step, you configure the samples to connect to the authentication tree/journey and OAuth 2.0 client you created
when setting up your server configuration.

Start step 3 »

Step 4. Build and run the project

Build and run the apps, and learn about Hot Module Reloading.

Start step 4 »

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Step 5. Implement the iOS bridge code

In this step you implement the bridge code and add methods for starting the Ping SDK, logging a user in, stepping through
a journey, and finally logging a user out.

Start step 5 »

Step 6. Implement the Ul in Flutter

In this final step you implement the user interface for logging in, and code for submitting the forms. You will also handle
returning to the list view, requesting user info, and handling logout triggers.

This is also the moment you can try out the fully functioning app.

Start step 6 »

Before you begin
To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.
The tutorial also requires a configured server.
Compatibility
ioS
This sample app is compatible with iOS 12 and later.

Prerequisites

Xcode
You can download the latest version for free from https://developer.apple.com/xcode/ .
Swift Packager Manager
This project requires use of the Swift Package Manager (SPM).
Dart
Configure Dart in Xcode.
Flutter

Install the latest version of Flutter (.

Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://docs.flutter.dev/get-started/install
https://docs.flutter.dev/get-started/install

Ping SDKs Ping SDK for Auth Journey tutorials

You will also need an IDE so that you can work with the Flutter Ul. To learn more about the IDEs that Flutter supports, refer
to Set up an editor(Z in the Flutter documentation.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne]
Advanced Identity Cloud PingAM

PingAM
PingOne Advanced Identity Cloud

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. In the left panel, click Identities > Manage.

3. Click + New Alpha realm - User.
4. Enter the following details:
° Username = demo
° First Name = Demo
° Last Name = User
o Email Address = demo.user@example.com
o Password = Ch4ng3it!
5. Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(J in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:
1. In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.

2. Enter a name, such as sdkUsernamePasswordJourney and click Save.

Copyright © 2025 Ping Identity Corporation

https://docs.flutter.dev/get-started/editor
https://docs.flutter.dev/get-started/editor
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDK for Auth Journey tutorials Ping SDKs

The authentication journey designer appears.
3. Drag the following nodes into the designer area:
° Page Node
° Platform Username
° Platform Password
o Data Store Decision

4. Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

< Journeys sdkUsernamePasswordjourney ®

rm
L

+ Add Nodes o} Q &£]

Page Node

Data Store Decision

» Platform Userna...
True

False
Platform Passwo... h

Figure 1. Example username and password authentication journey
6. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. In the left panel, click Applications.
3. Click + Custom Application.
4. Select OIDC - Openld Connect as the sign-in method, and then click Next.

5. Select Native / SPA as the application type, and then click Next.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

6.In Name, enter a name for the application, such as Public SDK Client.

7.1n Owners, select a user that is responsible for maintaining the application, and then click Next.

Q Tip

When trying out the SDKs, you could select the demo user you created previously.

8. In Client ID, enter sdkPublicClient, and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

9. On the Sign On tab:
1. In Sign-In URLs, enter the following values:

https://com.example.flutter.todo/callback

@ Important

Also add any other domains where you host SDK applications.

2.In Grant Types, enter the following values:
Authorization Code
Refresh Token

3. In Scopes, enter the following values:
openid profile email address

10. Click Show advanced settings, and on the Authentication tab:

1. In Token Endpoint Authentication Method, select none .

2.In Client Type, select Public .

3. Enable the Implied Consent property.

11. Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

1. In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.

4. 0On the Core tab, ensure Issue Refresh Tokens is enabled.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

5. On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

PingAM

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Identities, and then click + Add Identity.
3. Enter the following details:
° User ID = demo
o Password = Ch4ng3it!
o Email Address = demo.user@example.com
4. Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(J in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:
1. Under Realm Overview, click Authentication Trees, then click Create Tree.
2. Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.
The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

3. Drag the following nodes from the Components panel on the left side into the designer area:
o Page Node
o Username Collector
o Password Collector
o Data Store Decision

4. Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDKs Ping SDK for Auth Journey tutorials

. Start @ N) Page Node [3 —@ Data Store Decision
- | True @— —@ Success
Username Collector || False @ T T

Password Collector ‘
@ Failure |

Figure 2. Example username and password authentication tree

6. Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

Q Tip

You can configure the node properties by selecting a node and altering properties in the right-hand panel.

One of the samples uses this specific value to determine the custom Ul to display.
7. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Applications > OAuth 2.0 > Clients, and then click + Add Client.
3.In Client ID, enter sdkPublicClient.
4. Leave Client secret empty.
5. In Redirection URIs, enter the following values:
https://com.example.flutter.todo/callback

@ Important

Also add any other domains where you will be hosting SDK applications.
6. In Scopes, enter the following values:
openid profile email address
7. Click Create.
PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.
8. On the Core tab:

1. In Client type, select Public.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

2. Disable Allow wildcard ports in redirect URIs.
3. Click Save Changes.

9. On the Advanced tab:
1. In Grant Types, enter the following values:

Authorization Code
Refresh Token

2. In Token Endpoint Authentication Method, select None .
3. Enable the Implied consent property.
10. Click Save Changes.
The provider specifies the supported OAuth 2.0 configuration options for a realm.
To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.
4. On the Core tab, ensure Issue Refresh Tokens is enabled.
5. On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

Step 1. Download the samples

To start this tutorial, you need to download the Flutter sample app repo, which contains the projects you will use.
1. In a web browser, navigate to the Flutter Sample App repository .
2. Download the source code using one of the following methods:
Download a ZIP file
1. Click Code, and then click Download ZIP.
2. Extract the contents of the downloaded ZIP file to a suitable location.
Use a Git-compatible tool to clone the repo locally
1. Click Code, and then copy the HTTPS URL.
2. Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/forgerock-flutter-sample
https://github.com/ForgeRock/forgerock-flutter-sample

Ping SDKs Ping SDK for Auth Journey tutorials

git clone https://github.com/ForgeRock/forgerock-flutter-sample.git

The result of these steps is a local folder named forgerock-flutter-sample .

Step 2. Configure the projects

In this step you install the dependencies the projects require.

Install the Ping SDK for iOS

This Flutter app requires the native Ping SDK for iOS. Install this by using Swift Package Manager (SPM) on the generated iOS
project:

1. Navigate to the iOS project, forgerock-flutter-sample/Flutter_To_Do_app/flutter_todo_app/ios.

2.In Xcode, open Runner .xcworkspace .

3. Select the Runner project and navigate to Package Dependencies.

4. Click the + sign, and add the Ping SDK for iOS repository, https://github.com/ForgeRock/forgerock-ios-sdk.git .
5. Add the FRCore and FRAuth libraries to the project.

Install Flutter

Next, we need to open Android Studio and build the project.
If you haven't configured Android Studio for Flutter, please follow the guide in the Flutter documentation (.

Don't forget to set the Dart SDK path in Android Studio. You can find that in the folder where you downloaded the Flutter SDK.
(For example, ~/flutter/bin/cache/dart-sdk.)

In Android Studio, click File > Open, and navigate to forgerock-flutter-sample/Flutter_To_Do_app/ .

When Android Studio loads the project and is ready, install any gradle dependencies, and select the iOS simulator to build and
run the project.

Install API server dependencies

Install the TODO Node.JS API server app dependencies by using npm :
1.In a Terminal window, navigate to the root folder, forgerock-flutter-sample.

2. Enter npm install.

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the authentication tree/journey you created when setting up your server
configuration.

Copyright © 2025 Ping Identity Corporation

https://docs.flutter.dev/get-started/editor
https://docs.flutter.dev/get-started/editor

Ping SDK for Auth Journey tutorials Ping SDKs

Using the server settings from above, edit the .env.js file within the project. This can be found the root folder of the project.
Add your relevant values to configure all the important server settings in the project. Not all variables will need values at this time.

You can list the file in the Terminal by doing 1s -a, and edit it using a text editor like nano or vi.

Example .env. js file

/**
* Avoid trailing slashes in the URL string values below.
&7
const AM_URL = 'https://openam-forgerock-sdks.forgeblocks.com/am'; // Required; enter _your_ PingAM URL
const DEBUGGER_OFF = true;
const DEVELOPMENT = true;
const API_URL = 'https://api.example.com:9443'; // (your resource API server's URL)
const JOURNEY_LOGIN = 'sdkUsernamePasswordJourney'; // (name of journey/tree for Login)
const JOURNEY_REGISTER = 'Registration’'; // (name of journey/tree for Register)
const SEC_KEY_FILE = './updatedCerts/api.example.com.key';
const SEC_CERT_FILE = './updatedCerts/api.example.com.crt';
const REALM_PATH = ''; //Required (ex: alpha)
const REST_OAUTH_CLIENT = ''; // (name of private OAuth 2.0 client/application)
const REST_OAUTH_SECRET = ''; // (the secret for the private OAuth 2.8 client/application)
const WEB_OAUTH_CLIENT = 'sdkPublicClient'; // (the name of the public OAuth 2.0 client/application)
const PORT = '9443';

Descriptions of relevant values:

AM_URL

The URL that references PingAM itself (for PingOne Advanced Identity Cloud, the URL is likely https://<tenant-
name>.forgeblocks.com/am).

API_PORT and API_BASE_URL

These just need to be "truthy" (not 0 or an empty string) right now to avoid errors, and we will use them in a future part of
this series.

DEBUGGER_OFF

When true, this disables the debugger statements in the JavaScript layer. These debugger statements are for learning
the integration points at runtime in your browser. When the browser’s developer tools are open, the app pauses at each
integration point. Code comments above each integration point explain its use.

REALM_PATH
The realm of your server (likely root, alpha, or bravo).
REST_OAUTH_CLIENT and REST_OAUTH_SECRET

We will use these values in a future part of this series, so any string value will do.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Step 4. Build and run the project

Now that everything is set up, build and run the to-do app project.
1. Go back to the iOS project (forgerock-flutter-sample/Flutter_To_Do_app/flutter_todo_app/ios).
2. If the project is not already open in Xcode double-click Runner.xcworkspace .
3. Once Xcode is ready, select iPhone 11 or higher as the target for the device simulator on which to run the app.
4. Now, click the build/play button to build and run this application in the target simulator.

With everything up and running, you will need to rebuild the project with Xcode when you modify the bridge code (Swift files). But,
when modifying the Flutter code, it will use "hot module reloading" to automatically reflect the changes in the app without having
to manually rebuild the project.

Troubleshooting
1. Under the General tab, make sure that the FRAuth and FRCore frameworks are added to your target's Frameworks,
Libraries, and Embedded Content.
2. Bridge code has been altered, so be aware of APl name changes.
Using Xcode and iOS Simulator
We recommend the use of iPhone 11 or higher as the target for the iOS simulator. When you first run the build command in
Xcode (clicking the Play button), it takes a while for the app to build, the OS to load, and app to launch within the simulator. Once

the app is launched, rebuilding it is much faster if the changes are not automatically "hot reloaded" when made in the Flutter
layer.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

11:25 ?%

Home

Protect with ForgeRock;
Develop with Flutter

Learn how to develop
ForgeRock protected,
hybrid apps with the React
Native library and our
Native SDKs.

About this project

The purpose of this sample app is to
demonstrate how the ForgeRock
SDKs can be leveraged within a fully-
functional Flutter application.
Included in this sample app is a
sample bridging layer for connecting
the native ForgeRock modules
(Android and iOS) with the Flutter.

f or

Home Sign In

Figure 1. To-do app home screen

@ Note

Only the home screen will render successfully at this moment. If you click the Sign In button, it won't be fully
functional. This is intended as you will develop this functionality throughout this tutorial.

Once the app is built and running, you will have access to all the logs in the Xcode output console.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

ol 0 o S <7 @ Runner 3 lines

VN rALiGIISLEASe L GULIIAIIUGAIYNS + OSCAVALS | GULIIAIIUGCAYGLUS o LUYLll g

2022-03-03 11:29:46.547996+0000 Runner[78739:11008026] [Default] [FRCore][1.0.0] [RestClient.swift:43 : session] [Verbose] Default URLSession created
2022-03-03 11:29:47.009784+0000 Runner[78739:11008541] [boringssl] boringssl_metrics_log_metric_block_invoke(151) Failed to log metrics
2022-03-03 11:29:47.176929+0000 Runner[78739:11008026] [Default] [FRCorel[1.0.0] [@ - Network] Response | [# 2ee] :
https://forgerock.crbrl.io/am/json/realms/alpha/authenticate?authIndexType=service&authIndexValue=Login in 631 ms
Response Header: [AnyHashable("Expires"): @, AnyHashable("Via"): 1.1 google, AnyHashable("Strict-Transport-Security"): max-age=31536000;
includeSubDomains; preload;, AnyHashable("Content-Length"): 2412, AnyHashable("x-frame-options"): SAMEORIGIN, AnyHashable("content-api-version"):
resource=2.1, AnyHashable("Date"): Thu, ©3 Mar 2022 11:29:47 GMT, AnyHashable("Pragma"): no-cache, AnyHashable("Cache-Control"): private, no-cache,
no-store, must-revalidate, AnyHashable("x-content-type-option: nosniff, AnyHashable("Content-Type"): application/json,
jAnyHashable("x-forgerock-transactionid"): 1646306987141-96b99616c7aabae460cf-59868, AnyHashable("Alt-Svc"): clear, AnyHashable("Set-Cookie"):
amlbcookie=01; Path=/; Domain=openam-crbrl-01.forgeblocks.com; Secure; HttpOnly; SameSite=none, amlbcooki Path=/; Domain=.crbrl.io; Secure;
HttpOnly; SameSite=none]
Response Data:
{"authld eyJOeXAi0iJKV1QiLCIhbGci0iJIUZIINiI9
.eyJhdXRoSW5kZXhWYWx1ZSI6IkxvZ21luIiwib3RrIjoibTZxazE@dmx@ZDRvc2N2M3QyaTdnbmlgaWsilCIhdXRoSW5kZXhUeXB1lIjoic2VydmljZSIsInJ1lYWxtIjoiL2FscGhhIiwic2Vzc2lvbk
1kIjoiKkFBS1RTUUFDTURJQUIIU;V3iR1VBQOVWWFZGOUIWV1JIIQUFKVELIRQUNNREUUKmV5S]B1IWEFpT21KS1YXUW1IMQOpgZEhraU9pSktWMVFpTENKaGIHY21PaUpJVXpIMUSpSjkuWlhsS@1HV11RV
2XxQYVVWTFZqR1JhVXhEU214aWJVMXBUMmXLUWs xVVNUULINRXBFVEZWb1ZFMXFWVEpPKYVhkcFdWZDRia2xxYjJsYVIyeDVTVzR3TGk1RO5t TXRTSHBQVM1SV1ZsSm1ZMU13TUVodE1IWRmSMbmhEUKUL
UlptaEJOMVIaZww5aFpscH1SbkIPWDNsZ1kxbHRRVEZtVFV4alpGSkpjbT1lrYmt4YVVHTKIhV1ZLT1ZWMVpFOUS5aRXRxYUY5RO1GUKZTa290WmtGWVIUWNdOR1kyVTISZk51QjBZMOZyY1RaalRVWTR
TVXN3VVhCek1WbEViRmxUV250UmRtW1piVWsxU1hOSUSWVmM9Sa28wZG1sYVNYZzVkbkZCVmtWUGFXbzBPR2RCUTNVMWFUUTBZM1E1V2 tOWWFsZHN1SFJYVmS0cVpERTVSWFIPUKRWW1gxQnRkVK5UUV
MxTVIFaHJjWHBrUkUSdk4xWXdkMj FhWmtsZmRWaFZYMWRWZDFFME1FTkxZVUprYjBed1dEVkdTR1pPUGhaWFNrUnphRVZtU21INWRIaGhiVGgzYkd@eFFYRkxZbFpFUXpJeFpqQmhRb1JIITjFoM1RFd
HZJREE1Wm1SeldsWXpOMmhFULVKRE1YcFJkVzFMV1daelZHMWF1azAzTWpaV1Rs TmZOMHMOWWpZMkOyMWIRVMRtUVYSdVFUSmhVMmg2ZG6tZMVIGQm91SGXOV21IWWGEWU1RNRVptZERoaVpWRNBOamh4
Umx0e1NHZFJOVFUXVTI5aFUWTjNSR1V5YjBWSmIHRmpXaz1vTeZacldUUnhMWEJQZGXx0c1ZXbGh1RTAGT1YS5RFkwT1B1a8Z5U1RWdVNDMUhRbT1FVWtOWGIUV1FVRZFXTFVWM2NVSkJka@5VUjNCcGF
YT3jZkemMyY1d@ckxWbFVkVXhZWHpSc1ZuRj JUMKZrWmxWM11YWnZObmhYVmpBNVVYR]jVaVk52WTIkbGVET1hTM1ImYUZvMGRUazNOa2RXVUdOT1IWcGtUb1ZQWWxGeVRHUK9RamhrVm5Cd1dHW] FSQz
FEUTFKYWVrOHhNSFIMY@hoRFpUaEtNVExVUmtOT1VrU110VGQ2UzNKTe16QXhjel16V1dKNFh6bHNOSFZwUmSWe FNubDRNMnByUZzBoS2VrOTFOMGXyY TOVSWGVUZGIWR1I1V2pCeVNYRKIXVUZZVkdwe
E9XdGINbE5SYY2pGclppMVNZVWXJIWKkVOd@xVU1BZMk50Uj JFeVQxaFNXR3A1TTBKUGIWW1FkRkOyVUdkeGI6RmMFVMXBOZWSwWW1JYU]j ZXR1ZoVVV4RMEYye E1IXSEUGWMSORV1rZE9OMmXOUM1GbESYTINM
bFJqZGpkS11t0UIWelZ0ZFVkd@160DINamQxY1djLkFyVV1yWU9WNzh3dWxtM2pvMHIqdF9rNTEtU2FFOX1MeXVMMkNjZ2gyTGcilCI1eHAi0jE2NDYzMDcyODcs ImLhdCI6MTYON MwN kN30
.Wpmo-NZIpn-rbOwdii7xydeEsbACEKfTAq6CHQ7iZ "callbacks":[{"typ "NameCallback", "output":[{"name" :"prompt", "value":" id
Name"}], "input":[{"name" 1,"_id":e},{"type" asswordCallback”, "output”:[{"name":"prompt", "value":"Password"}], "input":
"IDToken2", "value) midre tage":"UsernamePassword", "header":"Sign In","description":"New here? <a
/service/Registration\">Create an account
Forgot username?<a
/service/ResetPassword\"> Forgot password?"}
2022-03-03 11:29:47.181369+0000 Runner[78739:11008026] [Default] [FRAuth][1.0.0] [FRRestClient.swift:118 : parseResponseForCookie(response:httpResponse:)]
[Verbose] [Cookies] Update - Cookie Name: amlbcookie | Cookie Value: 01
2022-03-03 11:29:47.184946+0000 Runner[78739:11008026] [Default] [FRAuth][1.0.0] [FRRestClient.swift:118 : parseResponseForCookie(response:httpResponse:)]
[Verbose] [Cookies] Update - Cookie Name: amlbcookie | Cookie Value: 01

All Output ¢ (S)

Figure 2. Xcode log output

Step 5. Implement the iOS bridge code

Review the files that allow for the "bridging" between the Flutter project and the native Ping SDK.
In Xcode, navigate to the Runner/Runner directory, and you will see a few important files:
FRAuthSampleBridge.swift

The main Swift bridging code that provides the callable methods for the Flutter layer.
FRAuthSampleStructs.swift

Provides the structs for the Swift bridging code.
FRAuthSampleHelpers.swift

Provides the extensions to often used objects within the bridge code.
FRAuthConfig

A .plist file that configures the Ping SDK for iOS to the appropriate authorization server.

@ Note

The remainder of the files within the workspace are automatically generated when you create a Flutter project with
the CLI command, so you can ignore them.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Configure your .plist file

In the Xcode directory/file list section, also known as the Project Navigator, complete the following:
1. Find FRAuthConfig.plist file within the ios/Runner directory.
2. Add the name of your PingOne Advanced Identity Cloud or PingAM cookie.
3. Add the OAuth client you created from above.
4. Add your authorization server URLs.
5. Add the login tree you created above.

A hypothetical example (your values may vary):

<dict>

<key>forgerock_cookie_name</key>

= <string></string>

T <string>elbabb394ea5130</string>
<key>forgerock_enable_cookie</key>
<true/>
<key>forgerock_oauth_client_id</key>
<string>flutterOAuthClient</string>
<key>forgerock_oauth_redirect_uri</key>
<string>https://com.example.flutter.todo/callback</string>
<key>forgerock_oauth_scope</key>
<string>openid profile email address</string>
<key>forgerock_oauth_url</key>

- <string></string>

+ <string>https://auth.forgerock.com/am</string>
<key>forgerock_oauth_threshold</key>
<string>60</string>
<key>forgerock_url</key>

= <string></string>

T <string>https://auth.forgerock.com/am</string>
<key>forgerock_realm</key>

- <string></string>

+ <string>alpha</string>
<key>forgerock_timeout</key>
<string>60</string>
<key>forgerock_keychain_access_group</key>
<string>com.forgerock.flutterTodoApp</string>
<key>forgerock_auth_service_name</key>

- <string></string>

+ <string>UsernamePassword</string>
<key>forgerock_registration_service_name</key>

- <string></string>
+ <string>Registration</string>
</dict>

Descriptions of relevant values:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

forgerock_cookie_name

If you have an PingOne Advanced Identity Cloud tenant, you can find this random string value under the Tenant Settings
in the top-right dropdown in the admin Ul. If you have your own installation of PingAM, this is often
iPlanetDirectoryPro.

forgerock_url and forgerock_oauth_url
The URL of PingAM within your server installation.
forgerock_realm
The realm of your server (likely root, alpha, or bravo).
forgerock_auth_service_name
This is the journey/tree that you use for login.
forgerock_registration_service_name
This is the journey/tree that you use for registration, but it will not be used until a future part of this tutorial series.

Write the start() method

Staying within the Runner directory, find the FRAuthSampleBridge file and open it. We have parts of the file already stubbed out
and the dependencies are already installed. All you need to do is write the functionality.

For the SDK to initialize with the FRAuth.plist configuration from Step 2, write the start function as follows:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

import Foundation
import FRAuth
import FRCore
import Flutter

public class FRAuthSampleBridge {
var currentNode: Node?
private let session = URLSession(configuration: .default)

@objc func frAuthStart(result: @escaping FlutterResult) {

/*'k

* Set log level to all
w5
FRLog.setLoglLevel([.all])

do {
try FRAuth.start()
let initMessage = "SDK is initialized"
FRLog.i(initMessage)
result(initMessage)
} catch {
FRLog.e(error.localizedDescription)
result(FlutterError(code: "SDK Init Failed",
message: error.localizedDescription,
details: nil))

+ + + + F + F + + + o+ o+ + o+

The start() function above calls the Ping SDK for iOS's start() method on the FRAuth class. There's a bit more that may be
required within this function for a production app. We'll get more into this in a separate part of this series, but for now, let's keep
this simple.

Werite the login() method

Once the start() method is called, and it has initialized, the SDK is ready to handle user requests. Let's start with login() .

Just underneath the start() method we wrote above, add the login() method.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@

@objc func frAuthStart(result: @escaping FlutterResult) {
// Set log level according to your needs
FRLog.setLoglLevel([.all])

do {
try FRAuth.start()
result("SDK Initialised")
FRUser.currentUser?.logout()

}
catch {
FRLog.e(error.localizedDescription)
result(FlutterError(code: "SDK Init Failed",
message: error.localizedDescription,
details: nil))

@objc func login(result: @escaping FlutterResult) {
+ FRUser.login { (user, node, error) in
+ self.handleNode(user, node, error, completion: result)

}

@@ collapsed @@

This login() function initializes the journey/tree specified for authentication. You call this method without arguments as it does
not log the user in. This initial call to the server will return the first set of callbacks that represents the first node in your journey/
tree to collect user data.

Also, notice that we have a special "handler" function within the callback of FRUser.login() . This handleNode() method
serializes the node object that the Ping SDK for iOS returns in a JSON string. Data passed between the "native" layer and the
Flutter layer is limited to serialized objects. This method can be written in many ways and should be written in whatever way is
best for your application.

Write the next() method

To finalize the functionality needed to complete user authentication, we need a way to iteratively call next() until the tree
completes successfully or fails. In the bridge file, add a private method called handleNode() .

First, we will write the decoding of the JSON string and prepare the node for submission.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@@ collapsed @@

@objc func login(result: @escaping FlutterResult) {
FRUser.login { (user, node, error) in
self.handleNode(user, node, error, completion: result)

@objc func next(_ response: String, completion: @escaping FlutterResult) {
let decoder = JSONDecoder ()
let jsonData = Data(response.utf8)
if let node = self.currentNode {
var responseObject: Response?

do {
responseObject = try decoder.decode(Response.self, from: jsonData)
} catch {

FRLog.e(String(describing: error))
completion(FlutterError(code: "Error",
message: error.localizedDescription,
details: nil))

let callbacksArray = responseObject!.callbacks ?? []

for (outerIndex, nodeCallback) in node.callbacks.enumerated() {
if let thisCallback = nodeCallback as? SingleValueCallback {
for (innerIndex, rawCallback) in callbacksArray.enumerated() {
if let inputsArray = rawCallback.input, outerIndex == innerIndex,
let value = inputsArray.first?.value {

thisCallback.setValue(value.value as! String)

}

//node.next logic goes here

} else {
completion(FlutterError(code: "Error",
message: "UnkownError",
details: nil))

+ + + + F + + F + F F + F o+ F o+ F o+ A+ F o+ o+ +

@@ collapsed @@

Now that you've prepared the data for submission, introduce the node.next() call from the Ping SDK for iOS. Then, handle the
subsequent node returned from the next() call, or process the success or failure representing the completion of the journey/
tree.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@

for (outerIndex, nodeCallback) in node.callbacks.enumerated() {
if let thisCallback = nodeCallback as? SingleValueCallback {
for (innerIndex, rawCallback) in callbacksArray.enumerated() {
if let inputsArray = rawCallback.input, outerIndex == innerIndex,
let value = inputsArray.first?.value {

thisCallback.setValue(value)
}

//node.next logic goes here

+ node.next(completion: { (user: FRUser?, node, error) in

+ if let node = node {

+ self.handleNode(user, node, error, completion: completion)
+ } else {

+ if let error = error {

+ completion(FlutterError(code: "LoginFailure",

+ message: error.localizedDescription,
+ details: nil))

r return

+ }

+

+ let encoder = JSONEncoder ()

+ encoder.outputFormatting = .prettyPrinted

+ do {

+

if let user = user, let token = user.token, let data = try? encoder.encode(token), let jsonAccessToken
String(data: data, encoding: .utf8) {

+ completion(try ["type": "LoginSuccess", "sessionToken": jsonAccessToken].toJson())
+ } else {
+ completion(try ["type": "LoginSuccess", "sessionToken": ""].toJson())
+ }
+ }
+ catch {
+ completion(FlutterError(code: "Serializing Response failed",
+ message: error.localizedDescription,
+ details: nil))
+ }
+ }
1)
} else {
completion(FlutterError(code: "Error",
message: "UnkownError",
details: nil))
}
}

@@ collapsed @@

The above code handles a limited number of callback types. Handling full authentication and registration journeys/trees requires
additional callback handling. To keep this tutorial simple, we'll focus just on SingleValueCallback type.

Write the logout() bridge method

Finally, add the following lines of code to enable logout for the user:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials

Ping SDKs

@@ collapsed @@
} else {
completion(FlutterError(code: "Error",
message: "UnkownError",
details: nil))
}
@objc func frLogout(result: @escaping FlutterResult) {

+ FRUser.currentUser?.logout()
result("User logged out")

@@ collapsed @@

Step 6. Implement the Ul in Flutter

Review how the application renders the home view.

In Android Studio, navigate to the Flutter project, flutter_todo_app > java/main.dart.

Open up the second file in the above sequence, the java/main.dart file, and notice the following:

1. The use of import 'package:flutter/material.dart'; from the Flutter library.
2.The TodoApp class extending StatefulWidget .
3. The _TodoAppState class extending State<TodoApp> .

4. Building the Ul for the navigation bar.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

import 'package:flutter/material.dart’;

import 'package:flutter_todo_app/home.dart"’;
import 'package:flutter_todo_app/login.dart’;
import 'package:flutter_todo_app/todolist.dart"';

void main() => runApp(
new TodoApp(),

)i
class TodoApp extends StatefulWidget {
@override
_TodoAppState createState() => new _TodoAppState();

}

class _TodoAppState extends State<TodoApp> {
int _selectedIndex = 0;

final _pageOptions
HomePage (),
LoginPage()
TodoList(),
5

void _onItemTapped(int index) {
setState(() {
_selectedIndex = index;
3
}

@override
Widget build(BuildContext context) {
return new MaterialApp(
home: Scaffold(
body: _pageOptions[_selectedIndex],
bottomNavigationBar: BottomNavigationBar (
items: const <BottomNavigationBarItem>|[
BottomNavigationBarItem(
icon: Icon(Icons.home),
label: 'Home',
Do
BottomNavigationBarItem(
icon: Icon(Icons.vpn_key),
label: 'Sign In',
Do
P
currentIndex: _selectedIndex,
selectedItemColor: Colors.blueAccent[800],
onTap: _onItemTapped,
backgroundColor: Colors.grey[200],

Flutter uses something called MethodChannel to communicate between Flutter and the Native layer. In this application we will
define a MethodChannel with the following identifier: 'forgerock.com/SampleBridge' .

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

The same identifier will be used in the iOS FRSampleBridge so that the two layers communicate and pass information. To initialize
the Ping SDK when the log in view first loads, we call the frStart() method on the bridge code.

@ Note

It's important to initialize the SDK as early as possible. Call this initialization step, so it resolves before any other native
SDK methods can be used.

Building the login view
Navigate to the app’s login view within the Simulator. You should see an empty screen with a button, since the app doesn't have
the data needed to render the form. To render the correct form, retrieve the initial data from the server. This is our first task.
Since most of the action is taking place in flutter_todo_app/Java/login.dart, open it and add the following:
1. Import FRNode.dart from the Dart helper classes provided for improved ergonomics for handling callbacks:
import 'package:flutter_todo_app/FRNode.dart"';
2. If not already there, import async, convert, scheduler, services from the flutter package. Add the following:
import 'dart:async';
import 'dart:convert’;

import 'package:flutter/scheduler.dart';
import 'package:flutter/services.dart';

3. Create a static reference for the method channel
MethodChannel('forgerock.com/SampleBridge')

4. Override the initState Flutter lifecycle method and initialize the SDK.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

class _LoginPageState extends State<LoginPage> {
+ static const platform = MethodChannel('forgerock.com/SampleBridge'); //Method channel as defined in the
native Bridge code

@@ collapsed @@

//Lifecycle Methods

+ @override

+ void initState() {

+ super.initState();

T SchedulerBinding.instance?.addPostFrameCallback((_) => {

+ //After creating the first controller that uses the SDK, call the 'frAuthStart' method to initialize

the native SDKs.

+ _startSDK()
+)
+ }
// SDK Calls - Note the promise type responses. Handle errors on the UI layer as required

Future<void> _startSDK() async {

+ String response;
+ try {
+
+ //Start the SDK. Call the frAuthStart channel method to initialise the native SDKs
+ final String result = await platform.invokeMethod('frAuthStart');
+ response = 'SDK Started';
+ _login();
+ } on PlatformException catch (e) {
+ response = "SDK Start Failed: 'S$S{e.message}'.";
+ }
}

@@ collapsed @@

To develop the login functionality, we first need to use the login() method from the bridge code to get the first set of callbacks,
and then render the form appropriately. This login() method is an asynchronous method. Let's get started!

Compose the data gathering process using the following:
1. After the SDK initialization is complete, call the _login() method.
2. Use the platform reference to call the Bridge login method platform.invokeMethod('login') .
3. Parse the response and call _handleNode() method.

4. Handle any errors that might be returned from the Bridge.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@@ collapsed @@

Future<void> _login() async {

+ try {

+ //Call the default login tree.

+ final String result = await platform.invokeMethod('login');
+ Map<String, dynamic> frNodeMap = jsonDecode(result);

+ var frNode = FRNode.fromJson(frNodeMap);

+ currentNode = frNode;

+

+

//Upon completion, a node with callbacks will be returned, handle that node and present the callbacks
to UI as needed.

+ _handleNode(frNode) ;
+ } on PlatformException catch (e) {
+ debugPrint('SDK Error: Se');
+ Navigator.pop(context);
+ b
}

The above code is expected to return either a Node with a set of Callback objects, or a success/error message. We need to
handle any exceptions thrown from the bridge on the catch block. Typically, when we begin the authentication journey/tree, this
returns a Node . Using the FRNode helper object, we parse the result in a native Flutter FRNode object.

In the next step we are going to "handle" this node, and produce our Ul.

@@ collapsed @@
// Handling methods
void _handleNode(FRNode frNode) {
+ // Go through the node callbacks and present the UI fields as needed. To determine the required UI element,
check the callback type.
frNode.callbacks.forEach((frCallback) {
final controller = TextEditingController();
final field = TextField(
controller: controller
obscureText: frCallback.type == "PasswordCallback", // If the callback type is 'PasswordCallback', make this
'secure’ textField.
enableSuggestions: false,
autocorrect: false,
decoration: InputDecoration(
border: OutlineInputBorder(),
labelText: frCallback.output[@].value,
Ve
)5
setState(() {
_controllers.add(controller);
_fields.add(field);
3
3

+ + + + + + + F + F + O+ + + +

The _handleNode() method focuses on the callbacks property. This property contains instructions about what to render to
collect user input.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

The previous code processes the Node callbacks and generates two TextField objects:
* A TextField for the username.
* A TextField for the password.

Use the frCallback.type to differentiate between the two TextField objects and obscure the text of each TextField . Next,
add the TextField objects to the List and create the accompanying TextEditingControllers.

Run the app again, and you should see a dynamic form that reacts to the callbacks returned from our initial call to ForgeRock.

1:50 %%

Sign-In

User Name

Password

Not registered? Create an account now.

Home Sign In

Figure 1. Login screen form
Submitting the login form

Since a form that can’t submit anything isn’t very useful, we'll now handle the submission of the user input values to ForgeRock.
Continuing in login.dart, edit the current _okButton element, adding an onPressed handler calling the _next() function.
This function should do the following:

1. Go through the _controllers array to capture the values of the form elements.
2. Update the Node callbacks with those values.

3. Submit the results to ForgeRock.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

4. Check the response for a LoginSuccess message, or if a new node is returned, handle this in a similar way and resubmit
the user inputs as needed.

5. Handle errors with a generic failure message.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@

Widget _okButton() {
return Container(
color: Colors.transparent,
width: MediaQuery.of(context).size.width,
margin: EdgeInsets.all(15.0),
height: 60,
child: TextButton(
style: ButtonStyle(backgroundColor: MaterialStateProperty.all(Colors.blue)),
onPressed: () async {
showAlertDialog(context);
+ _next();
Vo
child:
Text(
"Sign in",
style: TextStyle(color: Colors.white),

D

@@ collapsed @@

Future<void> _next() async {
// Capture the User Inputs from the UI, populate the currentNode callbacks and submit back to {am_name}
currentNode.callbacks.asMap().forEach((index, frCallback) {
_controllers.asMap().forEach((controllerIndex, controller) {
if (controllerIndex == index) {
frCallback.input[@].value = controller.text;
}
2
3
String jsonResponse = jsonEncode(currentNode) ;
try {
// Call the SDK next method, to submit the User Inputs to {am_name}. This will return the next Node or a
Success/Failure
String result = await platform.invokeMethod('next', jsonResponse);
Navigator.pop(context);
Map<String, dynamic> response = jsonDecode(result);
if (response["type"] == "LoginSuccess") {
_navigateToNextScreen(context);
} else {
//If a new node is returned, handle this in a similar way and resubmit the user inputs as needed.
Map<String, dynamic> frNodeMap = jsonDecode(result);
var frNode = FRNode.fromJson(frNodeMap);
currentNode = frNode;
_handleNode(frNode) ;
}
} catch (e) {
Navigator.pop(context);
debugPrint('SDK Error: Se');

+ + + + + + + + + o+

+ + + + + + + + + + + + + o+ o+ o+

@@ collapsed @@

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

After the app refreshes, use the test user to login. If successful, you should see a success message. Congratulations, you are now
able to authenticate users!

1:47

9)

Todo list

© Welcome back,

You're currently logged in with the email

N >
To-Dos Log out
Figure 2. Login screen with successful authentication

What's more, you can verify the authentication details by going to the Xcode or Android Studio log, and observing the result of the
last call to the server. It should have a type of LoginSuccess with token information.

o n (5] <7 @ Runner Line: 19 Col: 31

Find v LoginSuccess| 1 match + Aa Contains ¢ < >
SAMEORIGIN

New Request:
frauth://org.reactjs.native.example.reactnativetodo?code=_TKcycQa-C_VVzZ2_DkjM20X_zw.nMUFd9VD4Ym9-jHT7wBSbiB70XQ&iss=https%3A%2F%2F forgerock.crbrl
.10%3A443%2Fam%2Foauth2&state=858sEkKg00e8X0aVT8j16SBqCZuz53wI&client_id=WebOAuthClient
2022-03-21 16:37:44.345825+0000 Runner[53433:18981369] [Default] [FRAuth][1.0.0] [FRAuthSampleBridge.swift:155 : next(_:completion:)] [Ml - Info] [RLFLENIIIIY] - sessionToken: {
"sessionToken" : "dzRaces1BG7crGGu0023XxWPGqO.*AAJTSQACMDIAAINLABx3RXdkTOxkM1RQRXhHM1pRRk1NRGZKek9mTDg9AARGeXB1AANDVFMAAIMXAAIWMQ. . *
"scope" : "address openid profile email",
"refreshToken" :
"eyJBeXAi0iJKV1QiLCIhbGci0iJIUZIINiI9
.eyJzdWIiOiIXNTA2NmMyZC@zZDNjLTRjMzIt0TUBZCOZzNDUXMDAhN2RKMmEiLCJjdHMi0iIPQVVUSDITRLIBTIRFUBVUIiwiYXVOaF9sZXZ1bCI6MCwiYXVkaXRUcmFja21uZ@1lkIjoiNDVijNZNINWQtMDc2NCOOMmRmLTkyYzUtYmIwNzg
4M2VMMGFKLTMZMTYxXIiwic3VibmFtZSI6IjEIMDY2YZIKLTNKM2MtNGMZzMiOSNTRKLTMONTEWN2E3ZGQyYSIsImlzcyI6Imh@dHBz0i8vZm9yZ2Vyb2NrLmNyYnJsLmlv0jQeMy9hbS9vYXVeaDIilCIeb2t1bk5hbWUi0idyZWZyZXNoX3R
va2vVuIliwidG9rZW5fdH1wZSI6IkI1YXI1lciIsImF1dGhHemFudElkIjoiX1RLY31jUWEtQ19WVnpaM19Ea2pNMk9YX3p3LkZCY31YQ]YwZDglcXZ1alBXUkp4UzIBc2xLYyIsInNpZCI6Inpldlhva3Fé6cFQzSWdvT@pkbUNBZUhzZEXGeVZ
yT2d5RVBMRVM1c1R5UFK9IiwiYXVKkIjoiV2ViT@F1dGhDbG11bnQilCINY3Ii0iIwIiwibmImIjoxNjQ30DgwNjYOLCIVCHMi0iIyM18ySGUOe]jRPVMNZZiBVZk9La21XcWRHTmMiLCIncmFudF90eXB1IjoiYXVeaG9yaXphdGlvbl9jb2R
1Tiwic2NvcGUiOlsiYWRkcmVzeyIsIm9wZW5pZCIsInByb2ZphGUiLlCI1bWFpbCIdLCIhdXRoX3RpbWUi0jE2NDc4ODA2NFMsInI1YWxtIjoil2FscGhhIiwiZXhwIjoxNjQ4NDgINDYOLCIpYXQi0jE2NDc40DA2NjQsImV4cGlyZXNFawWs|
103 YWNDgwMCwianRpIjoiX1RLY31jUWEtQ19WVnpaM19Ea2pNMk9YX3p3LKNNd1dBSzFIMFdxS21YbFNCZDIDCc11EZZFMcyJ9 . xYxbL9jpSS21Z3XeC87C5YwmbDVeqgx_pabtWVnAQf5M" ,
"tokenType" : "Bearer",
"value" :
HauTAaYAiNd V1031 AThhRAiNS ITIZTING 70
All Output &

Figure 3. Successful login response from Xcode

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Handling the user provided values

You may ask, "How did the user's input values get added to the Node object?" Let's take a look at the component for handling the
user input submission. Notice how we loop through the Node Callbacks and the _controllers array. Each inputis set on the
frCallback.input[@].value, and then we call FRSampleBridge.next() method.

@@ collapsed @@

// Capture the User Inputs from the UI, populate the currentNode callbacks and submit back to {am_name}
currentNode.callbacks.asMap().forEach((index, frCallback) {
_controllers.asMap().forEach((controllerIndex, controller) {
if (controllerIndex == index) {
frCallback.input[0].value = controller.text;
}
3
1)

String jsonResponse = jsonEncode(currentNode);

@@ collapsed @@

try {
// Call the SDK next method, to submit the User Inputs to {am_name}. This will return the next Node or a Success/
Failure
String result = await platform.invokeMethod('next', jsonResponse);

@@ collapsed @@
} catch (e) {
Navigator.pop(context);

debugPrint('SDK Error: Se');
}

There are two important items to focus on regarding the FRCallback object.
callback. type

Retrieves the call back type so that can identify how to present the callback in the Ul.
callback.input

The input array that contains the inputs that you need to set the values for.

Since the NameCallback and PasswordCallback only have one input, you can set the value of them by calling
frCallback.input[@].value = controller.text; .Some other callbacks might contain multiple inputs, so some extra code will
be required to set the values of those.

Each callback type has its own collection of inputs and outputs. Those are exposed as arrays that the developer can loop through
and act upon. Many callbacks have common base objects in iOS and Android, like the SingleValueCallback , but appear as
different types NameCallback or PasswordCallback to allow for easier differentiation in the Ul layer. You can find a full list of the
supported callbacks of the SDKs here.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Redirecting to the TodoList screen and requesting user info

Now that the user can log in, let's go one step further and redirect to the TodoList screen. After we get the LoginSccess message
we can call the _navigateToNextScreen() method. This will navigate to the TodoList class. When the TodoList initializes, we
want to request information about the authenticated user to display their name and other information. We will now utilize the
existing FRAuthSampleBridge.getUserInfo() method already included in the bridge code.

Let's do a little setup before we make the request to the server:
1. Override the initState() method in the _TodoListState classin todolist.dart.
2. Create a SchedulerBinding.instance?.addPostFrameCallback to execute some code when the state is loaded.

3. Call _getUserInfo().

@@ collapsed @@
//Lifecycle methods

+ @override

+ void initState() {

+ super.initState();

+ SchedulerBinding.instance?.addPostFrameCallback((_) => {

+ //Calling the userinfo endpoint is going to give use some user profile information to enrich our UI.
Additionally, verifies that we have a valid access token.

+ _getUserInfo()

+ 1)

+}

@@ collapsed @@

With the setup complete, implement the request to your server for the user’s information. Within this empty _getUserInfo(),
add an async function to make that call FRAuthSampleBridge.getUserInfo() and parse the response.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@

Future<void> _getUserInfo() async {
showAlertDialog(context) ;
String response;
try {
final String result = await platform.invokeMethod('getUserInfo');
Map<String, dynamic> userInfoMap = jsonDecode(result);
response = result;
header = userInfoMap["name"];
subtitle = userInfoMap[“email"];
Navigator.pop(context);
setState(() {
_getTodos() ;
)5
} on PlatformException catch (e) {
response = "SDK Start Failed: 'S{e.message}'.";
Navigator.pop(context);
}
debugPrint('SDK: Sresponse');

~ 4+ + + + + F + + + + + + + + o+

@@ collapsed @@

In the code above, we collected the user information and set the name and email of the user in some variables. In addition to
updating the user info, we will call the _getTodos() method in order to retrieve ToDos from the server. Notice that we use the
setState() function. This ensures that our Ul is updated based on the newly received information.

When you test this in the Simulator, completing a successful authentication results in the home screen being rendered with a
success message. The user's name and email are included for visual validation. You can also view the console in Xcode and see
more complete logs.

(] /@ Runner Line: 19 Col: 31 | (@

Find v LoginSuccess| 1 match + Aa Contains ¢ [< | > || Done
SAMEORIGIN

New Request:
frauth://org.reactjs.native.example.reactnativetodo?code=_TKcycQa-C_VVzZ2_DkjM20X_zw.nMUFd9VD4Ym9-jHT7wBSbiB70XQ&iss=https%3A%2F%2F forgerock.crbrl
.10%3A443%2Fam%2Foauth2&state=858sEkKg00e8X0aVT8j16SBqCZuz53wI&client_id=WebOAuthClient
2022-03-21 16:37:44.345825+0000 Runner[53433:18981369] [Default] [FRAuth][1.0.8] [FRAuthSampleBridge.swift:155 : next(_:completion:)] [l - Info] [RLELENALEY - sessionToken: {
"sessionToken" : "dzRaces1BG7crGGu0023XxWPGqO.*AAJTSQACMDIAAINLABx3RXdkTOxkM1RQRXhHM1pRRk1NRGZKek9mTDg9AAROeXB1AANDVFMAAIMXAAIWMQ. . %",
"scope" : "address openid profile email",
"refreshToken" :
"eyJBeXAi0iJKV1QiLCIhbGci0iJIUZIINiI9
.eyJzdWIiOiIXNTA2NmMyZC@zZDNjLTRjMzIt0TUBZCOZzNDUXMDAhN2RKMmEiLCJjdHMi0iJPQVVUSDIFRLIBTIRFUBVUIiwiYXVOaF9sZXZ1bCI6MCwiYXVkaXRUcmFja21uZ@lkIjoiNDVijNZNINWQtMDc2NCOOMmRmLTkyYzUtYmIwNzg
4M2VMMGFKLTMzZMTYxIiwic3VibmFtZSI6IjEIMDY2YZIKLTNKM2MtNGMZzMiOSNTRKLTMONTEWN2E3ZGQyYSIsImlzcyI6Imh@dHBz0i8vZm9yZ2Vyb2NrLmNyYnJsLmlv0jQeMy9hbS9vYXVeaDIilCIOb2t1bk5hbWUi0idyZWZyZXNoX3R
va2VuIliwidG9rZW5fdH1wZSI6IkI1YXI1lciIsImF1dGhHemFudElkIjoiX1RLY31jUWEtQ19WVnpaM19Ea2pNMk9YX3p3LkZCY31YQ]YwZDglcXZ1alBXUkp4UzIBc2xLYyIsInNpZCI6Inpldlhva3Fé6cFQzSWdvT@pkbUNBZUhzZEXGeVZ
yT2d5RVBMRVM1c1R5UFK9IiwiYXVkIjoiV2ViT@F1dGhDbG11bnQilCINY3Ii0iIwIiwibmImIjoxNjQ30DgwNjYOLCIVCHMi0iIyM18ySGUOe]jRPVMNZZiBVZk9La21XcWRHTmMiLCIncmFudF90eXB1IjoiYXVeaG9yaXphdGlvbl9jb2R
1TIiwic2NvcGUiOlsiYWRkemVzeyIsIm9wZW5pZCIsInByb2ZphGUilCI1bWFpbCIdLCIhdXRoX3RpbWUi0jE2NDc4ODA2NFMsInI1YWxtIjoil2FscGhhIiwiZXhwIjoxNjQ4NDgINDYOLCIpYXQi0jE2NDc4ODA2NjQsImV4cGlyZXNFawWs|
103 YWNDgwMCwianRpIjoiX1RLY31jUWEtQ19WVnpaM19Ea2pNMk9YX3p3LKNNd1dBSzFIMFdxS21YbFNCZDIDCc11EZZFMcyJ9 . xYxbL9jpSS21Z3XeC87C5YwmbDVeqx_pabtWVnAQf5M" ,
"tokenType" : "Bearer",
e" :

M0aYA NG IVINE 1 A ThhRAINS ITIIZTING 70
All Output &

Figure 4. Home screen after successful authentication
Adding logout functionality

Clicking the Sign Out button results in creating and rendering an alert view asking you if you are sure you want to log out with two
options (yes/no). Clicking yes does nothing at the moment. We will now implement that missing logic.

To add the logic into the view to call this new Swift method:

1. Open the todolist.dart file, and add the following:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@@ collapsed @@

TextButton(
child: const Text('Yes'),
onPressed: () {
Navigator.of(context).pop();
_logout();

+ + + +

¥
),

@@ collapsed @@
Future<void> _logout() async {

+ final String result = await platform.invokeMethod('logout');
+ _navigateToNextScreen(context) ;

2. Revisit the app within the Simulator, and tap the Sign Out button.
This time around when clicking Yes will dispose of the alert and log you out, returning you back to the log in screen.
If you tap No, you will return to the main list screen.

Testing the app

You should now be able to successfully authenticate a user, display the user’s information, and log a user out.

Congratulations, you just built a protected iOS app with Flutter!

Authentication journey tutorial for React)S
In this tutorial you build out a sample React]S SPA and make use of a Node.js REST API server sample app.
This guide uses the Ping SDK for JavaScript to implement the following application features:

+ Dynamic authentication form for login.

+ OAuth/OIDC token acquisition through the Authorization Code Flow with PKCE.

* Protected client-side routing.

* Resource requests to a protected REST API.

* Log out - revoke tokens and end session.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

(/’ + @ A Home 7 Todos e

Your Todos

Create and manage your todos.

What needs doing?

O Protect the todo app

Hello, World!

The React name and logomark are properties of Facebook, and their use herein is for
learning and illustrative purposes only.

Figure 1. Screenshot of the to-do page of the sample app

Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need to configure CORS, have an OAuth 2.0 client application set up, as well as an authentication
journey for the app to navigate.

Complete prerequisites »

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 »

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Step 2. Configure connection properties

Configure both the Todo client app, and the API backend server app to connect to the OAuth 2.0 application you created in
PingOne Advanced Identity Cloud or PingAM.

Start step 2 »

Step 3. Build and run the projects

In this step you build and run the APl backend server app, and then the Todo client app.
There are also troubleshooting tips if the apps do not start as expected.

Start step 3 »

Step 4. Implement authentication using the Ping SDK

In this step you implement the Ping SDK into the Todo client app, so that it authenticates a user and handles the responses
from your PingOne Advanced Identity Cloud tenant or PingAM server.

Start step 4 »

Step 5. Start an OAuth 2.0 flow

In this step you use the session token you received in the previous step to start an Oauth 2.0 flow.

Start step 5»

Step 6. Manage access tokens

In this step you implement code to handle the presence of an access token, and getting user info from the OAuth 2.0
endpoint.

Start step 6 »

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Step 7. Handle logout requests

In this step you implement code to terminate the session and revoke tokens.

Start step 7 »

Step 8. Test the app

In this final step you run the completed sample application.

Test it out »

Before you begin

To successfully complete this tutorial refer to the prerequisites in this section.
The tutorial also requires a configured server.

Prerequisites

Node and NPM

The SDK requires a minimum Node.js version of 18, and is tested on versions 18 and 28 . To get a supported version of
Node.js, refer to the Node.js download page .

You will also need npm version 7 or newer to build the code and run the samples.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne]
Advanced Identity Cloud PingAM

PingAM
PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation

https://nodejs.org/en/download/
https://nodejs.org/en/download/

Ping SDK for Auth Journey tutorials Ping SDKs

PingOne Advanced Identity Cloud

Cross-origin resource sharing[(CORS) lets user agents make cross-domain server requests. In PingOne Advanced Identity Cloud,
you can configure CORS to allow browsers from trusted domains to access PingOne Advanced Identity Cloud protected resources.
For example, you might want a custom web application running on your own domain to get an end-user’s profile information
using the PingOne Advanced Identity Cloud REST API.

The Ping SDK for JavaScript samples and tutorials use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different domain for hosting SDK applications, ensure you add them to the CORS configuration as accepted
origin domains.

For example, for this tutorial you should also add the host domain used by the todo API backend server, which defaults to
http://localhost:9443 .

To update the CORS configuration in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. At the top right of the screen, click your name, and then select Tenant settings.
3. On the Global Settings tab, click Cross-Origin Resource Sharing (CORS).
4. Perform one of the following actions:
o If available, click ForgeRockSDK.

o If you haven't added any CORS configurations to the tenant, click + Add a CORS Configuration, select Ping SDK,
and then click Next.

5.Add https://localhost:8443 and any DNS aliases you use to host your Ping SDK for JavaScript applications to the
Accepted Origins property.

6. Add the URL used by the todo API backend server, which defaults to http://localhost:9443 .
7. Complete the remaining fields to suit your environment.

This documentation assumes the following configuration, required for the tutorials and sample applications:

Property Values

Accepted Origins https://localhost:8443
http://localhost:9443

Accepted Methods GET
POST

Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Ping SDKs

Property

Accepted Headers

Ping SDK for Auth Journey tutorials

Values

accept-api-version

x-requested-with
content-type
authorization

if-match
x-requested-platform
iPlanetDirectoryPro (1l
ch15fefc5407912 [

Exposed Headers authorization
content-type

Enable Caching True
Max Age 600
Allow Credentials True

Q Tip

Click Show advanced settings to be able to edit all available fields.

8. Click Save CORS Configuration.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. In the left panel, click Identities > Manage.

3. Click + New Alpha realm - User.
4. Enter the following details:
o Username = demo
o First Name = Demo
° Last Name = User
° Email Address = demo.user@example.com
o Password = Ch4ng3it!
5. Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(Z in the PingAM

documentation.
To create a simple journey for use when testing the Ping SDKs, follow these steps:
1. In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.
2. Enter a name, such as sdkUsernamePasswordJourney and click Save.
The authentication journey designer appears.
3. Drag the following nodes into the designer area:
° Page Node
° Platform Username
° Platform Password

o Data Store Decision

4. Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on

the same page when logging in.

5. Connect the nodes as follows:

< Journeys sdkUsernamePasswordjourney ®

+ Add Nodes Q Q i & (]

Page Node

Data Store Decision

N Platform Userna...
True

False
Platform Passwo... ‘

Figure 1. Example username and password authentication journey

6. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile

device.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDKs Ping SDK for Auth Journey tutorials

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:

1

2.

. Log in to your PingOne Advanced Identity Cloud tenant.

In the left panel, click Applications.

. Click + Custom Application.

. Select OIDC - Openld Connect as the sign-in method, and then click Next.
. Select Native / SPA as the application type, and then click Next.

.In Name, enter a name for the application, such as Public SDK Client.

. In Owners, select a user that is responsible for maintaining the application, and then click Next.

Q Tip

When trying out the SDKs, you could select the demo user you created previously.

.In Client ID, enter sdkPublicClient, and then click Create Application.

PingOne Advanced Identity Cloud creates the application and displays the details screen.

. On the Sign On tab:

1. In Sign-In URLs, enter the following values:
https://localhost:8443/callback

@ Important

Also add any other domains where you host SDK applications.
2. In Grant Types, enter the following values:
Authorization Code
Refresh Token

3. In Scopes, enter the following values:

openid profile email address

10. Click Show advanced settings, and on the Authentication tab:

11.

1. In Token Endpoint Authentication Method, select none .
2.In Client Type, select Public.
3. Enable the Implied Consent property.

Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Confidential clients are able to securely store credentials and are commonly used for server-to-server communication. For
example, the "Todo" APl backend provided with the SDK samples uses a confidential client to obtain tokens.

The following tutorials and integrations require a confidential client:
+ Authentication journey tutorial for Angular
+ Authentication journey tutorial for React)S
* Build advanced token security in a JavaScript SPA

To register a confidential OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these
steps:

1. Log in to your PingOne Advanced Identity Cloud tenant.
2.In the left panel, click Applications.

3. Click + Custom Application.

N

. Select OIDC - Openld Connect as the sign-in method, and then click Next.
5. Select Web as the application type, and then click Next.
6.In Name, enter a name for the application, such as Confidential SDK Client.

7.In Owners, select a user responsible for maintaining the application, and then click Next.

Q Tip

When trying out the SDKSs, you could select the demo user you created previously.

8. On the Web Settings page:
1. In Client ID, enter sdkConfidentialClient
2.In Client Secret, enter a strong password and make a note of it for later use.

@ Important

The client secret is not available to view after this step.
If you forget it, you must reset the secret and reconfigure any connected clients.

3. Click Create Application.
PingOne Advanced Identity Cloud creates the application and displays the details screen.
9. On the Sign On tab, click Show advanced settings, and on the Access tab:
1. In Default Scopes, enter am-introspect-all-tokens.
10. Click Save.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

1. In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.
2. In the left panel, click ¥ Services.

3. In the list of services, click OAuth2 Provider.

4. 0On the Core tab, ensure Issue Refresh Tokens is enabled.

5. 0On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

PingAM

Cross-origin resource sharing[J (CORS) lets user agents make cross-domain server requests. In PingAM, you can configure CORS
to allow browsers from trusted domains to access PingAM protected resources. For example, you might want a custom web
application running on your own domain to get an end-user’s profile information using the PingAM REST API.

The Ping SDK for JavaScript samples and tutorials all use https://localhost:8443 as the host domain, which you should add to
your CORS configuration.

If you are using a different URL for hosting SDK applications, ensure you add them to the CORS configuration as accepted origin
domains.

For example, for this tutorial you should also add the host domain used by the todo API backend server, which defaults to
http://localhost:9443.

To enable CORS in PingAM, and create a CORS filter to allow requests from your configured domain names, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.

2. Navigate to Configure > Global Services > CORS Service > Configuration, and set the Enable the CORS filter property to
true.

@ Important

If this property is not enabled, CORS headers are not added to responses from PingAM, and CORS is disabled
entirely.

3. On the Secondary Configurations tab, click Click Add a Secondary Configuration.
4. In the Name field, enter ForgeRockSDK .
5.in the Accepted Origins field, enter any DNS aliases you use for your SDK apps.

This documentation assumes the following configuration:

Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Ping SDK for Auth Journey tutorials Ping SDKs

Property Values

Accepted Origins https://localhost:8443
http://localhost:9443

Accepted Methods GET
POST
Accepted Headers accept-api-version

x-requested-with
content-type
authorization
if-match
x-requested-platform
iPlanetDirectoryPro (1l
ch15fefc5407912 [2

Exposed Headers authorization
content-type
6. Click Create.
PingAM displays the configuration of your new CORS filter.

7. 0n the CORS filter configuration page:

1. Ensure Enable the CORS filter is enabled.

2. Set the Max Age property to 600

3. Ensure Allow Credentials is enabled.
8. Click Save Changes.

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Identities, and then click + Add Identity.
3. Enter the following details:
o User ID = demo
o Password = Ch4ng3it!
o Email Address = demo.user@example.com

4. Click Create.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(Z in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:
1. Under Realm Overview, click Authentication Trees, then click Create Tree.
2. Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.
The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

3. Drag the following nodes from the Components panel on the left side into the designer area:
° Page Node
o Username Collector
o Password Collector
o Data Store Decision

4. Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

Start @— @ Page Node o —@ Data Store Decision
‘ True @— —@ Success
Username Collector || Fass @~ . & & il

Password Collector
@ Failure

Figure 2. Example username and password authentication tree
6. Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .
Q Tip
You can configure the node properties by selecting a node and altering properties in the right-hand panel.

One of the samples uses this specific value to determine the custom Ul to display.

7. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly

use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDK for Auth Journey tutorials Ping SDKs

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to BB Applications > OAuth 2.0 > Clients, and then click + Add Client.
3.In Client ID, enter sdkPublicClient .
4. Leave Client secret empty.
5.In Redirection URIs, enter the following values:
https://localhost:8443/callback

@ Important

Also add any other domains where you will be hosting SDK applications.

6. In Scopes, enter the following values:
openid profile email address
7. Click Create.
PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.
8. On the Core tab:
1. In Client type, select Public.
2. Disable Allow wildcard ports in redirect URIs.
3. Click Save Changes.
9. On the Advanced tab:
1.In Grant Types, enter the following values:

Authorization Code
Refresh Token

2. In Token Endpoint Authentication Method, select None .
3. Enable the Implied consent property.
10. Click Save Changes.
Confidential clients are able to store credentials securely and are commonly used for server-to-server communication.
The following tutorials and integrations require a confidential client:
+ Authentication journey tutorial for Angular
+ Authentication journey tutorial for React)S

* Build advanced token security in a JavaScript SPA

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

To register a confidential OAuth 2.0 client application for use with the SDKs in AM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to BB Applications > OAuth 2.0 > Clients, and then click + Add Client.
3.In Client ID, enter sdkConfidentialClient .
4. In Client Secret, enter a strong password and make a note of it for later use.

@ Important

The client secret is not available to view after this step.
If you forget it, you must reset the secret and reconfigure any connected clients.

5. In Default Scopes, enter am-introspect-all-tokens.
PingAM creates the new OAuth 2.0 client and displays the properties for further configuration.
6. On the Advanced tab:
1. Enable the Implied consent property.
7. Click Save Changes.
The provider specifies the supported OAuth 2.0 configuration options for a realm.
To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.
4. 0On the Core tab, ensure Issue Refresh Tokens is enabled.
5. 0On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

1. Cookie name value in PingAM servers.
2. In PingOne Advanced Identity Cloud tenants, go to Tenant Settings > Global Settings > Cookie to find this dynamic cookie
name value.

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.
Within the repo are two branches related to this tutorial:
build-protected-app/start

Contains all the source files you need to follow this tutorial, but without the actual implementation of the Ping SDK
functionality.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Use this branch if you want to complete the tutorial step-by-step, adding the code the tutorial provides.

build-protected-app/complete
The same source files but with the Ping SDK code already implemented.

Use this branch if you want to skip ahead of the tutorial, or if you want to compare your work with the completed version
for troubleshooting.

To get a copy of the tutorial source code:
1. In a web browser, navigate to the SDK Sample Apps repository (.

2. Download the source code using one of the following methods:

Download a ZIP file

1. Select which branch to download:

(/' sdk-sample-apps Public £ EditPins v+ ®Watch 9 ~ % Fork 8 v Starred 4 v
¥ build-protected-ap... ~ ¥ © Q Gotofile t)| | + About e
Switch branches/tags X Repo containing all the SDK sample

le.. X 80cc0a5 - 2 months ago @ 18 Commits

Q Find or create a branch...

)do-api and renderyml 2 years ago A~ Activity
Branches Tags &) Custom properties
tample and README fixes 2 months ago
) ¢ 4 stars
main default
\tings): update settings across... 2 years ago ® 9 watching
build-protected-app/complete
ings): update setti) % 8 forks
- build-protected-appstart ings): update settings across... years ago ‘
Report repository
:ample and README fixes 2 months ago
View all branches
- Wuv-apl nuuing readme files and updating t... 3 months ago Releases
. . . No releases published
O .eslintrc.js add todo-api and render.yml 2 years ago Create a new release
[.gitignore Updating readme and removing "co... 3 months ago
Packages
.node-version fix(settings): update settings across... 2 years ago
No packages published
.prettierrc init commit 2 years ago Publish your first package
package-lock.json fix start branch 2 years ago Contributors 14

package.json fix(settings): update settings across... 2 years ago i
Yo
render.yaml| add reactjs sample 2 years ago Lol w x ™ G
“mr w .y

2. Click Code, and then click Download ZIP.

O O 0O 0O DO

3. Extract the contents of the downloaded ZIP file to a suitable location.
Use a Git-compatible tool to clone the repo locally

1. Click Code, and then copy the HTTPS URL.

2. Use the URL to clone the repository to a suitable location.

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps

Ping SDKs Ping SDK for Auth Journey tutorials

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git

3. Checkout which branch you want to work on.

For example, from the command-line you could run:

git checkout build-protected-app/start

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure connection properties
There are two projects in this tutorial that require configuration:
Client React/S app
The front-end client app, written in React, that handles the Ul and authentication journeys.
Backend API server

A backend REST API server that uses a confidential OAuth 2.0 client to contact the authorization server. The API server
handles storage and retrieval of your personal "Todo" items.

Configure the React client app

Copy the .env.example file in the sdk-sample-apps/reactjs-todo folder and save it with the name .env within this same
directory.

Add your relevant values to this new file because it provides all the important configuration settings to your applications.

Example client sdk-sample-apps/reactjs-todo/.env file

API_URL=http://localhost:9443

DEBUGGER_OFF=true

DEVELOPMENT=true

JOURNEY_LOGIN=sdkUsernamePasswordJourney

JOURNEY_REGISTER=Registration

PORT=8443

WEB_OAUTH_CLIENT=sdkPublicClient
WELLKNOWN_URL=https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/alpha/.well-known/openid-
configuration

Here are descriptions for some of the values:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

DEBUGGER_OFF
Setto true, to disable debug statements in the app.
These statements are for learning the integration points at runtime in your browser.

When you open the browser’s developer tools, the app pauses at each integration point. Code comments are placed
above each one explaining their use.

DEVELOPMENT

When true, this provides better debugging during development.

JOURNEY_LOGIN

The simple login journey or tree you created earlier, for example sdkUsernamePasswordJourney .

JOURNEY_REGISTER
The registration journey or tree.

You can use the default builtin Registration journey.

WELLKNOWN_URL
The URL to your server’'s .well-known/openid-configuration endpoint.
Example:

https://openam-forgerock-sdks.forgeblocks.com/am/oauth2/realms/root/realms/alpha/.well-known/openid-
configuration

Self-hosted example:
https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration

Configure the APl server app

Copy the .env.example file in the sdk-sample-apps/todo-api folder and save it with the name .env within this same
directory.

Add your relevant values to this new file as it will provide all the important configuration settings to your applications.

Example API server sdk-sample-apps/todo-api/.env file

AM_URL=https://openam-forgerock-sdks.forgeblocks.com/am
DEVELOPMENT=true

SERVER_PORT=9443

REALM_PATH=alpha
REST_OAUTH_CLIENT=sdkConfidentialClient
REST_OAUTH_SECRET=ch4ng3it!

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Step 3. Build and run the projects

In this step you build and run the APl backend, and the "Todo" client app project.

1. Open a terminal window at the root of the sdk-sample-apps directory and install the dependencies using the npm
install command:

npm install
2. In the same directory run the following command to start both the APl backend server and the "Todo" client:
npm run start:reactjs-todo

3. In a different browser than the one you are using to administer the server, visit the following URL: https://localhost:
8443 .

The app renders a home page explaining the purpose of the project:

(/’ + @ Sign In

Protect with ForgeRock;
Develop with React.js

Learn how to develop ForgeRock
protected, web apps with the React.js
library and our JavaScript SDK.

About this project

The purpose of this sample web app is to demonstrate how the
ForgeRock JavaScript SDK is implemented within a fully-functional
application using a popular framework. The source code for this
project can be found on Github and run locally for experimentation.
For more on our SDKs, you can find our official SDK documentation
here.

Getting started

To use this app, follow the tutorial found on our blog.

The React name and logomark are properties of Facebook, and their use herein is for
learning and illustrative purposes only.

Figure 1. Screenshot of the home page of the sample app

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@ Note

Only the home page renders successfully. The login page functionality is not yet functional. You will develop
this functionality later in this tutorial.

Troubleshooting

If the home page doesn’t render due to errors, here are a few tips:

* Visit http://localhost:9443/healthcheck in the same browser you use for the React)S app to test the API backend is
running. The APl backend should respond with 0Ok .

+ Look for error output in the terminal that is running the npm run start:reactjs-todo command.

+ Ensure you are not logged into your PingOne Advanced Identity Cloud tenant or PingAM server in the same browser as the
sample app; log out if you are, or use a different browser or an incognito window.

Step 4. Implement authentication using the Ping SDK

Now that we have our environment and servers setup, let's jump into the application! Within your IDE of choice, navigate to the
reactjs-todo/client directory. This directory is where you will spend the rest of your time.

First, open up the index.js file, importthe Config module from the Ping SDK for JavaScript and call the setAsync() method
on this object:

/reactjs-todo/client/index.js

+ import { Config } from '@forgerock/javascript-sdk';
import React from 'react';
import { createRoot } from 'react-dom/client’;
import Router from './router';
import { WELLKNOWN_URL, APP_URL, JOURNEY_LOGIN, WEB_OAUTH_CLIENT } from './constants';
import { AppContext, useGlobalStateMgmt } from './global-state';

import './styles/index.scss';

const urlParams = new URLSearchParams(window.location.search);
const journeyParam = urlParams.get('journey');

+ + + +

await Config.setAsync();

/**

* Initialize the React application

* This is an IIFE (Immediately Invoked Function Expression),
* so it calls itself.

=Y

(async function initAndHydrate() {

@@ collapsed @@

Copyright © 2025 Ping Identity Corporation

http://localhost:9443/healthcheck
http://localhost:9443/healthcheck

Ping SDKs Ping SDK for Auth Journey tutorials

The use of setAsync() should always be the first SDK method called and is frequently done at the application’s top-level file. To
configure the SDK to communicate with the journeys, OAuth clients, and realms of the appropriate server, pass a configuration
object with the appropriate values.

The configuration object you will use in this instance will pull most of its values out of the .env variables previously setup, which
are mapped to constants within our constants.js file.

Here's an example config for an PingOne Advanced Identity Cloud tenant:

/reactjs-todo/client/index.js

import { Config } from '@forgerock/javascript-sdk';
import React from 'react';
import { createRoot } from 'react-dom/client’;

import Router from './router';
import { WELLKNOWN_URL, APP_URL, JOURNEY_LOGIN, WEB_OAUTH_CLIENT } from './constants';
import { AppContext, useGlobalStateMgmt } from './global-state';

import './styles/index.scss';

const urlParams = new URLSearchParams(window.location.search);
const journeyParam = urlParams.get('journey');

await Config.setAsync(
{
clientId: WEB_OAUTH_CLIENT,
redirectUri: “${window.location.origin}/callback",
scope: 'openid profile email address',
serverConfig: {
wellknown: WELLKNOWN_URL,
timeout: 3000,
Yo
tree: ‘${journeyParam || JOURNEY_LOGIN}",

+ + + + + + + + o+ o+

}
)3

@@ collapsed @@

Go back to your browser and refresh the home page. There should be no change to what's rendered, and no errors in the
console. Now that the app is configured to your server, let's wire up the simple login page.

Building the login page

First, let's review how the application renders the home page:

index.js > router.js > views/home.js > inline code + components (components/)
For the login page, the same pattern applies except it has less code within the view file:
index.js > router.js > views/login.js > components/journey/form.js

In the top-right of the home page, click Sign In to open the login page.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

You should see a "loading" spinner and message that's persistent since it doesn't have the callbacks from your server that are
needed to render the form. Obtaining these callbacks is the first task.

< Home

Checking your session ...

Figure 1. Screenshot of the todo app’s login page with spinner.

Since most of the action is taking place in reactjs-todo/client/components/journey/form.js, openitand add the FRAuth
module from the Ping SDK for JavaScript:

reactjs-todo/client/components/journey/form.js

+ import { FRAuth } from '@forgerock/javascript-sdk';
import React from 'react’;

import Loading from '../utilities/loading';

@@ collapsed @@

FRAuth is the first object used as it provides the necessary methods for authenticating a user by using an authentication journey
or tree. Use the start() method of FRAuth as it returns data we need for rendering the form.

You will need to add new imports. Add useContext and useState from the React package.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

You'll use the useState() method for managing the data received from the server, and the useEffect is needed due to the
FRAuth.start() method resulting in a network request.

reactjs-todo/client/components/journey/form.js

import { FRAuth } from '@forgerock/javascript-sdk';
- import React from 'react’;
+ import React, { useEffect, useState } from 'react’;

import Loading from '../utilities/loading';

export default function Form() {
const [step, setStep] = useState(null);

<k

+ useEffect(() => {
+ async function getStep() {
+ try {
+ const initialStep = await FRAuth.start();
+ console.log(initialStep);
+ setStep(initialStep);
+ } catch (err) {
+ console.error(Error: request for initial step; ${err}’);
+ }
+ }
+ getStep();
v By L5
return <Loading message="Checking your session ..." />;
}

@ Note

We are passing an empty array as the second argument into useEffect . This instructs the useEffect to only run
once after the component mounts.
To learn more, refer to What an Effect with empty dependencies means(Z in the React Developer Documentation.

This code prints the response to starting the journey to the debug console in the browser. This response contains the first step of
the journey and its callbacks . These callbacks are the instructions for what needs to be rendered to the user to collect their
input.

Copyright © 2025 Ping Identity Corporation

https://react.dev/learn/lifecycle-of-reactive-effects#what-an-effect-with-empty-dependencies-means
https://react.dev/learn/lifecycle-of-reactive-effects#what-an-effect-with-empty-dependencies-means

Ping SDK for Auth Journey tutorials

Ping SDKs

< Home
Checking your session ...
R [o Elements Console Sources Network Performance Memory >> A1 B2 533 i X
D@ topry © Y Filter Defaultlevels v | 21Issues: M 21 83
form.js:27
v jedoawloade L3 typo. ‘Ciop! 2 llhacke: Arrav(2)} 4
~ callbacks: Array(2)
vo: r
» payload: {type: 'NameCallback', output: Array(1), input: Array(1), _id: @}
» [[Prototype]]l: r
+1l:r
» payload: {type: 'PasswordCallback', output: Array(1), input: Array(1), _id: 1}
» [[Prototypell: r
length: 2
TOCC el Array(o)
» payload: {authId: 'eyJ@eXAi0iJKV1QilLCJhbGci0iJIUzIINiJ9.eyl3aGlOZWxpc..c1M30.CPey65s8L
type: "Step"
» [[Prototype]]: Object

Figure 2. Screenshot of browser console showing first step of the journey and the callbacks returned from the server.

Below is a summary of what you'll do to get the form to react to the new callback data:

1. Import the needed form-input components

2. Create a function to map received callbacks to the appropriate component

3. Use the components to render the appropriate Ul for each callback in the response from the server

First, import the Alert, AppContext, Password, Text,and Unknown components.

reactjs-todo/client/components/journey/form.js

import

import React,

{ FRAuth } from '@forgerock/javascript-sdk';
{ useEffect,

useState } from 'react';

import

Alert from

'./alert';

+ + + +

import
import
import
import

Password from './password';
Text from './text';

Unknown from './unknown';
Loading from

@@ collapsed @@

'../utilities/loading’;

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Next, within the Form function body, create the function that maps these imported components to their appropriate callback.

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

export default function Form() {
const [step, setStep] = useState(null);

@@ collapsed @@

+ function mapCallbacksToComponents(cb, idx) {
+ const name = cb?.payload?.input?.[0].name;
+ switch (cb.getType()) {
+ case 'NameCallback':
+ return <Text callback={cb} inputName={name} key='username' />;
+ case 'PasswordCallback’:
+ return <Password callback={cb} inputName={name} key='password' />;
+ default:
+ // If current callback is not supported, render a warning message
+ return <Unknown callback={cb} key={ unknown-${idx} '} />;
+ }
+)
return <Loading message="Checking your session ..." />;
}

Finally, check for the presence of the step.callbacks, and if they exist, map over them with the function from above. Replace
the single return of <Loading message="Checking your session ..." /> with the following:

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

+ if (!step) {
return <Loading message='Checking your session ...' />;
} else if (step.callbacks?.length) {
return (
<form className='cstm_form'>
{step.callbacks.map(mapCallbacksToComponents)}
<button className='btn btn-primary w-100' type='submit'>
Sign In
</button>
</form>
)5
} else {
return <Alert message={step.payload.message} />;

* 4+ + + + + + + + + + +

Refresh the page, and you should now have a dynamic form that reacts to the callbacks returned from our initial call to
ForgeRock.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

< Home

User Name

Password L8

Sign In

Figure 3. Screenshot of login page with rendered form
Handling the login form submission

Since a form that can’t submit anything isn't very useful, we'll now handle the submission of the user input values to ForgeRock.
First, let's edit the current form element, <form className="cstm_form">, and add an onSubmit handler with a simple, inline
function.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

- <form className='cstm_form'>
+ <form
+ className="cstm_form"
onSubmit={(event) => {
event.preventDefault();
async function getStep() {
try {
const nextStep = await FRAuth.next(step);
console.log(nextStep);
setStep(nextStep) ;
} catch (err) {
console.error(Error: form submission; ${err}’);
}
}
getStep();
I3

+ + + + + + + + + + + o+

Refresh the login page and use the test user to login. You will get a mostly blank login page if the user’s credentials are valid and
the journey completes. You can verify this by going to the Network panel within the developer tools and inspect the last /
authenticate request. It should have a tokenId and successUrl property.

< Home
i< [0 Elements Console Sources Network Performance Memory Application Privacy and security Lighthouse Recorder Adblock Plus > 9141 m388 83 i X
®Q Y. Q Preserve log [Disable cache Nothrotting ~ T &L & @«
Y Filter O Invert More filters v All Fetch/XHR Doc CSS JS Font Img Media Manifest WS Wasm Other
! 20 ms 40 ms 60 ms 80 ms 100 ms 120 ms 140 ms 160 ms 180 ms 200 ms 220 ms 240 ms 260 ms 280 ms 300 ms 320 ms k<l
Name X Headers Payload Preview Response Initiator Timing Cookies
{> authenti dexType=servi h dk dJourney 1
- "tokenId": "IbefHzT9B11rZZxHImdSsDV7x0U.*AAITSQACMDIAAINLABxmQ2RhUXRydndEWnRabFpFaVZnOHZMMjdRZ
- "successUrl": "/enduser/?realm=/alpha",
- "realm": "/alpha"
-
1requests 212 B transferred 183 B resources {} Line1, Column1

Figure 4. Screenshot of empty login form & network request showing success data

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

You may ask, "How did the user’s input values get added to the step object?" Let's take a look at the component for rendering
the username input. Open up the Text component: components/journey/text.js . Notice how special methods are being used
on the callback object. These are provided as convenience methods by the SDK for getting and setting data.

reactjs-todo/client/components/journey/text.js

@@ collapsed @@

export default function Text({ callback, inputName }) {
const [state] = useContext(AppContext);
const existingValue = callback.getInputValue();

const textInputLabel = callback.getPrompt();
function setValue(event) {
callback.setInputValue(event.target.value);

}

return (
<div className={ cstm_form-floating form-floating mb-3"}>
<input
className={ cstm_form-control form-control ${validationClass} bg-transparent ${state.theme.textClass} $
{state.theme.borderClass} }
defaultValue={existingValue}
id={inputName}
name={inputName}
onChange={setValue}
placeholder={textInputLabel}
/>
<label htmlFor={inputName}>{textInputlLabel}</label>
</div>
)i
}

The two important items to focus on are the callback.getInputValue() and the callback.setInputValue() . The
getInputValue retrieves any existing value that may be provided by ForgeRock, and the setInputValue sets the user's inputon
the callback while they are typing (i.e. onChange). Since the callback is passed from the Form to the components by
"reference" (not by "value"), any mutation of the callback object within the Text (or Password)componentis also contained
within the step objectin Form.

@ Note

You may think, "That's not very idiomatic React! Shared, mutable state is bad." And, yes, you are correct, but we are
taking advantage of this to keep everything simple (and this guide from being too long), so | hope you can excuse the
pattern.

Each callback type has its own collection of methods for getting and setting data in addition to a base set of generic callback
methods. These methods are added to the callback prototype by the SDK automatically. For more information about these
callback methods, see our APl documentation(Z, or the source code in GitHub Z, for more details.

Now that the form is rendering and submitting, add conditions to the Form component for handling the success and error
response from ForgeRock. This condition handles the success result of the authentication journey.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks

Ping SDKs Ping SDK for Auth Journey tutorials

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

if (!step) {
return <Loading message='Checking your session ...' />;
+ } else if (step.type === 'LoginSuccess') {

+ return <Alert message="Success! You're logged in." type='success' />;
} else if (step.callbacks?.length) {

@@ collapsed @@

Once you handle the success and error condition, return to the browser and remove all cookies created from any previous logins
[Z. Refresh the page and login with your test user created in the Setup section above. You should see a "Success!" alert message.
Congratulations, you are now able to authenticate users!

< Home

a Success! You're logged in.

Figure 5. Screenshot of login page with success alert

Step 5. Start an OAuth 2.0 flow

At this point, the user is authenticated. The session has been created and a session cookie has been written to the browser. This
is "session-based authentication", and is viable when your system (apps and services) can rely on cookies as the access artifact.

Copyright © 2025 Ping Identity Corporation

https://developer.chrome.com/docs/devtools/storage/cookies/
https://developer.chrome.com/docs/devtools/storage/cookies/
https://developer.chrome.com/docs/devtools/storage/cookies/

Ping SDK for Auth Journey tutorials Ping SDKs

However, there are increasing limitations with the use of cookies U.In response to this, and other reasons, it's common to add a
step to your authentication process; the "OAuth" or "OIDC flow".

The goal of this flow is to attain a separate set of tokens, replacing the need for cookies as the shared access artifact. The two
common tokens are the Access Token and the ID Token. We will focus on the access token in this guide. The specific flow that the
SDK uses to acquire these tokens is called the Authorization Code Flow with PKCE.

To start, import the TokenManager object from the Ping SDK into the same form. js file.

reactjs-todo/client/components/journey/form.js

- import { FRAuth } from '@forgerock/javascript-sdk';
+ import { FRAuth, TokenManager } from '@forgerock/javascript-sdk';

@@ collapsed @@

Only an authenticated user that has a valid session can successfully request OAuth/OIDC tokens. Make sure we make this token
request after we geta 'LoginSuccess' back from the authentication journey. This is an asynchronous call to the server. There
are multiple ways to handle this, but we'll use the useEffect and useState hooks.

Add a useState to the top of the function body to create a simple boolean flag of the user’s authentication state.

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

export default function Form() {
const [step, setStep] = useState(null);
+ const [isAuthenticated, setAuthentication] = useState(false);

@@ collapsed @@

Now, add a new useEffect hook to allow us to work with another asynchronous request. Unlike our first useEffect, this one
will be dependent on the state of isAuthenticated. To do this, add isAuthenticated to the array passed in as the second
argument. This instructs React to run the useEffect function when the value of isAuthenticated is changed.

Copyright © 2025 Ping Identity Corporation

https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/

Ping SDKs Ping SDK for Auth Journey tutorials

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

useEffect(() => {
async function getStep() {
try {
const initialStep = await FRAuth.start();
setStep(initialStep);
} catch (err) {
console.error(Error: request for initial step; ${err}’);
}
}
getStep();
Fo [M1)5

+ useEffect(() => {

+ async function oauthFlow() {

+ try {

+ const tokens = await TokenManager.getTokens();
+ console.log(tokens);

+ } catch (err) {

+ console.error(Error: token request; ${err}’);
+ }

+)

+ if (isAuthenticated) {

+ oauthFlow();

+)

+

}, [isAuthenticated]);

@@ collapsed @@

Finally, we need to conditionally set this authentication flag when we have a success response from our authentication journey. In
your form element’s onSubmit handler, add a simple conditional and set the flag to true.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

<form
className="cstm_form"
onSubmit={(event) => {
event.preventDefault();
async function getStep() {
try {
const nextStep = await FRAuth.next(step);
+ if (nextStep.type === 'LoginSuccess') {
+ setAuthentication(true);
+ }
console.log(nextStep);
setStep(nextStep) ;
} catch (err) {
console.error(Error: form submission; ${err}’);
}
}
getStep();
I3

@@ collapsed @@

Once the changes are made, return to your browser and remove all cookies created from any previous logins. Refresh the page
and verify the login form is rendered. If the success message continues to display, make sure "third-party cookies" are also
removed.

Login with your test user. You should get a success message like you did before, but now check your browser’s console log. You
should see an additional entry of an object that contains your idToken and accessToken . Since the SDK handles storing these
tokens for you, which are in localStorage, you have completed a full login and OAuth/OIDC flow.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

< Home

& Success! You're logged in.

L_|b ﬂ Elements Console Sources Network Application Performance Memory » + »1 B 10 * CO,O cee X

] © topvy @ Filter Custom levels v B 10 2 hidden %%

react-dom.development.js:26244
Download the React DevTools for a better development experience: https://reactjs.org/link/react-devtools

» FRStep {payload: {..}, type: "Step", callbacks: Array(2)} form. js:30

» FRLoginSuccess {payload: {..}, type: "LoginSuccess"} form.js:74

form.js:39

{accessToken: "eyJ0eXAi0iJKV1QiLCIhbGci0iJIUzIINiJ9.eyJzdWIi0iJiZ..FrIn@.X4X0jJS_Z0-1kmdwWMZbhOZIIKwcJYvaI5SHXNF_S-KI", idToke

»n: "eyJOeXAi0iJKV1QiLCIraWQiOiIzaWtoeWpYdm1LZORySFNYbU..JnPGcvZu7WKOxmsxY10jR3EsSBwlZTPmam5xCLsjIHIBsfehQ", refreshToken: unde
fined}

Figure 1. Screenshot of login page with success alert and console log
Request user information

Now that the user is authenticated and an access token is attained, you can now make your first authenticated request! The SDK
provides a convenience method for calling the /userinfo endpoint, a standard OAuth endpoint for requesting details about the
current user. The data returned from this endpoint correlates with the "scopes" set within the SDK configuration. The scopes
profile and email will allow the inclusion of user’s first and last name as well as their email address.

Within the form.js file, add the UserManager object to our Ping SDK import statement.

reactjs-todo/client/components/journey/form.js

- import { FRAuth, TokenManager } from '@forgerock/javascript-sdk';
+ import { FRAuth, TokenManager, UserManager } from '@forgerock/javascript-sdk';

@@ collapsed @@

The getCurrentUser() method on this new object will request the user’s data and validate the existing access token. After the
TokenManager .getTokens() method call, within the oauthFlow() function from above, add this new method.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

try {
const tokens = await TokenManager.getTokens();
console.log(tokens);
const user = await UserManager.getCurrentUser();
console.log(user);

@@ collapsed @@

If the access token is valid, the user information will be logged to the console, just after the tokens. Before we move on from the
form.js file, set a small portion of this state to the global context for application-wide state access. Add the remaining imports
for setting the state and redirecting back to the home page: useContext, AppContext and useNavigate.

reactjs-todo/client/components/journey/form.js

- import React, { useEffect, useState } from 'react’;
+ import React, { useContext, useEffect, useState } from 'react';
+ import { useNavigate } from 'react-router-dom';

+ import { AppContext } from '../../global-state';

@@ collapsed @@

At the top of the Form function body, use the useContext() method to get the app’s global state and methods . Call the
useNavigate() method to get the navigation object.

reactjs-todo/client/components/journey/form.js

export default function Form() {
const [step, setStep] = useState(null);
const [isAuthenticated, setAuthentication] = useState(false);
const [_, methods] = useContext(AppContext);
const navigate = useNavigate();

@@ collapsed @@

After the UserManager.getCurrentUser() call, set the new user information to the global state and redirect to the home page.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

reactjs-todo/client/components/journey/form.js

@@ collapsed @@

const user = await UserManager.getCurrentUser();
console.log(user);

+ methods.setUser(user.name);
+ methods.setEmail(user.email);
+ methods.setAuthentication(true);

+ navigate('/');

@@ collapsed @@

Revisit the browser, clear out all cookies, storage and cache, and log in with you test user. If you landed on the home page and
the logs in the console show tokens and user data, you have successfully used the access token for retrieving use data. Notice
that the home page looks a bit different with an added success alert and message with the user’s full name. This is due to the app

"reacting" to the global state that we set just before the redirection.

(" + @ M Home 7 Todos e

a Welcome back, SDK Demo-User! Manage your todos here.

Protect with ForgeRock;
Develop with React js

O Debugger N Network {3} Style Editor () Performance 4k Memory [Storage r Accessibility > 0] s X

® 3 Inspector (3] Console
Errors Warnings Logs Info Debug CSS XHR Requests #

@ Y Filter Output
xpYONsaWVudCIsImFjciI6IjAiLCIuYmYi0jE3NDMwODQzNTQsImOwcyI6ImFyVO1YTO1aNX1ScHhtaHBfQXZHakxoeVF5byIsImdyYW50X3R5cGUi01iJhdXRob3IpemF@aW
9UX2NVZGUiLCIzY29wZSI6WyIhZGRYZXNzIiwib3B1lbmlkIiwicHIvZmlsZSIsImVtYWlsI1@sImF1dGhfdGltZSI6MTcOMZzA4NDMIMywicmVhbGOi0iIvYWxwaGEiLCIleH
Ai0jE3NDM20DKXNTQsImlhdCI6MTcOMzA4NDMINCwiZXhwaXJ1c19pbiI6NjAOODAWLCIqdGki0iI1WmpkWUN3WmLHd L1BaSEMOVNhsQLFDbkM3TWMifQ.qQsPByrond4Kk97

kcAVMYNsD-jGISVvyUWFtM7tSsZU", tokenExpiry: 1743087953140 }

4 GET https://openam-docs-regular.forgeblocks.com/am/oauth2/alpha/userinfo

> OPTIONS https://openam-docs-regular.forgeblocks.com/am/oauth2/alpha/userinfo
» Object { name: "SDK Demo-User", family_name: "Demo-User", given_name: "SDK", email: "sdkDemo.user@example.com", sub:
"4bd34d01-43b0-40c3-bdc1-932b9b487d58", subname: "4bd34d@1-43b0-40c3-bdc1-932b9b487d58" }

[HTTP/3 192ms]
[HTTP/3 149ms]
form.js:52:16

Figure 2. Screenshot of home page with successful login and user info

Step 6. Manage access tokens

To ensure your app provides a good user experience, it's important to have a recognizable, authenticated experience, even if the
user refreshes the page or closes and reopens the browser tab. This makes it clear to the user that they are logged in.

Currently, if you refresh the page, the authenticated experience is lost. Let's fix that!

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Because the SDK stores the tokens in localStorage, you can use their presence as a hint for their authentication status without
requiring a network request. This allows for quickly rendering the appropriate navigational elements and content to the screen.

To do this, add the TokenStorage.get method to the index.js file as it will provide what we need to rehydrate the user's
authentication status. First, import TokenStorage into the file. Use the TokenStorage.get() method within the
initAndHydrate function. Second, add these values to the useGlobalStateMgmt function call.

reactjs-todo/client/index.js

- import { Config } from '@forgerock/javascript-sdk';
+ import { Config, TokenStorage } from '@forgerock/javascript-sdk';

(async function initAndHydrate() {
let isAuthenticated;
try {
isAuthenticated = !!(await TokenStorage.get());
} catch (err) {
console.error(Error: token retrieval for hydration; S${err}’);

}

+ + + + +

@@ collapsed @@

function Init() {
const stateMgmt = useGlobalStateMgmt ({
email,
+ isAuthenticated,
prefersDarkTheme,
username,

3

@@ collapsed @@

With a global state APl available throughout the app, different components can pull this state in and use it to conditionally render
one set of Ul elements versus another. Navigation elements and the displaying of profile data are good examples of such
conditional rendering. Examples of this can be found by reviewing components/layout/header.js and views/home.js .

Validating the access token

The presence of the access token can be a good hint for authentication, but it doesn't mean the token is actually valid. Tokens can
expire or be revoked on the server-side.

You can ensure the token is still valid with the use of getCurrentUser() method from earlier. This is optional, depending on your
product requirements. If needed, you can protect routes with a token validation check before rendering portions of your
application. This can prevent a potentially jarring experience of partial rendering Ul that may be ejected due to an invalid token.

To validate a token for protecting a route, open the router.js file, import the ProtectedRoute module and replace the regular
<Route path="todos"> with the new ProtectedRoute wrapper.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

reactjs-todo/client/router.js

@@ collapsed @@

import Register from './views/register';
+ import { ProtectedRoute } from './utilities/route';
import Todos from './views/todos';

@@ collapsed @@

<Route
path="todos"
element={

- <>

+ <ProtectedRoute>

<Header />
<Todos />
<Footer />
- </>
+ </ProtectedRoute>
}
/>

@@ collapsed @@

Let's take a look at what this wrapper does. Open utilities/route.js file and focus just on the validateAccessToken function
within the useEffect function. Currently, it's just checking for the existence of the tokens with TokenStorage.get, which may be
fine for some situations. We can optionally call the UserManager.getCurrentUser() method to ensure the stored tokens are still

valid.

To do this, import UserManager into the file, and then replace TokenStorage.get with UserManager.getCurrentUser .

reactjs-todo/client/utilities/route.js

import React, { useContext, useEffect, useState } from 'react’;
import { Route, Redirect } from 'react-router-dom';

- import { TokenStorage } from '@forgerock/javascript-sdk';

+ import { UserManager } from '@forgerock/javascript-sdk';

@@ collapsed @@

useEffect(() => {
async function validateAccessToken() {
if (auth) {

try {

- await TokenStorage.get();

+ await UserManager.getCurrentUser();

setValid('valid');

} catch (err) {

@@ collapsed @@

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

In the code above, we are reusing the getCurrentUser () method to validate the token. If it succeeds, we can be sure our token
is valid and call setvalid to 'valid' . Ifit fails, we know it is not valid and call setValid to 'invalid' .We set that outcome
with our setValid() state method and the routing will know exactly where to redirect the user.

Revisit the browser and refresh the page. Navigate to the todos page. You will notice a quick spinner and text communicating that
the app is "verifying access". Once the server responds, the Todos page renders. As you can see, the consequence of this is the
protected route now has to wait for the server to respond, but the user’s access is being verified against the server.

At this point, that verification fails, as we aren’t including the access token in the request.

Request protected resources with an access token

Once the Todos page renders, notice how the todo collection has a persistent spinner to indicate the process of requesting todos.
This is due to the fetch request not having an authorization header, so the request does not succeed.

(" + @ A Home ¢ Todos e

Your Todos

Create and manage your todos.

What needs doing? Create

o Collecting your todos ...

The React name and logomark are properties of Facebook, and their use herein is for
learning and illustrative purposes only.

Figure 1. Screenshot of to-dos page with persistent spinner

To make resource requests to a protected endpoint use the HttpClient module. This module provides a simple wrapper around
the native fetch method of the browser.

When you call the HttpClient.request() method the Ping SDK retrieves the user's access token and attaches it to the request
in an authorization header as a Bearer token.

When the APl backend server receives the request with the authorization header it calls your PingOne Advanced Identity Cloud
tenant or PingAM server to validate the enclosed access token, and grants access to the route if successful.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

To attach the user’s access token to outgoing requests, open utilities/request.js andimportthe HttpClient from the Ping
SDK. Then, replace the native fetch method with the HttpClient.request() method:

reactjs-todo/client/utilities/request. js

+ import { HttpClient } from '@forgerock/javascript-sdk';
import { API_URL, DEBUGGER } from '../constants';

export default async function apiRequest(resource, method, data) {
let json;
try {
= const response = await fetch(S$S{API_URL}/S${resource}", {

+ const response = await HttpClient.request({
+ url: “S{API_URL}/${resource}’,
+ init: {

body: data && JSON.stringify(data),

headers: {

'Content-Type': 'application/json',

Vo

method: method,
+ B

b9

@@ collapsed @@

The init objectin the above maps directly to the init options object seen in the official Request documentation(Zin the
Mozilla Web Docs.

The interface of the response from the request also maps directly to the official Response object seen in the Mozilla Web Doc.
At this point, the user can log in, request access tokens, and access the page of the protected resources (the "todos").

Now, revisit the browser and clear out all cookies, storage and cache. Keeping the developer tools open and on the network tab,
log in with you test user. Once you have been redirected to the home page, do the following:

1. Click on the "Todos" item in the nav; a lot of network activity will be listed
2. Find the network call to the /todos endpoint (http://localhost:9443/todos)
3. Click on that network request and view the request headers

4. Notice the authorization header with the bearer token; that's the HttpClient in action

Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/API/Request/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request/Request
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Response

Ping SDK for Auth Journey tutorials Ping SDKs

(/' + @ A Home . Todos e

Your Todos

Create and manage your todos.

What needs doing?

No todos yet. Create one above!

R ﬂ Elements Console Sources Network X Application Performance Memory » + 512 £ go e X
® O W Q ([Preservelog Disable cache No throttling vE o+ ¥ £
Filter Hide data URLs All Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other

() Has blocked cookies [] Blocked Requests

Name X Headers Preview Response Initiator Timing

__| base-component.js v Request Headers View source

L] dropdown.js Accept: *x/*

L collaps-e.js Accept-Encoding: gzip, deflate, br

Ll modal.js Accept-Language: en-US,en;q=0.9

L me"fayaGsueMinBA'Uszo" authorization: Bearer eyJ0eXAi0iJKV1QiLCIhbGci0iJTUZIINII9. eylzdWIi0iJiZTUyOTFLYy1nYzFjLTQyYmItYWU®

L userinfo MilmMTIIMjQyMjcwNTALLCIjdHMi0iIPQUVUSDIFR1IBT IRFUGVUIiwiYXV@aF9sZXZ1bCIEMCwiYXVkaXRUcmFja2luzo kI

B iccce il j01YTNiZj kyODgt0OGY3NSOOMTI3LThhN] YNDImZ] k40D UiNGYSLTQ40TAWT iwic3VibmFtZSI6ImI INTISMWV LWZ]MAMEND

L userinfo JiYi1lhZTQyLWYxMjUyNDIyNzAIMCIsImlzcyI6Imh@dHBz0i8vZm9yZ2Vyb2NrLmNyYnJsLmlv0jQ@My9hbS9vYXV@aDIilCl

d ::“ 0b2t1bk5hbWU10iJhY2N1c3NfdGIrZW4iLCI0b2t 1b190eXB1IjoiQmVhemVyIiwiYXVOaEdyYW50SWQi0iIVd1VkVat5wVzQ
os

S@szSEI1VkpSTWhGN3BHVWsudF12d@1VM1BrTkFGZW50THAWMGoIMUIMM2dJIiwiYXVkIjoiV2ViT@F1dGhDbG11lbnQilCIuY
mYi0jE2MjkINzIzMTEsImdyYW50X3R5cGUi0iJhdXRob3IpemF@aW9uX2NvZGUilCIzY29wZSI6WyJvcGVuaWQilCIwem9maw
x1IiwiZWlhaWwiXSwiYXV@aF90aW11lIioxNiISNTcyMzEwLCIvZWFsbSI6Ii9hbHBoYSISImV4cCIBMTYVOTU3NTkxMSwiaWF

L mAmBEVARa12&MMi7ARA LIN w2

22 requests 1.9 MB transferred 2.0

Figure 2. Screenshot of successful request for to-dos with Network panel open

Step 7. Handle logout requests

Of course, you can't have a protected app without providing the ability to log out. Luckily, this is a fairly easy task.
Open up the views/logout.js file and import the following:

1. FRUser from the Ping SDK

2. useEffect and useContext from React

3. useNavigate from React Router

4. AppContext from the global state module.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

reactjs-todo/client/views/logout. js

+ import { FRUser } from '@forgerock/javascript-sdk';

- import React from 'react’;

+ import React, { useContext, useEffect } from 'react’;
+ import { useNavigate } from 'react-router-dom';

+ import { AppContext } from '../global-state';

@@ collapsed @@

Since logging out requires a network request, we need to wrap itin a useEffect and pass in a callback function with the
following functionality:

reactjs-todo/client/views/logout.js

@@ collapsed @@

export default function Logout() {
const [_, { setAuthentication, setEmail, setUser }] = useContext(AppContext);
const navigate = useNavigate();

+ +

useEffect(() => {
async function logout() {
try {
await FRUser.logout();

+ + + +

setAuthentication(false);
+ setEmail('");
setUser('");

navigate('/');
} catch (err) {
console.error(Error: logout; ${err}’);

}
logout();

o 15

+ + + + + + o+
~

return <Loading classes="pt-5" message="You're being logged out ..." />;

}

Since we only want to call this method once, after the component mounts, we will pass in an empty array as a second argument
for useEffect() . After FRUser.logout() completes, we just empty or falsify the global state to clean up and redirect back to the
home page.

You have now completed the coding part of this tutorial, and can proceed to the final step, Test the app.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Step 8. Test the app

Once all the previous steps are complete you can run the app end-to-end to see the flow.
1. In your browser, empty the local storage and cache.
2. Ensure that the client and API apps are running.

You can run both apps with a single command:
npm run start:reactjs-todo

3. In your browser, visit the home page of the client app at https://localhost:8443.

(/' + @ Sign In

Protect with ForgeRock;
Develop with React.js

Learn how to develop ForgeRock
protected, web apps with the React.js
library and our JavaScript SDK.

About this project

The purpose of this sample web app is to demonstrate how the
ForgeRock JavaScript SDK is implemented within a fully-functional
application using a popular framework. The source code for this
project can be found on Github and run locally for experimentation.
For more on our SDKs, you can find our official SDK documentation
here.

Getting started

To use this app, follow the tutorial found on our blog.

The React name and logomark are properties of Facebook, and their use herein is for
learning and illustrative purposes only.

Figure 1. Screenshot of the home page

@ Note

You may need to dismiss warning from your browser about the self-signed certificate the client app uses.

4. Click Sign In, and enter the credentials of the demo user you created earlier.

The app displays a welcome message, and outputs the data retrieved from the /userinfo OAuth 2.0 endpoint.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

(" + @ A Home Z Todos e

9 Welcome back, SDK Demo-User! Manage your todos here.

Protect with ForgeRock;
Develop with React.js

® 3 Inspector Console [Debugger N Network {3} Style Editor () Performance 4 Memory [Storage

T Accessibility > g] e X

@ W Filter Output Errors Warnings Logs Info Debug CSS XHR Requests 41}
XpYONsaWVudCIsImFjciI6IjAiLCIuYmYi0jE3NDMwODQzNTQsImOwcyI6ImFyVO1YTO1aNX1ScHhtaHBfQXZHakxoeVF5byIsImdyYW50X3R5cGUi0iJhdXRob3IpemFoaW
9uX2NvZGUiLCIZzY29wZSI6WyIhZGRyZXNzIiwib3B1bmlkIiwicHIVZmlsZSIsImVtYWlsI1@sImF1dGhfdGltZSI6MTcOMzA4NDMIMywicmVhbGOi0iIvYWxwaGEiLCIleH

Ai0jE3NDM20DKXNTQsImlhdCI6MTcOMzA4NDMINCwiZXhwaX)1c19pbiI6NjABODAWLCIqdGki0iI1WmpkWUN3WmIHA 1BaSEMOVNhsQLFDbkM3TWMifQ.qQsPBy rond4Kk97
kCAVmYNsD-jGI5VvyUWFtM7tSsZU", tokenExpiry: 1743087953140 }

> GET https://openam-docs-regular.forgeblocks.com/am/oauth2/alpha/userinfo [HTTP/3 EI) 192ms]

4 OPTIONS https: nam- -regular. forgeblocks.com/am th2/alph rinf HTTP/3 B 149m

» Object { name: "SDK Demo-User", family_name: "Demo-User", given_name: "SDK", email: "sdkDemo.user@example.com", sub: form.js:52:16
"4bd34d01-43b0-40c3-bdc1-932b9b487d58", subname: "4bd34d@1-43b0-40c3-bdc1-932b9b487d58" }

Figure 2. Screenshot of a user signed in to the home page, with userinfo data in the console.

5. Click Todos.

The app opens the protected /todos route and inserts the access token as a bearer token in the authorization header. If
the access token is valid the app displays an empty list of todo items.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

(/’ + @ A Home . Todos e

Your Todos

Create and manage your todos.

What needs doing?

No todos yet. Create one above!

R ﬂ Elements Console Sources Network X Application Performance Memory » + 512 £ go e X
® O W Q ([Preservelog Disable cache No throttling vE o+ ¥ £
Filter Hide data URLs All Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other

() Has blocked cookies [] Blocked Requests

Name X Headers Preview Response Initiator Timing

|| base-component.js v Request Headers View source

| dropdown js Accept: */*

L collaps-e.js Accept-Encoding: gzip, deflate, br

Ll modal.js Accept-Language: en-US,en;q=0.9

L me"fayaesueMinBA'Uszo" authorization: Bearer eyJ0eXAi0iJKV1QiLCIhbGci0iJTUZIINII9. eylzdWIi0iJiZTUyOTFLYy1nYzFjLTQyYmItYWU®

L userinfo MilmMTIIMjQyMj cwNTAiLCIjdHMi01iIPQVVUSDIFR1IBT IRFUOVUIiwiYXV@aF9sZXZ1bCI6MCwiYXVkaXRUcMFja2luZo kI

B iccce il j01YTNiZj kyODgt0OGY3NSOOMTI3LThhN] YNDImZ] k40D UiNGYSLTQ40TAWT iwic3VibmFtZSI6ImI INTISMWV LWZ]MAMEND

L userinfo JiYi1lhZTQyLWYxMjUyNDIyNzAIMCIsImlzcyI6Imh@dHBz0i8vZm9yZ2Vyb2NrLmNyYnJsLmlv0jQ@My9hbS9vYXV@aDIilCl

d :::“ 0b2t 1bkShbWUi01iJhY2N1c3NfdGIrzZw4ilCI0b2t 1b190eXB1IjoiQmVhemVyIiwiYXVOaEdyYW50SWQi0iIVd1VkVat5wWVzQ
os

S@szSEI1VkpSTWhGN3BHVWsudF12d@1VM1BrTkFGZW50THAWMGoIMUIMM2dJIiwiYXVkIjoiV2ViT@F1dGhDbG11lbnQilCIuY
mYi0jE2MjkINzIzMTEsImdyYW50X3R5cGUi0iJhdXRob3IpemF@aW9uX2NvZGUilCIzY29wZSI6WyJvcGVuaWQilCIwem9maw
x1IiwiZWlhaWwiXSwiYXV@aF90aW11lIioxNiISNTcyMzEwLCIvZWFsbSI6Ii9hbHBoYSISImV4cCIBMTYVOTU3NTkxMSwiaWF

L mAmBEVARa12&MMi7ARA LIN w2

22 requests 1.9 MB transferred 2.0

Figure 3. Screenshot of the todo page and console output showing the bearer token.

6. Click the user icon, and then click Sign out.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

You're being logged out ...

Figure 4. Screenshot of logout page with spinner

The app revokes the access token and removes the session cookies from storage, before returning the user to the home
page.

Congratulations, you just built a protected app with ReactJS.

Authentication journey tutorial for an iOS React Native app

This tutorial covers the basics of developing a protected mobile app with React Native. You will develop the iOS bridge code
along with a minimal React Ul to authenticate a user.

Ping does not provide a React Native version of the Ping SDK. Instead we present this how-to as a guide to basic development of
"bridge code" for connecting the Ping SDK for iOS to the React Native layer.

This guide covers how to implement the following application features using the Ping SDK for iOS and Ping SDK for JavaScript:
1. Authentication through a simple journey/tree.
2. Requesting OAuth/OIDC tokens.
3. Requesting user information.

4. Logging a user out.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

° iPhone 13 Pro

Your Todos

Create and manage your todos

What needs doing? Create

O Protect the todo app

@ Helo World!

Figure 1. The to-do sample app
Before you begin

Before you begin this tutorial ensure you have set up your PingOne Advanced Identity Cloud tenant or PingAM server with
the required configuration.

For example, you will need to configure an OAuth 2.0 client application, as well as an authentication journey for the app to
navigate.

Complete prerequisites »

Step 1. Download the samples

To start this tutorial, you need to download the SDK sample apps repo, which contains the projects you will use.

Start step 1 »

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Step 2. Configure the projects

In this step you install the dependencies the projects require, and configure the connection properties.

Start step 2 »

Step 3. Configure connection properties

In this step, you configure the samples to connect to the authentication tree/journey and OAuth 2.0 client you created
when setting up your server configuration.

Start step 3 »

Step 4. Build and run the project

Build and run the apps, and learn about Hot Module Reloading.

Start step 4 »

Step 5. Implement the iOS bridge code

In this step you implement the bridge code and add methods for starting the Ping SDK, logging a user in, stepping through
a journey, and finally logging a user out.

Start step 5»

Step 6. Implement the Ul in React Native

In this final step you implement the user interface for logging in, and code for submitting the forms. You will also handle
returning to the list view, requesting user info, and handling logout triggers.

This is also the moment you can try out the fully functioning app.

Start step 6 »

Before you begin

To successfully complete this tutorial refer to the prerequisites and compatibility requirements in this section.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

The tutorial also requires a configured server.

Compatibility
ioS
This sample app is compatible with iOS 12 and later.

Prerequisites

Xcode

You can download the latest version for free from https://developer.apple.com/xcode/ .
Node.js

This tutorial requires Node.js 14 or higher and npm 7 or higher

You can check your version with node -v and npm -v.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne .
Advanced Identity Cloud PingAM

PingAM
PingOne Advanced Identity Cloud

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. In the left panel, click Identities > Manage.
3. Click + New Alpha realm - User.
4. Enter the following details:
° Username = demo
° First Name = Demo

o Last Name = User

Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Ping SDKs Ping SDK for Auth Journey tutorials

o Email Address = demo.user@example.com
o Password = Ch4ng3it!

5. Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes

rather than just success or failure. For details, see the Authentication nodes configuration reference(J in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:
1. In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.
2. Enter a name, such as sdkUsernamePasswordJourney and click Save.
The authentication journey designer appears.

3. Drag the following nodes into the designer area:
o Page Node
° Platform Username
° Platform Password

o Data Store Decision

4. Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

< Journeys sdkUsernamePasswordjourney ®

+ Add Nodes Q Q

rm
L

£ u]

Page Node

Data Store Decision

» Platform Userna...
True

False
Platform Passwo... h

Figure 1. Example username and password authentication journey

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDK for Auth Journey tutorials Ping SDKs

6. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. In the left panel, click Applications.
3. Click + Custom Application.
4. Select OIDC - Openld Connect as the sign-in method, and then click Next.
5. Select Native / SPA as the application type, and then click Next.
6.In Name, enter a name for the application, such as Public SDK Client.

7.In Owners, select a user that is responsible for maintaining the application, and then click Next.

Q Tip

When trying out the SDKs, you could select the demo user you created previously.

8.In Client ID, enter sdkPublicClient, and then click Create Application.
PingOne Advanced Identity Cloud creates the application and displays the details screen.
9. On the Sign On tab:
1. In Sign-In URLs, enter the following values:
https://com.example.reactnative.todo/callback

@ Important

Also add any other domains where you host SDK applications.

2. In Grant Types, enter the following values:
Authorization Code
Refresh Token

3. In Scopes, enter the following values:
openid profile email address

10. Click Show advanced settings, and on the Authentication tab:
1. In Token Endpoint Authentication Method, select none .
2.In Client Type, select Public.

3. Enable the Implied Consent property.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

11. Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

1. In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.
2. In the left panel, click ¥ Services.

3. In the list of services, click OAuth2 Provider.

4. 0n the Core tab, ensure Issue Refresh Tokens is enabled.

5. 0n the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

PingAM

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingAM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Identities, and then click + Add Identity.
3. Enter the following details:
° User ID = demo
o Password = Ch4ng3it!
o Email Address = demo.user@example.com
4. Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration referenceZ in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKSs, follow these steps:

1. Under Realm Overview, click Authentication Trees, then click Create Tree.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDK for Auth Journey tutorials Ping SDKs

2. Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.
The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.
3. Drag the following nodes from the Components panel on the left side into the designer area:
o Page Node
° Username Collector
° Password Collector
o Data Store Decision

4. Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

Start @] Page Node -) Data Store Decision
True @ - Success
Username Collector False @

Password Collector
© Failure

Figure 2. Example username and password authentication tree

6. Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

Q Tip

You can configure the node properties by selecting a node and altering properties in the right-hand panel.

One of the samples uses this specific value to determine the custom Ul to display.

7. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Applications > OAuth 2.0 > Clients, and then click + Add Client.
3.In Client ID, enter sdkPublicClient.
4. Leave Client secret empty.

5. In Redirection URIs, enter the following values:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

https://com.example.reactnative.todo/callback

@ Important

Also add any other domains where you will be hosting SDK applications.

6. In Scopes, enter the following values:
openid profile email address
7. Click Create.
PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.
8. On the Core tab:
1. In Client type, select Public.
2. Disable Allow wildcard ports in redirect URIs.
3. Click Save Changes.
9. On the Advanced tab:
1. In Grant Types, enter the following values:

Authorization Code
Refresh Token

2. In Token Endpoint Authentication Method, select None .
3. Enable the Implied consent property.
10. Click Save Changes.
The provider specifies the supported OAuth 2.0 configuration options for a realm.
To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.
4. On the Core tab, ensure Issue Refresh Tokens is enabled.
5. On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials

Ping SDKs

Step 1. Download the samples

To start this tutorial, you need to download the React Native sample app repo, which contains the projects you will use.

1. In a web browser, navigate to the React Native Sample App repositoryZ.
2. Download the source code using one of the following methods:
Download a ZIP file
1. Click Code, and then click Download ZIP.
2. Extract the contents of the downloaded ZIP file to a suitable location.
Use a Git-compatible tool to clone the repo locally
1. Click Code, and then copy the HTTPS URL.
2. Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/forgerock-react-native-sample.git

The result of these steps is a local folder named forgerock-react-native-sample.

Step 2. Configure the projects

In this step you install the dependencies the projects require.
This React Native app requires two types of dependencies:

1. JavaScript and its Node package modules

2. Swift dependencies, using CocoaPods.

First, let’s install the JavaScript dependencies. Within the project directory:

forgerock-react-native-sample/reactnative-todo/ (file and directory references are from this location), use the following

command:

npm install

When the command finishes, cd into the ios directory and install the needed CocoaPods dependencies.

cd ios
pod install

When done, you can return to the project directory.

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/forgerock-react-native-sample
https://github.com/ForgeRock/forgerock-react-native-sample

Ping SDKs Ping SDK for Auth Journey tutorials

cd ..

Step 3. Configure connection properties

In this step, you configure the sample app to connect to the authentication tree/journey you created when setting up your server
configuration.

Using the server settings from earlier, create a .env.js file within the project, using the .env.js.template as a source. This can
be found the root folder of the project.

Add your relevant values to configure all the important server settings in the project. Not all variables will need values at this time.

You can list the file in the Terminal by doing 1s -a, and edit it using a text editor like nano or vi.

Example .env. js file

/**

* Avoid trailing slashes in the URL string values below

Y

const AM_URL = 'https://openam-forgerock-sdks.forgeblocks.com/am'; // Required; enter _your_ PingAM URL
const API_PORT = 8080; // Required; default port is 8080

const API_BASE_URL = 'http://localhost'; // Required; default domain is http://localhostEﬂ
const DEBUGGER_OFF = true;

const REALM_PATH = 'alpha'; // Required

const REST_OAUTH_CLIENT = 'sdkPublicClient';

const REST_OAUTH_SECRET "

Descriptions of relevant values:
AM_URL

The URL that references PingAM itself (for PingOne Advanced Identity Cloud, the URL is likely https://<tenant-
name>.forgeblocks.com/am).

API_PORT and API_BASE_URL

These just need to be "truthy" (not 0 or an empty string) right now to avoid errors, and we will use them in a future part of
this series.

DEBUGGER_OFF

When true, this disables the debugger statements in the JavaScript layer. These debugger statements are for learning
the integration points at runtime in your browser. When the browser’s developer tools are open, the app pauses at each
integration point. Code comments above each integration point explain its use.

REALM_PATH

The realm of your server (likely root, alpha, or bravo).

Copyright © 2025 Ping Identity Corporation

http://localhost
http://localhost

Ping SDK for Auth Journey tutorials Ping SDKs

REST_OAUTH_CLIENT and REST_OAUTH_SECRET

We will use these values in a future part of this series, so any string value will do.

Step 4. Build and run the project

Now that everything is set up, build and run the to-do app project.
1. Open your Finder application and find the following file ios/reactnativetodo.xcworkspace .
2. Double click this file to open and load the project within Xcode.
3. Once Xcode is ready, select iPhone 11 or higher as the target for the device simulator on which to run the app.
4. Now, click the build/play button to build and run this application in the target simulator.

With everything up and running, you will need to rebuild the project with Xcode when you modify the bridge code (Swift files). But,
when modifying the React Native code, it will use "hot module reloading" to automatically reflect the changes in the app without
having to manually rebuild the project.

Troubleshooting

1. Make sure 1libFRAuth.a is added to your Target's Frameworks, Libraries, and Embedded Content under the General
tab.

2. Make sure the Metro server is running; npx react-native start if you want to run it manually.
3. Bridge code has been altered, so be aware of APl name changes.

4. If you get the error, [!] CocoaPods could not find compatible versions for pod "FRAuth",run pod repo update
then pod install.

Xcode, iOS Simulator and Safari dev tools
We recommend the use of iPhone 11 or higher as the target for the iOS Simulator. When you first run the build command in

Xcode (clicking the "play" button), it takes a while for the app to build, the OS to load, and app to launch within the Simulator.

Once the app is launched, rebuilding it is much faster if the changes are not automatically "hot reloaded" when made in the React
layer.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

° iPhone 13 Pro

Protect with
ForgeRock;
Develop with React
Native

Learn how to develop
ForgeRock protected,
hybrid apps with the React
Native library and our
Native SDKs.

About this project

The purpose of this sample app is to
demonstrate how the ForgeRock SDKs can
be leveraged within a fully-functional React
Native application. Included in this sample
app is a sample bridging layer for connecting
the native ForgeRock modules (Android and
iOS) with the React Native layer along with a

fr O

Figure 1. To-do app home screen

@ Note

Only the home screen will render successfully at this moment. If you click on the Sign In button, it won't be fully
functional. This is intended as you will develop this functionality throughout this tutorial.

Once the app is built and running, you will have access to all the logs within Xcode’s output console. Both the native and

JavaScript logs display here. Because of this, there's quite a lot of output, so you may want to use it only when the Safari console
does not provide enough information for debugging purposes.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

2021-12-13 18:35:07.818675-0600 reactnativetodo[96372:4345510] [javascript] { accessInfo:
{ sessionToken: 'WVihuChjA8SDyTwYS8MpdmLfZopJQ.*AAJTSQACMDIAALINLABwrcFhSa2dlanNFTmIycWhS5NOt6Tz

scope: 'address openid profile email',

refreshToken:
'eyJOeXAi0iJKV1QiLCIhbGci0iJIUZIANiII9
.eyJzdWIiOiJiZTUYOTFlYyimYzFjLTQyYmItYWUOMilmMTIAM]QyMjcwNTALLCI]dHMi01iIPQVVUSDIFRIIBT
i0iJodHRwczovL2Zvemdlcm9jay5]icmIybCS5pbzoONDMVYWOVD2F1d6gyIiwidGo9rZWS0YW1lIjoicmVmemVzaH
HUmZoVkkvS2tVdjFVPSISIMF1ZCI6I1d1YKk9BAXRoQ2XpZWSOIiwiYWNYIjoiMCIsIm5iZiI6MTYZ0TQOMIEWN
3LCIyZWFsbSI6Ii9hbHBOYSISImV4CCISMTYOMDAON] kwNywiaWFOIjoxNjMENDQyMTASLCI1leHBpcmYzX21ul

tokenType: 'Bearer’',

value:
'eyJOeXAi0iJKV1QiLCIhbGci0iJIUZIANLII9
+eyJZdWIiOiJiZTUYOTFlYyimYzFjLTQyYmItYWUOMilmMTI1M]IQyMjcwNTALILCI]dHMi01iJPQVVUSDITRIIBT
10iJodHRwczovL2Zvemdlcm9jay5]cmIybCSpbzoONDMVYWOVD2F1d6gyIiwidGorZWE0YW11IjoiYWN] ZXNzX
3LCIncmFudF90eXBlIjoiYXVeaG9yaXphdGlvbl9jb2R1Iiwic2NvcGUiOlsiYWRkemVzcyIsIm9wZWSpZCIsI
DAEQ2QS5fYy1aZ3RCUHBGYO1uQ3hBESXFaSzc5NGRaMGMifQ. zctEceY4jNVYNO1xkWzPlc4dAT3eJhRObbkk9V(

expiresIn: 3599,

idToken:
'eyJOeXAi0iJKV1QiLCIraWQiOiIzaWtoeWpYdmlLZORySFNYbURBTHRqcDdyaW89IiwiYWxnIjoiULMyNTY1if(
.eyJhdF9oYXNoIjoid3FTcXhhbVIrbGdDblgzakgwdlRMUSISINNLIYiISImIINTISMWY]LWZjMWMENDIiYilh
AMCIsImlzcyI6ImhOdHBz0i8vZm9yZ2Vyb2NrLmNyYnJsLmlvOjQeMy9hbS9vYXVeaDIiLCIeb2t1bkShbWULiO:
wdyIsImFjciI6IjAiLCIvemcuZm9yZ2Vyb2NrLm9wZWSpZGNvbm51Y3Qub3BzIjoiVXdQMkZZeG5VRS16Z1M1Q
XNjM5SNDQINZA3LCIBb2t1b1R5cGUI0iIKVIRUD2t1biIsImlhdCISMTYZOTQOM]EwNywiZmFtawx5X25hbWUio:
WIZTOab6F60s5Z_bF3iNLh1CAjWVzZw2jh24e0k4-uK515AQ0M7Xr4VCrhNiieef232faheNgh9yUhbztLI0JID9
WhzCQBMsNHi9Q50-D4rt9-dqyFYMhxCuCXMPTNvq6GHGSq3LIVIXiZBAENCMOV7fcab32jQ’,

authenticatedTimestamp: 661134907.810003 },

message: 'Successfully logged in.',
type: 'LoginSuccess' }

Figure 2. Xcode log output

For additional tooling, click "Device" within the top menu, and then select "Shake". This triggers the React Native dev tools,
allowing you to reload the app, inspect the Ul, as well as other actions.

Due to a particular confusing bug in React Native [, we do not recommend using the Chrome debugger, but
recommend using Safari for debugging. To use Safari for debugging the React code, follow the instructions found in
the React Native docs(Z.

Copyright © 2025 Ping Identity Corporation

https://github.com/facebook/react-native/issues/28531
https://github.com/facebook/react-native/issues/28531
https://reactnative.dev/docs/debugging#safari-developer-tools
https://reactnative.dev/docs/debugging#safari-developer-tools
https://reactnative.dev/docs/debugging#safari-developer-tools

Ping SDKs Ping SDK for Auth Journey tutorials

Web Inspector — iPhone 13 Pro — React Native Todo — JSContext

[sources

111

Breakpoints)
forgerock-react-native-sample
By Type | ByPath .
form.js

i Github

Copyright (c) 2021 ForgeRock. All rights reserved.
[forgerock-react-native-sample

This software may be modified and distributed under the terms

{5 reactnative-todo of the MIT license. See the LICENSE file for details.

XK KKK KK KX

node_modules
'jsrc import { FRStep } from '@forgerock/javascript-sdk';
import { Box, Button, FormControl, ScrollView } from 'native-base';
[components import React, { useContext, useEffect, useState } from 'react';
Eiourney import { NativeModules } from 'react-native';

[3) boolean.js import { AppContext } from '../../global-state';
N import Loading from '../utilities/loading';
[jchmca;s import Alert from '../utilities/alert';
@Vormjs import Password from './password';
- import Text from './text';
@kb&]s import Unknown from './unknown';

[j] password.js

[text.js
@unknown.js export default function Form() {
S const [_, methods] = useContext(AppContext);

[utilities js const [step, setStep] = useState(null);

const [isAuthenticated, setAuthentication] = useState(false);

[utilities

consolle. log(step);

alert.js

N useEffect(() => {
[Bloading js async function getStep() {
[screens try {
[homeljs await FRAuthSampleBridge.logout();
k const dataString = await FRAuthSampleBridge.login();

const { FRAuthSampleBridge } = NativeModules;

login.js const data = JSON.parse(dataString);

0 const initialStep = new FRStep(data);
[logoutjs setStep(initialStep);
[theme } catch (err) {
[indexjs if (err.messag 'User is already authenticated') {
& setStep({ type oginSuccess', message: 'Successfully logged in."' });
G global-state.js setAuthentication(true);
o . } else {
Indexjs setStep({
E]rouler.js type: 'LoginFailure',
[et message: 'Application state has an error.’',

Filter setAuthentication(false);

Figure 3. Safari dev tools

Tips if the home screen doesn’t render

1. Restart the app (in Xcode) and Metro (in terminal).
2. Didn't work? Using Xcode, clean the build folder and rebuild/rerun the app.

3. If that doesn’t work, remove the following from the reactnative-todo directory: node_modules, package-lock.json,
ios/.Pods, ios/Podfile.lock, and then reinstall dependencies with npm i and within the ios/ directory
pod install.

4. If you're still having issues, within the simulator, click the Home button and long press the React Todo application
to .remove it. Then, restart from the project Xcode.

5. You can also use Device > Erase All Content and Settings if the problem persists.

Step 5. Implement the iOS bridge code

Review the files that allow for the "bridging" between the React Native project and the native Ping SDK.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Within Xcode, navigate to the forgerock-react-native-sample/reactnative-todo/ios directory, and you will see a few
important files:

* reactnativetodo-Bridging-Header.h : Header file that exposes the React Native bridging module and the FRAuth
module into the Swift context.

* reactnativetodo/FRAuthSampleBridge.m: The module file that defines the exported interfaces of our bridging code.

¢ reactnativetodo/FRAuthSampleBridge.swift : The main Swift bridging code that provides the callable methods for the
React Native layer.

¢ reactnativetodo/FRAuthSampleStructs.swift: Provides the structs for the Swift bridging code.
* reactnativetodo/FRAuthSampleHelpers.swift : Provides the extensions to often used objects within the bridge code.

* reactnativetodo/FRAuthConfig.plist:The .plist file that configures the Ping SDK for iOS to the appropriate
authorization server.

We provide the header file as-is. The file’s creation, naming and use requires very specific conventions that are outside the scope
of this tutorial. You will not need to modify it.

@ Note

The remainder of the files within the workspace are automatically generated when you create a React Native project
with the CLI command, so you can ignore them.

Configure your .plist file

Within Xcode's directory/file list section (aka Project Navigator), complete the following:
1. Find FRAuthConfig.plist file within the ios/reactnativetodos directory.
2. Add the name of your PingOne Advanced Identity Cloud or PingAM cookie.
3. Add the OAuth client you created from above.
4. Add your authorization server URLs.
5. Add the login tree you created above.

A hypothetical example (your values may vary):

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

<dict>

<key>forgerock_cookie_name</key>

- <string></string>

T <string>iPlanetDirectoryPro</string>
<key>forgerock_enable_cookie</key>
<true/>
<key>forgerock_oauth_client_id</key>
<string>ReactNativeOAuthClient</string>
<key>forgerock_oauth_redirect_uri</key>
<string>https://com.example.reactnative.todo/callback</string>
<key>forgerock_oauth_scope</key>
<string>openid profile email</string>
<key>forgerock_oauth_url</key>

- <string></string>

+ <string>https://auth.forgerock.com/am</string>
<key>forgerock_oauth_threshold</key>
<string>60</string>
<key>forgerock_url</key>

- <string></string>

T <string>https://auth.forgerock.com/am</string>
<key>forgerock_realm</key>

- <string></string>

+ <string>alpha</string>
<key>forgerock_timeout</key>
<string>60</string>
<key>forgerock_keychain_access_group</key>
<string>org.reactjs.native.example.reactnativetodo</string>
<key>forgerock_auth_service_name</key>

- <string></string>

+ <string>UsernamePassword</string>
<key>forgerock_registration_service_name</key>

- <string></string>

+ <string>Registration</string>

</dict>

Descriptions of relevant values:

+ forgerock_cookie_name : If you have PingOne Advanced Identity Cloud, you can find this random string value under the
Tenant Settings found in the top-right dropdown in the admin UL. If you have your own installation of PingAM, this is often
iPlanetDirectoryPro.

+ forgerock_url & forgerock_oauth_url: The URL of PingAM within your server installation.
« forgerock_realm: The realm of your server (likely root, alpha or bravo).
+ forgerock_auth_service_name : This is the journey/tree that you use for login.

+ forgerock_registration_service_name : This is the journey/tree that you use for registration, but it will not be used until
a future part of this tutorial series.

Write the start() method

Staying within the reactnativetodo directory, find the FRAuthSampleBridge file and open it. We have some of the files already
stubbed out and the dependencies are already installed. All you need to do is write the functionality.

For the SDK to initialize with the FRAuth.plist configuration from Step 2, write the start() function as follows:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

import Foundation
import FRAuth
import FRCore
import UIKit

@objc(FRAuthSampleBridge)
public class FRAuthSampleBridge: NSObject {
var currentNode: Node?

@objc static func requiresMainQueueSetup() -> Bool {
return false

@objc func start(
_ resolve: @escaping RCTPromiseResolveBlock,
rejecter reject: @escaping RCTPromiseRejectBlock) {

/**

* Set log level to all
=Y
FRLog.setLoglLevel([.all])

do {
try FRAuth.start()
let initMessage = "SDK is initialized"
FRLog.i(initMessage)
resolve(initMessage)

} catch {
FRLog.e(error.localizedDescription)
reject("Error", "SDK Failed to initialize", error)

+ + + + F + +F + + + + + + o+ o+

/*%
* Method for calling the “getUserInfo’ to retrieve the user information from
* the 0IDC endpoint
Y
@objc func getUserInfo(
_ resolve: @escaping RCTPromiseResolveBlock,
rejecter reject: @escaping RCTPromiseRejectBlock) {

@@ collapsed @@

The start() function above calls the Ping SDK for iOS's start() method on the FRAuth class. There's a bit more that may be
required within this function for a production app. We'll get more into this in a separate part of this series, but for now, let's keep
this simple.

Write the login() method

Once the start() method is called and it has initialized, the SDK is now ready to handle user requests. Let's start with login() .

Just underneath the start() method we wrote above, add the login() method.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@

@objc func start(
_ resolve: @escaping RCTPromiseResolveBlock,
rejecter reject: @escaping RCTPromiseRejectBlock) {

/**

* Set log level according to all
w5

FRLog.setLoglLevel([.all])

do {
try FRAuth.start()
let initMessage = "SDK is initialized"
FRLog.i(initMessage)
resolve(initMessage)

} catch {
FRLog.e(error.localizedDescription)
reject("Error", "SDK Failed to initialize", error)

@objc func login(
_ resolve: @escaping RCTPromiseResolveBlock,
rejecter reject: @escaping RCTPromiseRejectBlock) {

FRUser.login { (user, node, error) in
self.handleNode(user, node, error, resolve: resolve, rejecter: reject)
}
}

+
+
+
+
+
L
+
+

@@ collapsed @@

This login() function initializes the journey/tree specified for authentication. You call this method without arguments as it does
not login the user. This initial call to the server will return the first set of callbacks that represents the first node in your journeyt/
tree to collect user data.

Also, notice that we have a special "handler" function within the callback of FRUser.login() . This handleNode() method
serializes the node object that the Ping SDK for iOS returns in a JSON string. Data passed between the "native" layer and the
React layer is limited to strings. This method can be written in many ways and should be written in whatever way is best for your
application. However, a unique use of the Ping SDK for JavaScript to convert this basic JSON of data into a decorated object for
better ergonomics is used in this tutorial.

Werite the next() method

To finalize the functionality needed to complete user authentication, we need a way to iteratively call next until the tree
completes successfully or fails. To do this, continue in the bridge file, and add a private method called handleNode() .

First, we will write the decoding of the JSON string and prepare the node for submission.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@@ collapsed @@

@objc func login(
_ resolve: @escaping RCTPromiseResolveBlock,
rejecter reject: @escaping RCTPromiseRejectBlock) {

FRUser.login { (user, node, error) in
self.handleNode(user, node, error, resolve: resolve, rejecter: reject)

}

@objc func next(
_ response: String,
resolve: @escaping RCTPromiseResolveBlock,
rejecter reject: @escaping RCTPromiseRejectBlock) {

let decoder = JSONDecoder ()

let jsonData = Data(response.utf8)

if let node = self.currentNode {
var responseObject: Response?

do {

responseObject = try decoder.decode(Response.self, from: jsonData)
} catch {

FRLog.e(String(describing: error))

reject("Error", "UnknownError", error)
}

let callbacksArray = responseObject!.callbacks ?? []

for (outerIndex, nodeCallback) in node.callbacks.enumerated() {
if let thisCallback = nodeCallback as? SingleValueCallback {
for (innerIndex, rawCallback) in callbacksArray.enumerated() {
if let inputsArray = rawCallback.input, outerIndex == innerIndex,
let value = inputsArray.first?.value {

thisCallback.setValue(value.value as! String)

}

}
} else {
reject("Error", "UnknownError", nil)

+ + + + F + + + + F F + F + FF o+ F A+ F A+ + o+

@@ collapsed @@

Now that you've prepared the data for submission, introduce the node.next call from the Ping SDK for iOS. Then, handle the
subsequent node returned from the next call, or process the success or failure representing the completion of the journey/tree.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@

for (outerIndex, nodeCallback) in node.callbacks.enumerated() {
if let thisCallback = nodeCallback as? SingleValueCallback {
for (innerIndex, rawCallback) in callbacksArray.enumerated() {
if let inputsArray = rawCallback.input, outerIndex == innerIndex,
let value = inputsArray.first?.value {

thisCallback.setValue(value)
}
}

node.next(completion: { (user: FRUser?, node, error) in
if let node = node {
self.handleNode(user, node, error, resolve: resolve, rejecter: reject)

} else {
if let error = error {
reject("Error", "LoginFailure", error)
return
}

let encoder = JSONEncoder ()
encoder.outputFormatting = .prettyPrinted
if let user = user,
let token = user.token,
let data = try? encoder.encode(token),
let accessInfo = String(data: data, encoding: .utf8) {

+ 4+ + + F + +F F + F + +F F o+ o+ o+ o+

resolve(["type": "LoginSuccess", "accessInfo": accessInfo])
} else {
resolve(["type": "LoginSuccess", "accessInfo": ""])
}
}
H
} else {
reject("Error", "UnknownError", nil)

}
}

@@ collapsed @@

The above code handles a limited number of callback types. Handling full authentication and registration journeys/trees requires
additional callback handling. To keep this tutorial simple, we'll focus just on SingleValueCallback type.

Write the logout() bridge method

Finally, add the following lines of code to enable logout for the user:

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@@ collapsed @@

} else {
reject("Error", "UnknownError", nil)
}
+ @objc func logout() {
+ FRUser.currentUser?.logout()
}
}

@@ collapsed @@

Step 6. Implement the Ul in React Native

Let's review how the application renders the home view:

index.js > src/index.js > src/router.js > src/screens/home.js

Open up the second file in the above sequence, the src/index.js file, and write the following:
1. Import useEffect from the React library.
2. Import NativeModules from the react-native package.
3. Pull FRAuthSampleBridge from the NativeModules object.

4. Write an async function within the useEffect callback to call the SDK start() method.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

- import React from 'react’;
+ import React, { useEffect } from 'react’;
+ import { NativeModules } from 'react-native';
import { SafeAreaProvider } from 'react-native-safe-area-context';

import Theme from './theme/index';
import { AppContext, useGlobalStateMgmt } from './global-state';
import Router from './router';

+ const { FRAuthSampleBridge } = NativeModules;

export default function App() {
const stateMgmt = useGlobalStateMgmt({});

useEffect(() => {
async function start() {
await FRAuthSampleBridge.start();
}
start();
o M1D3

+ + 4+ + + +

return (
<Theme>
<AppContext.Provider value={stateMgmt}>
<SafeAreaProvider>
<Router />
</SafeAreaProvider>
</AppContext.Provider>
</Theme>

)5

FRAuthSampleBridge is the JavaScript representation of the Swift bridge code we developed earlier. Any public methods added
to the Swift class within the bridge code are available in the FRAuthSampleBridge object.

@ Note

It's important to initialize the SDK at a root level. Call this initialization step, so it resolves before any other native SDK
methods can be used.

Build the login view

Navigate to the app’s login view within the Simulator. You should see a "loading" spinner and a message that's persistent, since
the app doesn't have the data needed to render the form. To ensure the correct form is rendered, the initial data needs to be
retrieved from the server. That will be the first task.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

° iPhone 13 Pro

Sign In

Checking your
session ...

Figure 1. Login screen with spinner
Since most of the action is taking place in src/components/journey/form.js, open it and add the following:

1. Import FRStep from the @forgerock/javascript-sdk for improved ergonomics for handling callbacks.
2. Import NativeModules from the react-native package.
3. Pull FRAuthSampleBridge from the NativeModules object.

+ import { FRStep } from '@forgerock/javascript-sdk';
import React from 'react';

+ import { NativeModules } from 'react-native';
import Loading from '../utilities/loading';

+ const { FRAuthSampleBridge } = NativeModules;

@@ collapsed @@

To develop the login functionality, we first need to use the login() method from the bridge code to get the first set of callbacks,
and then render the form appropriately. This login() method is an asynchronous method, so import a few additional packages
from React to encapsulate this "side effect". Let's get started!

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

Import two new modules from React: useState and useEffect.The useState () method is for managing the data received from
the server, and the useEffect is for the FRAuthSampleBridge.login() method's asynchronous, network request.

Compose the data gathering process using the following:
1. Import useEffect from the React library.
2. Write the useEffect function inside the component function.
3. Write an async function within the useEffect for calling login.
4. Write an async logout function to ensure user if fully logged out before attempting to login.
5. Call FRAuthSampleBridge.login() to initiate the call to the login journey/tree.
6. When the login() call returns with the data, parse the JSON string.
7. Assign that data to our component state via the setState() method.
8. Lastly, call this new method to execute this process.
import { FRStep } from '@forgerock/javascript-sdk';
- import React from 'react’;

+ import React, { useEffect, useState } from 'react';
import { NativeModules } from 'react-native';

import Loading from '../utilities/loading';
const { FRAuthSampleBridge } = NativeModules;

export default function Form() {

+ const [step, setStep] = useState(null);
+ console.log(step);
+
+ useEffect(() => {
+ async function getStep() {
+ try {
+ await FRAuthSampleBridge.logout();
+ const dataString = await FRAuthSampleBridge.login();
+ const data = JSON.parse(dataString);
+ const initialStep = new FRStep(data);
+ setStep(initialStep);
+ } catch (err) {
+ setStep ({
+ type: 'LoginFailure',
+ message: 'Application state has an error.',
+ b
+ }
+ }
+ getStep();
LI R D
return <Loading message="Checking your session ..." />;

}

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Q Tip
We are passing an empty array as the second argument into useEffect. This instructs the useEffect to only run once
after the component mounts. This is functionally is equivalent to a class component using componentDidMount to run

an asynchronous method after the component mounts.

The above code will result in two logs to your console:
1. null
2. An object with a few properties.

The property to focus on is the callbacks property. This property contains the instructions for what needs to be rendered to the
user for input collection.

Import the components from NativeBase as well as the custom, local components within this journey/ directory:

import { FRStep } from '@forgerock/javascript-sdk';

+ import { Box, Button, FormControl, ScrollView } from 'native-base';
import React, { useEffect, useState } from 'react';
import { NativeModules } from 'react-native';

import Loading from '../utilities/loading';
import Alert from '../utilities/alert';
import Password from './password';

import Text from './text';
import Unknown from './unknown';

+ + + +

@@ collapsed @@

Now, within the Form function body, create the function that maps these imported components to their appropriate callbacks.

Copyright © 2025 Ping Identity Corporation

https://reactjs.org/docs/react-component.html#componentdidmount
https://reactjs.org/docs/react-component.html#componentdidmount
https://reactjs.org/docs/react-component.html#componentdidmount
https://reactjs.org/docs/react-component.html#componentdidmount

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@
export default function Form() {
const [step, setStep] = useState(null);

console.log(step);

@@ collapsed @@

+ function mapCallbacksToComponents(cb, idx) {
+ const name = cb?.payload?.input?.[@].name;
+ switch (cb.getType()) {
+ case 'NameCallback':
+ return <Text callback={cb} inputName={name} key="username" />;
+ case 'PasswordCallback’:
+ return <Password callback={cb} inputName={name} key="password" />;
+ default:
T // If current callback is not supported, render a warning message
+ return <Unknown callback={cb} key={ unknown-${idx} '} />;
+ }
+)
return <Loading message="Checking your session ..." />;
}

Finally, return the appropriate component for the following states:
« If there is no step data, render the Loading component to indicate the request is still processing.
«Ifthereis step data, and itis of type 'Step', then map over step.callbacks with the function from above.

« If thereis step data, but the typeis 'LoginSuccess' or 'LoginFailure',render an alert.

@@ collapsed @@

+ if (!step) {

return <Loading message='Checking your session ...' />;
+ } else if (step.type === 'Step') {
+ return (
+ <ScrollView>
+ <Box safeArea flex={1} p={2} w="90%" mx="auto">
T <FormControl>
+ {step.callbacks?.map(mapCallbacksToComponents) }
+ <Button>Sign In</Button>
+ </FormControl>
+ </Box>
+ </ScrollView>
+)
+ } else {
+ // Handle success or failure of the journey/tree
+ return (
+ <Box safeArea flex={1} p={2} w="90%" mx="auto">
+ <Alert message={step.message} type={step.type} />
+ </Box>
+)
+ }

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

Refresh the page, and you should now have a dynamic form that reacts to the callbacks returned from our initial call to
ForgeRock.

° iPhone 13 Pro

Sign In

User Name

Password

Figure 2. Login screen form
Handle the login form submission

Since a form that can’t submit anything isn't very useful, we'll now handle the submission of the user input values to ForgeRock.
First, add a second useState to track whether the user is authenticated or not, and then edit the current Button element,
adding an onPress handler with a simple, inline function. This function should do the following:

1. Submit the modified step data to the server with the FRAuthSampleBridge.next() method.

2. Test if the response property type has the value of 'LoginSuccess' .

3. If successful, parse the response JSON.

4. Call setStep () with the new object parsed from the JSON (this is mostly just for logging the step to the console).

5. Call setAuthentication() to true, which is a global state method that triggers the app to react (pun intended!) to the new
user state.

6. Handle errors with a generic failure message.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@

export default function Form() {
const [step, setStep] = useState(null);
+ const [isAuthenticated, setAuthentication] = useState(false);
console.log(step);

@@ collapsed @@

return (
<ScrollView>
<Box safeArea flex={1} p={2} w="90%" mx="auto">

<FormControl>

{step.callbacks?.map(mapCallbacksToComponents) }
<Button>Sign In</Button>
<Button

onPress={() => {

async function getNextStep() {
try {
const response = await FRAuthSampleBridge.next(
JSON.stringify(step.payload),

+
+
+
+
+
+
+ IE
+ if (response.type === 'LoginSuccess') {
+ const accessInfo = JSON.parse(response.accessInfo);
+ setStep({
+ accessInfo,
+ message: 'Successfully logged in.',
+ type: 'LoginSuccess',
+ 1)
+ setAuthentication(true);
+ } else {
+ setStep({
+ message: 'There has been a login failure.'
+ type: 'LoginFailure',
+ ¥
+ }
+ } catch (err) {
+ console.error(Error: form submission; S${err}’);
+ }
+ }
+ getNextStep();
+ }}
+ >
+ Sign In
T </Button>

</FormControl>

</Box>
</ScrollView>

)3

@@ collapsed @@

After the app refreshes, use the test user to login. If successful, you should see a success message. Congratulations, you are now
able to authenticate users!

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

° User is authenticated

Figure 3. Login screen with successful authentication

What's more, you can verify the authentication details by going to the Xcode or Safari log and observing the result of the last call
to the server. It should have a type of "LoginSuccess" along with token information.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

2021-12-13 18:35:07.818675-0600 reactnativetodo[96372:4345510] [javascript] { accessInfo:
{ sessionToken: 'WVihuChjA8SDyTwYS8MpdmLfZopJQ.*AAJTSQACMDIAALINLABwrcFhSa2dlanNFTmIycWhS5NOt6Tz

scope: 'address openid profile email',

refreshToken:
'eyJOeXAi0iJKV1QiLCIhbGci0iJIUZIANiII9
.eyJzdWIiOiJiZTUYOTFlYyimYzFjLTQyYmItYWUOMilmMTIAM]QyMjcwNTALLCI]dHMi01iIPQVVUSDIFRIIBT
i0iJodHRwczovL2Zvemdlcm9jay5]icmIybCS5pbzoONDMVYWOVD2F1d6gyIiwidGo9rZWS0YW1lIjoicmVmemVzaH
HUmZoVkkvS2tVdjFVPSISIMF1ZCI6I1d1YKk9BAXRoQ2XpZWSOIiwiYWNYIjoiMCIsIm5iZiI6MTYZ0TQOMIEWN
3LCIyZWFsbSI6Ii9hbHBOYSISImV4CCISMTYOMDAON] kwNywiaWFOIjoxNjMENDQyMTASLCI1leHBpcmYzX21ul

tokenType: 'Bearer’',

value:
'eyJOeXAi0iJKV1QiLCIhbGci0iJIUZIANLII9
+eyJZdWIiOiJiZTUYOTFlYyimYzFjLTQyYmItYWUOMilmMTI1M]IQyMjcwNTALILCI]dHMi01iJPQVVUSDITRIIBT
10iJodHRwczovL2Zvemdlcm9jay5]cmIybCSpbzoONDMVYWOVD2F1d6gyIiwidGorZWE0YW11IjoiYWN] ZXNzX
3LCIncmFudF90eXBlIjoiYXVeaG9yaXphdGlvbl9jb2R1Iiwic2NvcGUiOlsiYWRkemVzcyIsIm9wZWSpZCIsI
DAEQ2QS5fYy1aZ3RCUHBGYO1uQ3hBESXFaSzc5NGRaMGMifQ. zctEceY4jNVYNO1xkWzPlc4dAT3eJhRObbkk9V(

expiresIn: 3599,

idToken:
'eyJOeXAi0iJKV1QiLCIraWQiOiIzaWtoeWpYdmlLZORySFNYbURBTHRqcDdyaW89IiwiYWxnIjoiULMyNTY1if(
.eyJhdF9oYXNoIjoid3FTcXhhbVIrbGdDblgzakgwdlRMUSISINNLIYiISImIINTISMWY]LWZjMWMENDIiYilh
AMCIsImlzcyI6ImhOdHBz0i8vZm9yZ2Vyb2NrLmNyYnJsLmlvOjQeMy9hbS9vYXVeaDIiLCIeb2t1bkShbWULiO:
wdyIsImFjciI6IjAiLCIvemcuZm9yZ2Vyb2NrLm9wZWSpZGNvbm51Y3Qub3BzIjoiVXdQMkZZeG5VRS16Z1M1Q
XNjM5SNDQINZA3LCIBb2t1b1R5cGUI0iIKVIRUD2t1biIsImlhdCISMTYZOTQOM]EwNywiZmFtawx5X25hbWUio:
WIZTOab6F60s5Z_bF3iNLh1CAjWVzZw2jh24e0k4-uK515AQ0M7Xr4VCrhNiieef232faheNgh9yUhbztLI0JID9
WhzCQBMsNHi9Q50-D4rt9-dqyFYMhxCuCXMPTNvq6GHGSq3LIVIXiZBAENCMOV7fcab32jQ’,

authenticatedTimestamp: 661134907.810003 },

message: 'Successfully logged in.',
type: 'LoginSuccess' }

Figure 4. Successful login response from Xcode

@ Note

If you got a login failure, you can re-attempt the login by going to the Device menu on the Simulator and selecting
"Shake". This will allow you to reload the app, providing a fresh login form.

Handle the user provided values

You may ask, "How did the user's input values get added to the step object?" Let's take a look at the component for rendering
the username input. Open up the Text component: components/journey/text.js. Notice how special methods are being used
on the callback object. These are provided as convenience methods by the Ping SDK for JavaScript for getting and setting data.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@@ collapsed @@
export default function Text({ callback }) {
@@ collapsed @@

const error = handleFailedPolicies(
callback.getFailedPolicies ? callback.getFailedPolicies() : [],
I
const isRequired = callback.isRequired ? callback.isRequired() : false;
const label = callback.getPrompt();
const setText = (text) => callback.setInputValue(text);
return (
<FormControl isRequired={isRequired} isInvalid={error}>
<FormControl.Label mb={0}>{label}</FormControl.Label>
<Input
autoCapitalize="none"
autoComplete="off"
autoCorrect={false}
onChangeText={setText}

size="1g"
type="text"
/>
<FormControl.ErrorMessage>
{error.length ? error : "'}
</FormControl.ErrorMessage>
</FormControl>

N
}
There are two important items to focus on
+ callback.getPrompt() : Retrieves the input's label to be used in the Ul.
+ callback.setInputValue() : Sets the user’s input on the callback while they are typing (i.e. onChangeText).

Since the callback is passed from the Form to the components by "reference" (not by "value"), any mutation of the callback
object within the Text (or Password)component is also contained in the step objectin the Form component.

@ Note

You may think, "That's not very idiomatic React! Shared, mutable state is bad." And, yes, you are correct, but we are
taking advantage of this to keep everything simple (and this guide from being too long), so | hope you can excuse the
pattern.

Each callback type has its own collection of methods for getting and setting data in addition to a base set of generic callback
methods. The SDK automatically adds these methods to the callback’s prototype. For more information about these callback
methods, see our APl documentation(Z, or the source code in GitHub [, for more details.

Request user info and redirecting to home screen

Now that the user can login, let's go one step further and request information about the authenticated user to display their name
and other information. We will now utilize the existing FRAuthSampleBridge.getUserInfo() method already included in the
bridge code.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://docs.pingidentity.com/sdks/latest/_attachments/javascript/api-reference-core/index.html
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks
https://github.com/ForgeRock/forgerock-javascript-sdk/tree/develop/packages/javascript-sdk/src/fr-auth/callbacks

Ping SDKs Ping SDK for Auth Journey tutorials

Let's do a little setup before we make the request to the server:
1. Add useContext to the import from React so that we have access to the global state.
2. Import AppContext from the global-state module.
3. Call useContext with our AppContext to provide access to the setter methods.

4. Add one more useEffect function to detect the change of the user’s authentication.

import { FRStep } from '@forgerock/javascript-sdk';
import { Box, Button, FormControl, ScrollView } from 'native-base’;
- import React, { useEffect, useState } from 'react’;
+ import React, { useContext, useEffect, useState } from 'react';
import { NativeModules } from 'react-native';

+ import { AppContext } from '../../global-state';
@@ collapsed @@

export default function Form() {
+ const [_, methods] = useContext(AppContext);
const [step, setStep] = useState(null);
const [isAuthenticated, setAuthentication] = useState(false);
console.log(step);

useEffect(() => {
async function getStep() {

try {
await FRAuthSampleBridge.logout();
const dataString = await FRAuthSampleBridge.login();
const data = JSON.parse(dataString);
const initialStep = new FRStep(data);
setStep(initialStep);

} catch (err) {
console.error(Error: request for initial step; ${err}’);

}

getStep();
bo [L1)5
useEffect(() => {

}, [isAuthenticated]);

@@ collapsed @@

It's worth noting that the isAuthenticated declared in the array communicates to React that this useEffect should only
execute if the state of that variable changes. This prevents unnecessary code execution since the value is initially false, and
continues to be false until the user completes authentication.

With the setup complete, implement the request to the server for the user’s information. Within this empty useEffect, add an
async function to make that call to FRAuthSampleBridge.getUserInfo() and call it only when isAuthenticated is true.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

@@ collapsed @@

useEffect(() => {
async function getUserInfo() {
const userInfo = await FRAuthSampleBridge.getUserInfo();
console.log(userInfo);

methods.setName(userInfo.name) ;
methods.setEmail (userInfo.email) ;
methods.setAuthentication(true);

}

if (isAuthenticated)
getUserInfo();
}

}, [isAuthenticated]);

+ + + + + + + + + + 4+ o+

@@ collapsed @@

In the code above, we collected the user information and set a few values to the global state to allow the app to react to this
information. In addition to updating the global state, the React Navigation also reacts to the global state change and renders the
new screens and tab navigation.

When you test this in the Simulator, completing a successful authentication results in the home screen being rendered with a
success message. The user's name and email are included for visual validation. You can also view the console in Safari and see the
user’s information logged.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

° iPhone 13 Pro

Q Welcome back, Justin Lowery.

You're currently logged in with the email

justin.lowery@forgerock.com

Protect with
ForgeRock;
Develop with React

Native

Learn how to develop
ForgeRock protected,
hybrid apps with the React
Native library and our
Native SDKs.

About this project

The purpose of this sample app is to
demonstrate how the ForgeRock SDKs can

1 Cs

Figure 5. Home screen after successful authentication
Add logout functionality to our bridge and React Native code

Clicking the Sign Out button within the navigation results in the logout page rendering with a persistent "loading" spinner and
message. This is due to the missing logic that we'll add now.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

° iPhone 13 Pro

Sign Out

You're being logged
out ...

Figure 6. Logout screen with spinner
To add the logic into the view to call this new Swift method:
1. Open up the screens/logout.js file and import the following:
1. useEffect and useContext from React
2. useHistory from React Router
3. AppContext from the global state module
- import React from 'react’;
+ import React, { useContext, useEffect } from 'react';
+ import { NativeModules } from 'react-native';

+ import { AppContext } from '../global-state';
import { Loading } from '../components/utilities/loading’;

+ const { FRAuthSampleBridge } = NativeModules;

@@ collapsed @@

2. Since logging out requires an async, network request, we need to wrap it in a useEffect and pass in a callback function
with the following functionality:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Ping SDK for Auth Journey tutorials

@@ collapsed @@

export default function Logout() {
const [_, { setAuthentication }] = useContext(AppContext);

useEffect(() => {
async function logoutUser() {
try {
await FRAuthSampleBridge.logout();
} catch (err) {
console.error(Error: logout; S${err}’);

}

setAuthentication(false);

}
logoutUser();

o)5

return <Loading message="You're being logged out ..." />;

}

Since we only want to call this method once, after the component mounts, we will pass in an empty array as a second
argument for useEffect() . The use of the setAuthentication() method empties or falsifies the global state to clean up
and re-renders the home screen.

3. Revisit the app within the Simulator, and tap the Sign Out button.

You should see a quick flash of the loading screen, and then the home screen should be displayed with the logged out Ul
state.

Copyright © 2025 Ping Identity Corporation

Ping SDK for Auth Journey tutorials Ping SDKs

° iPhone 13 Pro

Protect with
ForgeRock;
Develop with React
Native

Learn how to develop
ForgeRock protected,
hybrid apps with the React
Native library and our
Native SDKs.

About this project

The purpose of this sample app is to
demonstrate how the ForgeRock SDKs can
be leveraged within a fully-functional React
Native application. Included in this sample
app is a sample bridging layer for connecting
the native ForgeRock modules (Android and
iOS) with the React Native layer along with a

fr O

Figure 7. Logged out home screen
Testing the app

You should now be able to successfully authenticate a user, display the user’s information, and log a user out.

Congratulations, you just built a protected iOS app with React Native.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping
SDKs

M Pingldentity.

Implement your use cases with the Ping SDKs Ping SDKs

The SDKs enable you to implement many authentication, registration, and self-service use cases into your mobile and web apps.

Visit the following pages for more information on implementing different use cases using the Ping SDKs:

Set up PingOne Protect for risk evaluations

Applies to: @ Android | & iOS | I8 JavaScript
The Ping SDKs can integrate with PingOne Protect(Z to evaluate the risk involved in a transaction.

Find out how to configure your application to use PingOne Protect.

Read more »

Set up user profile self service

v

Applies to: @ Android | & iOS| I8 JavaScript

View and edit user profile information, such as name, address, and marketing preferences.

Read more »

Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html

Ping SDKs Implement your use cases with the Ping SDKs

Set up registered device self service

v

Applies to: @ Android | & iOS| I8 JavaScript
View, rename, and delete user-registered devices.

Read more »

Set up mobile biometrics

Applies to: & Android | & iOS

Discover how to allow users to authenticate by using an authenticator device. For example, the fingerprint scanner on
their laptop or a phone.

Leverage passkey support to synchronize across multiple devices.

Read more »

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

Set up web biometrics

Applies to: I8 JavaScript
Discover how to allow users to authenticate by using WebAuthn.

Leverage passkey support to synchronize across multiple devices.

Read more »

Set up Device Profiling

Applies to: @ Android

& iOS | B JavaScript

Instruct your client applications to collect device profile information for decision-making in authentication journeys.

Read more »

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

Set up Social Login

Applies to: @ Android | & iOS | I8 JavaScript

Add support for authenticating to your apps by using trusted Identity Providers (IdP), like Apple, Facebook, and Google.

Read more »

Set up Magic Links

Applies to: @ Android | & iOS | I8 JavaScript

Learn how to pause a user's progress through an authentication tree, and later resume from the same point.

Read more »

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

Set up Transactional Authorization

Applies to: @ Android | & iOS | I8 JavaScript

Configure transactional authorization support in your app. Transactional authorization requires a user to authorize
individual access attempts to specific protected resources.

It is part of an PingAM policy that grants single-use or one-shot access.

Read more »

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

Set up QR Code handling

Applies to: I8 JavaScript
Learn how to handle callbacks that require a QR code to be displayed.

A number of journeys make use of QR codes, such as device registration for multi-factor authentication.

Read more »

Set up Google reCAPTCHA Enterprise

00000

Applies to: @ Android | & iOS | B JavaScript

This tutorial shows how integrate with Google reCAPTCHA Enterprise.

Read more »

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

Integrate with PingOne Protect for risk evaluations

Applies to:
v Ping SDK for Android
v Ping SDK for iOS

v Ping SDK for JavaScript

The Ping SDKs can integrate with PingOne Protect(to evaluate the risk involved in a transaction.

@ Important

PingOne Protect is supported in the following servers:

Advanced Identity Cloud

Use the official PingOne Protect nodes
PingAM 7.5 and later

Use the official PingOne Protect nodes
PingAM 7.2 - 7.4

Use the marketplace PingOne Protect nodes

Access Granted

"Trust Device" Selection
"Remember Me" Selection
Updated Terms of Service Prompt

Updated Privacy Policy Pompt
_/ Send Email Correspondence
Allow

\ I QR Code
I O | \ Send Email - Magic Link
> 4 Password Reset
/ \ User Education
\ Biometric Prompt
—/') Send to Customer Support
User Evaluate @ Mitigate
o A \ -

& © O 5 & B B

Bot IP Velocity Geovelocity Anomaly IP Reputation User Risk Behavior New Device Custom /
Detection User Velocity User Location Velocity Anonymous Network User-based Risk Model Suspicious Device Third Party

Figure 1. A flowchart illustrating how risk predictors evaluate many different data points.

You can instruct the Ping SDKs to use the embedded PingOne Signals SDK(Z to gather information during a transaction. Your
authentication journeys can then gather this information together and request a risk evaluation from PingOne.

Based on the response, you can choose whether to allow or deny the transaction or perform additional mitigation, such as bot
detection measures.

You can use the audit functionality in PingOne to view the risk evaluations:

Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://www.pingidentity.com/en/platform/capabilities/threat-protection/pingone-protect.html
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk
https://docs.pingidentity.com/r/en-us/pingone/pingone_c_risk_signals_sdk

Ping SDKs

M Pingidentity.

© Getting Started

@ Overview

4~ Monitoring
Dash
Authentication
MFA
Threat Protection

Identity Verification

A internal FRSDK

TIME RANGE

Relative v

SELECTED FIELDS

Selected (5 v

1| days v

ME ZONi L

uTCv
Event Type

None

LTE

hd Selected (2 v

Implement your use cases with the Ping SDKs

@ ® Explore ~

2 Admin User ~

Export
Audit
ACTIVITIES WITH SELECTED EVENT TYPE (2024-02-14 03:04 PM UTC - 2024-02-15 03:04 PM UTC)
2. Directo
= i Timestamp Event Type i Description Client User Identity Details
[Applications
2024-02-14 06:47:55 pm Risk Evaluation Created Created Risk Evaluation "Bot Detector" 4f201ac5-eb8d-4db9- ForgeRock SDK demo.user View
uTC 9904-ccdabf5f1361 Worker
@ Authentication
2024-02-14 06:40:21 pm Risk Evaluation Upd. isk Evaluation "Default Risk Policy" 7421c85f-26¢b- ForgeRock SDK sdk.user View
® Threat Protection utC Updated 4e74-bf4a-1adcb7154e42 Worker
(=) Identity Verification i i
2024-02-14 06:40:21 pm Risk Evaluation Created Created Risk Evaluation "Default Risk Policy" 7421c85f-26cb- ForgeRock SDK sdk.user View
uTC 4e74-bf4a-1adcb7154e42 Worker
p‘ Integrations
2024-02-14 05:56:35 pm Risk Evaluation Created Created Risk Evaluation "Bot Detector" 55leccdd-4d80-4fae- ForgeRock SDK demo.user View
El User Experience uTC b249-bf5af98 Worker
© Settings 2024-02-14 05:52:59 pm Risk Evaluation Created Created Risk Evaluation "Bot Detector” bd83b191-f148-4836- ForgeRock SDK demo.user View
uTe b7ac-26053f Worker
2024-02-14 05:50:47 pm Risk Evaluation Updated Risk Evaluation "Default Risk Policy" bd2f5dea-b335- ForgeRock SDK sdk.user View
uTC Updated a Worker
2024-02-14 05:50:47 pm Risk Evaluation Created Created Risk Evaluation "Default Risk Policy" bd2f5dea-b335- ForgeRock SDK sdk.user Vie

uTC

4fe2-8d3c: a48da

Worker

Figure 2. Risk evaluation records in the PingOne audit viewer.

Steps

Step 1. Set up the servers

In this step, you set up your PingOne Advanced Identity Cloud or PingAM server, and your PingOne instance to perform
risk evaluations.

For example, you create a worker application in PingOne and configure your server to access it. You also create an
authentication journey that uses the relevant nodes.

Step 2. Install dependencies
In this step, you add the required PingOne Protect module and dependencies to your project.
We provide instructions for Android, iOS, and JavaScript projects.

Step 3. Develop the client app

With everything prepared, you can now add Ping SDK code to your client application to evaluate risk by using PingOne
Protect.

You'll learn how to initialize the collection of contextual data, gather and send it to the server for a risk evaluation, and
how to pause and resume behavioral data collection.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

Step 1. Set up the servers

In this step, you set up your PingOne Advanced Identity Cloud or PingAM server, and your PingOne instance to perform risk
evaluations.

1. Create a worker application in PingOne
2. Configure the PingOne Worker service in your server
3. Configure a journey to perform PingOne Protect risk evaluations

Create a worker application in PingOne

To allow your server to access the PingOne administration APl you must create a worker application(in PingOne.

The worker application provides the client credentials your server uses to communicate with the PingOne admin APIs using the
OpenlID Connect protocol.

To create a worker application in PingOne:
1. In the PingOne administration console, navigate to Applications > Applications, and then click Add (€)).
2. In the Add Application panel:
1. In Application name, enter a unique identifier for the worker application.
For example, Ping SDK Worker .
2. Optionally, enter a Description for the application and select an Icon.
These do not affect the operation of the worker application but do help you identify it in the list.
3. In Application Type, select Worker.
4. Click Save.
3. In the application properties panel for the worker application you created:
1. On the Roles tab, click Grant Roles.
2. On the Available responsibilities tab, select the Identity Data Admin row, and ensure the environment is correct.
3. Click Save.

4. On the Overview tab, ensure your worker application resembles the following image, and then enable it by using
the toggle (1):

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/r/en-us/pingone/p1_add_app_worker
https://docs.pingidentity.com/r/en-us/pingone/p1_add_app_worker

Ping SDKs Implement your use cases with the Ping SDKs

s L8 ForgeRock SDK Worker 0 : X
Client ID: 4012e5f57-zz2z-2222-2222-b57792bf4747 ‘

Overview Configuration Resources Policies Attribute Mappings Access Roles

Protocol ¢ Resource Access . Policies . Attributes . o
OpenlD Connect o 1 Scope / None Selected / 1 Mapped /

Access . Roles .
Administrators / None Selected /

App Type
Worker (OpenID Connect)

Description

Provides the client credentials the ForgeRock server uses to communicate with the PingOne admin APIs using
the OpenID Connect protocol.

rEnvironment D h
02f4f2e43-xxxx-xxxx-xxxx-a919edfe6447 0

Client ID 9
4012e5f57-2z2z-2222-7222-b57792bf4747 10

Client Secret

\. & 0 J

Home Page URL
No Home Page Configured

Signon URL

Default Signon Page @ Successfully Saved X

Figure 1. Example worker application in PingOne
5. Make a note of the Environment ID, Client ID, and Client Secret values (2).
You need these values in the next step when you Configure the PingOne Worker service in your server.

Configure the PingOne Worker service in your server

After you create a worker application in PingOne, you must configure the PingOne Worker service in your server with the
credentials.

Prerequisites

You need the following values from the PingOne Worker application you created in PingOne:
Client ID

Client ID of the worker application in PingOne.

Example: 6c7eb89a-66e9-ab12-cd34-eeaf795650b2
Client Secret

Client secret of the worker application in PingOne.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

Q Tip
Use the Secret Mask (&) or Copy to Clipboard (D)) buttons to obtain the value in the PingOne administration
console.

Example: Ch15~05Hm8N4_eS_m8~ARrVOKQAIQS6d.sJWe8TMXurEb~KWexY_p@gelR

Environment ID
Identifier of the environment that contains the worker application in PingOne.
Example: 3072206d-c6ce-ch15-m@nd-f87e972c7cc3
@ Important
The PingOne Worker Service requires a configured OAuth2 provider service in your server.

* If you are using a self-managed AM server, you must configure the OAuth2 Provider service in a realm to
expose the OAuth 2.0 endpoints and OAuth 2.0 administration REST endpoints.(Z.
* The OAuth2 provider service is preconfigured in Advanced Identity Cloud.

Register the client secret in the server

You need to make the client secret of the worker application in PingOne available for use in the PingOne worker service.

Advanced Identity Cloud

If you are using Advanced Identity Cloud you will need to create an environment secret to hold the client secret value, as
follows:

1. In the Advanced Identity Cloud admin Ul, go to £8 Tenant Settings > Global Settings > Environment Secrets &
Variables.

2. Click the Secrets tab.
3. Click + Add Secret.

4. In the Add a Secret modal window, enter the following information:

Name Enter a secret name. For example, ping-protect-client-secret.
® Note
Secret names cannot be modified after the secret has been created.
Description (optional) Enter a description of the purpose of the secret.
Value Enter the Client Secret value you obtained when creating the worker application in PingOne.

For example, Ch15~05Hm8N4_eS_m8~ARrVOKQAIQS6d.sJWe8TMXurEb~KWexY_pOgelR .
The field obscures the secret value by default. You can optionally click the visibility toggle (\&)
to view the secret value as you enter it.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-configure-authz.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-configure-authz.html
https://docs.pingidentity.com/pingam/8/oauth2-guide/oauth2-configure-authz.html

Ping SDKs Implement your use cases with the Ping SDKs

5. Click Save to create the variable.
6. Click View Update, check the details of the new secret, and then click Apply Update.

Advanced Identity Cloud displays a final confirmation page.

Apply 1 Update?

Are you sure you want to apply 1 pending update to your
environment?

Changes may take up to 10 minutes to propagate, during which
time you will not be able to make further updates.

Cancel Apply Now

Figure 2. Apply updated secrets in Advanced Identity Cloud
7. Click Apply Now.

Advanced Identity Cloud propagates the new secret and its value to all servers. You must wait until the secrets
have propagated throughout the environment before attempting to use the secret.

The Environment Secrets & Variables page displays the following message while the update is in progress:

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

Environment Secrets & Variables

Set secrets and variables that are specific to this environment. These will be substituted into configuration or script placeholders.

Update in progress. Adding or editing of environment variables is inactive until update has completed, which may take
up to 10 minutes.

Secrets Variables

+ Add Secret Q Search

Name 4 lastUpdated &

esv-ping-protect-client-secret Jun 17,2024 11:10 AM - _

&{esv.ping.protect.client.secret} admin.user@example.com lew betails u
1-10f1 v < >

Figure 3. Propagating secrets in progress in Advanced Identity Cloud.
Self-managed AM

For information on adding secret values for use in services in a self-managed AM instance, refer to Create key aliases(Z in
the AM documentation.

Configure the PingOne worker service

To configure the PingOne worker service:

1. If you are using PingOne Advanced Identity Cloud, in the administration console navigate to Native Consoles > Access
Management.

2.In the AM admin Ul, click Services.
3. If the PingOne Worker Service is in the list of services, select it.
4. 1f you do not yet have a PingOne Worker Service:
1. Click + Add a Service.
2.In Choose a service type, select PingOne Worker Service, and then click Create.
5. On the Secondary Configurations tab, click + Add a Secondary Configuration.
6. On the New workers configuration page:

1. Enter a Name for the configuration.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/security-guide/configuring-keys.html#creating-new-keys
https://docs.pingidentity.com/pingam/8/security-guide/configuring-keys.html#creating-new-keys

Ping SDKs Implement your use cases with the Ping SDKs

For example, SDK PingOne Worker .
You use this value when you configure an authentication journey that performs risk evaluations.
2.In Client ID, enter the client ID of the PingOne Worker application you created earlier.

3. In Client Secret Label Identifier, enter an identifier to create a specific secret label to represent the client secret of
the worker application.

For example, workerAppClientSecret .

The secret label uses the template am.services.pingone.worker.identifier.clientsecret where identifier is
the Client Secret Label Identifier value.

This field can only contain characters a-z, A-Z, 8-9,and . and can't start or end with a period.
4. In Environment ID, enter the environment ID containing the PingOne Worker application you created earlier.
5. Click Create

7. 0n the Workers Configuration page, ensure that the PingOne API Server URL and PingOne Authorization Server URL are
correct for the region of your PingOne servers:

PingOne URLs by region
Region Authorization URL APl URL

North America https://auth.pingone.com https://api.pingone.com/v1
(Excluding Canada)

Canada https://auth.pingone.ca https://api.pingone.ca/v1
Europe https://auth.pingone.eu https://api.pingone.eu/v1
Asia-Pacific https://auth.pingone.asia https://api.pingone.asia/v1

8. Confirm your configuration resembles the image below, and then click Save changes.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

WORKERS CONFIGURATION

SDK PingOne Worker

Client ID 6c7eb89a-66e9-46df-9ee2-eeafl795650b2 (i

Client Secret Label Identifier workerAppClientSecret (i]
Environment ID 3072206d-c6ce-4¢c19-a366-f87e972c7cc3 (i

PingOne API Server URL https://api.pingone.com/v1 (i]

PingOne Authorization Server URL https://auth.pingone.com (i]

Save Changes

Figure 4. Example worker application in PingOne

Map the Client Secret Label Identifier to a secret

To make the client secret available to the PingOne Worker Service, you must map the secret to the ID created.

Map secrets in Advanced Identity Cloud

1. In the Advanced Identity Cloud admin Ul, click Native Consoles > Access Management.
2. In the AM admin Ul (native console), go to Realm > Secret Stores.
3. Click the ESV secret store, then click Mappings.
4. Click + Add Mapping.
1. In Secret Label, select the label generated when you entered the Client Secret Label Identifier previously.
For example, am.services.pingone.worker.workerAppClientSecret.clientsecret.
2. In aliases, enter the name of the ESV secret you created earlier, including the esv- prefix, and then click Add.

For example, esv-ping-protect-client-secret

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

The result resembles the following:

Add Mapping

Secret Label

am.services.pingone.worker.workerAppClientSecret.clientsecret

aliases
esv-ping-protect-client-secret

Enter an alias

5. Click Create.

To learn more about mapping secrets and label identifiers in Advanced Identity Cloud, refer to Secret labels(Z.

Map secrets in self-managed AM

To learn about mapping secrets in self-managed AM, refer to Map and rotate secrets(Z.

You have now configured the PingOne Worker service in your server. You can now Configure a journey to perform PingOne
Protect risk evaluations.

Configure a journey to perform PingOne Protect risk evaluations

To make risk evaluations in PingOne, you must configure an authentication journey in your server.

The following table covers the authentication nodes and callbacks for integrating your authentication journeys with PingOne
Protect.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingoneaic/latest/am-reference/secret-id-mappings.html
https://docs.pingidentity.com/pingoneaic/latest/am-reference/secret-id-mappings.html
https://docs.pingidentity.com/pingam/8/security-guide/secret-mapping.html
https://docs.pingidentity.com/pingam/8/security-guide/secret-mapping.html

Implement your use cases with the Ping SDKs Ping SDKs

Node Callback Description

PingOne Protect Initialization node S PingOneProtectinitiateCallback Instruct the embedded PingOne Signals
SDK to start gathering contextual
information.

PingOne Protect Evaluation node PingOneProtectEvaluationCallback Returns contextual information that the

server can send to your PingOne
Protect instance to perform a risk
evaluation.

PingOne Protect Result node@ Non-interactive Inform the PingOne Protect instance
about the status of the transaction.

@ Note

These official PingOne Protect nodes are available in PingAM 7.5 and later, as well as PingOne Advanced Identity
Cloud.

If you are using PingAM versions 7.2 to 7.4, you should instead use the equivalent PingOne Protect Marketplace
nodes(.

The PingOne Protect marketplace nodes use a MetadataCallback (5 callback. The SDK recognizes the specific
configuration the marketplace nodes place in this callback and can use it for use with PingOne Protect.

In your server, log in as an administrator and create a new authentication journey similar to the following example:

9 Push Auth Inner Tree

PingOne Protect Evaluation

High True

Medium False
Low

Exceeds Score Threshold > PingOne Protect Result

Page Node Failure

" BOT_MITIGATION
Data Store Decision >

Platform Userna...) ClientError True °

CAPTCHA
»

True False

False

PingOne Protect Initialize BlatformiPasswy N
>
True
False

» PingOne Protect Result

Figure 5. An example PingOne Protect journey

* The PingOne Protect Initialize node(Z 1 instructs the SDK to initialize the PingOne Protect Signals APl with the configured
properties.

Initialize the PingOne Protect Signals API as early in the journey as possible, before any user interaction.

This enables it to gather sufficient contextual data to make an informed risk evaluation.

Q Tip
You can initialize the PingOne Protect Signals APl whenever you want to start collecting data. This could be at
application startup, or when a particular page or view is visited.

Learn more at initializing data collection.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectInitiateCallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectInitiateCallback
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectEvaluationCallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-interactive-callbacks.html#PingOneProtectEvaluationCallback
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://backstage.forgerock.com/marketplace/entry/0N4Pho4BHzclhgZmJDZV
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-read-only-callbacks.html#metadatacallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-read-only-callbacks.html#metadatacallback
https://docs.pingidentity.com/pingam/8/authentication-guide/authn-read-only-callbacks.html#metadatacallback
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-initialize.html

Ping SDKs Implement your use cases with the Ping SDKs

* The user enters their credentials, which are verified against the identity store.
* The PingOne Protect Evaluation node(2 performs a risk evaluation against a risk policy in PingOne.
The example journey continues depending on the outcome:
High
The journey requests that the user respond to a push notification.
Medium or Low
The risk is not significant, so no further authentication factors are required.
Exceeds Score Threshold
The score returned is higher than the configured threshold and is considered too risky to complete successfully.
Failure
The risk evaluation could not be completed, so the authentication attempt continues to the Failure node.
BOT_MITIGATION

The risk evaluation returned a recommended action to check for the presence of a human, so the journey
continues to a CAPTCHA node.

ClientError

The client returned an error when attempting to capture the data to perform a risk evaluation, so the
authentication attempt continues to the Failure node.

* An instance of the PingOne Protect Result node(J 3 returns the Success result to PingOne, which can be viewed in the
audit console to help with analysis and risk policy tuning.

* A second instance of the PingOne Protect Result node(4 returns the Failed result to PingOne, which can be viewed in
the audit console to help with analysis and risk policy tuning.

You have now configured a suitable authentication journey in your server. You can now proceed to Step 2. Install dependencies.

Step 2. Install dependencies

To capture contextual data and perform risk evaluations, you must add the PingOne Protect module to your Ping SDK project.

Select your platform below for instructions on installing the required modules or dependencies:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-evaluation.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html
https://docs.pingidentity.com/auth-node-ref/8/auth-node-pingone-protect-result.html

Implement your use cases with the Ping SDKs

Ping SDKs

AR

Ping SDK for Android

Add the PingOne Protect dependencies to your
Android project.

Ping SDK for JavaScript

Add the PingOne Protect dependencies to your
JavaScript project by using npm.

Add Android dependencies

To add the PingOne Protect dependencies to your Android project:

Ping SDK for iOS

Add the PingOne Protect dependencies to your
iOS project by using Cocoapods or Swift Package
Manager.

1. In the Project tree view of your Android Studio project, open the Gradle Scripts/build.gradle file for the module.

2.Inthe dependencies section, add the required dependencies:

Example dependencies section after editing:

dependencies {
// Ping SDK main module
implementation 'org.forgerock:forgerock-auth:4.8.1"'

// PingOne Protect module
implementation 'org.forgerock:ping-protect:4.8.1"

After installing the module, you can proceed to Step 3. Develop the client app.

Add iOS dependencies

You can use CocoaPods or the Swift Package Manager to add the PingOne Protect dependencies to your iOS project.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

Add dependencies using CocoaPods

1. If you do not already have CocoaPods, install the latest version (.

2. If you do not already have a Podfile, in a terminal window, run the following command to create a new Podfile(:

pod init

3. Add the following lines to your Podfile:

pod 'PingProtect' // Add-on for {plp_name}

4. Run the following command to install pods:

pod install

Add dependencies using Swift Package Manager

1. With your project open in Xcode, select File > Add Package Dependencies.

2. In the search bar, enter the Ping SDK for iOS repository URL: https://github.com/ForgeRock/forgerock-ios-sdk .
3. Select the forgerock-ios-sdk package, and then click Add Package.

4. In the Choose Package Products dialog, ensure that the PingProtect library is added to your target project.

5. Click Add Package.

6. In your project, import the library:

// Import the {plp_name} library
import PingProtect

After installing the module, you can proceed to Step 3. Develop the client app.

Add JavaScript dependencies

Install the PingOne Protect module by using npm:

npm install @forgerock/ping-protect

After installing the module, you can proceed to Step 3. Develop the client app.

Copyright © 2025 Ping Identity Corporation

https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/syntax/podfile.html
https://guides.cocoapods.org/syntax/podfile.html

Implement your use cases with the Ping SDKs Ping SDKs

Step 3. Develop the client app

Integrating your application with PingOne Protect enables you to perform risk evaluations during your customer’s journey.
Add code for the following tasks to fully integrate with PingOne Protect:

1. Initialize data collection

2. Pause and resume behavioral data capture

3. Return collected data for a risk evaluation

Initialize data collection

You must initialize the PingOne Signals SDK so that it collects the data needed to evaluate risk.

The earlier you can initialize the PingOne Signals SDK, the more data it can collect to make a risk evaluation.

You can initialize the PingOne Signals SDK by using the start() method, which supports the following parameters:
Parameter

Description
Android ioSs JavaScript

envID Required. Your PingOne environment identifier.

Optional. A list of device attributes to ignore
when collecting device signals.

For example, AUDIO_OUTPUT_DEVICES or
IS_ACCEPT_COOKIES .

deviceAttributesToIgnore

, , , , , When true, collect behavioral data.
isBehavioralDataCollection behavioralDataCollection .
Defaultis true.
When true, output SDK log messages in the
isConsolelLogEnabled consolelLogEnabled developer console.
Defaultis false.

When true, calculate metadata on demand
isLazyMetadata lazyMetadata rather than automatically after calling start.

Defaultis false.

Number of days that device attestation can rely

deviceKeyRsync
N/A A upon the device fallback key.
Intervals
Default: 14
When true, the client stores device data in the
. browser's localStorage only.
N/A disableHub

When false the client uses an iframe.
Defaultis false.

Copyright © 2025 Ping Identity Corporation

Ping SDKs

Implement your use cases with the Ping SDKs

N/A disableTags
N/A enableTrust
externalldenti
N/A .
fiers
N/A hubuUrl
waitForWindowL
N/A
oad

There are two options for initializing the PingOne Signals SDK:
1. Initialize manually
2. Initialize based on a callback

Initialize manually

When true, the client does not collect tag data.
Tags are used to record the pages the user
visited, forming a browsing history.

Defaultis false.

When true, tie the device payload to a non-
extractable crypto key stored in the browser for
content authenticity verification.

Defaultis false.

Optional. A list of custom identifiers that are
associated with the device entity in PingOne
Protect.

Optional. The iframe URL to use for cross-
storage device IDs.

When true, initialize the SDK on the load
event, instead of the DOMContentLoaded event.
Defaultis true.

Call the start() method before users start interacting with your application to gather the most data and make the most

informed risk evaluations.

Pass in the configuration parameters as required.

Android

try {
val params =
PIInitParams(
envId = "3072206d-c6ce-ch15-mOnd-f87e972¢c7cc3",
)
PIProtect.start(context, params)
Logger.info("Settings Protect”, "Initialize succeeded")
} catch (e: Exception) {
Logger.error("Initialize Error", e.message)
throw e

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

i0S
let initParams = PIInitParams(envId: "3072206d-c6ce-ch15-m@Ond-f87e972c7cc3")
PIProtect.start(initParams: initParams) { error in
if let error = error as? NSError {
FRLog.e("Initialize error: \(error.localizedDescription)")
} else {
FRLog.i("Initialize succeeded")
}
}
JavaScript

import { PIProtect } from '@forgerock/ping-protect’;

try {
// Initialize PingOne Protect with manual configuration
PIProtect.start({ envId: '30722086d-c6ce-ch15-m@nd-f87e972c7cc3' });
} catch (err) {
console.error(err);

}

Initialize based on a callback

Not all authentication journeys perform risk evaluations, and therefore do not need to initialize data collection. You can choose to
initialize capture of data on receipt of the PingOneProtectInitializeCallback callback rather than during app start up.

The callback also provides the configuration parameters.

Android

try {

val callback =
node.getCallback(PingOneProtectInitializeCallback: :class.java)

callback.start(context)

} catch (e: PingOneProtectInitException) {
Logger.error("PingOneInitException”, e, e.message)

} catch (e: Exception) {
Logger.error("PingOneInitException”, e, e.message)
callback.setClientError(e.message);

}

node.next()

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

i0S

if callback.type == "PingOneProtectInitializeCallback",
let pingOneProtectInitCallback = callback as? PingOneProtectInitializeCallback
{
pingOneProtectInitCallback.start { result in
DispatchQueue.main.async {
var initResult = ""
switch result {
case .success:
initResult = "Success"
case .failure(let error):
initResult = "Error: \(error.localizedDescription)"
}
FRLog.i("{p1p_name} Initialize Result: \n\(initResult)")
handleNode(node)

}

return

JavaScript

import { PIProtect } from '@forgerock/ping-protect’;

if (step.getCallbacksOfType('PingOneProtectInitializeCallback')) {
const callback = step.getCallbackOfType('PingOneProtectInitializeCallback');

// Obtain config properties from the callback
const config = callback.getConfig();

console.log(JSON.stringify(config));

try {
// Initialize {plp_name} with configuration from callback
await PIProtect.start(config);

} catch (err) {
// Add any errors to the callback
callback.setClientError(err.message);

}

FRAuth.next(step);

Pause and resume behavioral data capture

The PingOne Protect Signals SDK can capture behavioral data, such as how the user interacts with the app, to help when
performing evaluations.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

There are scenarios where you might want to pause the collection of behavioral data. For example, the user might not be
interacting with the app, or you only want to use device attribute data to be considered when performing PingOne Protect
evaluations. You can then resume behavioral data collection when required.

The SDKs provide the pauseBehavioralData() and resumeBehavioralData() methods for pausing and resuming the capture of
behavioral data.

The PingOneProtectEvaluationCallback callback can include a flag to pause or resume behavioral capture that you should
respond to as follows:

Android

val callback =
node.getCallback(PingOneProtectEvaluationCallback: :class. java)

const shouldPause = callback.pauseBehavioralData
Logger.info("PingOneProtectEvaluationCallback", "getPauseBehavioralData: ${shouldPause}")
if (shouldPause) {

PIProtect.pauseBehavioralData()
}

i0S

if callback.type == "PingOneProtectEvaluationCallback",
let pingOneProtectEvaluationCallback = callback as? PingOneProtectEvaluationCallback

{

if let shouldPause = pingOneProtectEvaluationCallback.pauseBehavioralData, shouldPause {
PIProtect.pauseBehavioralData()

}

JavaScript

const callback = step.getCallbackOfType('PingOneProtectEvaluationCallback');
const shouldPause = callback.getPauseBehavioralData();

console.log(getPauseBehavioralData: ${shouldPause}’);

if (shouldPause) {
PIProtect.pauseBehavioralData();

}

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

Return collected data for a risk evaluation

To perform risk evaluations, the PingOne server requires the captured data.

On receipt of a PingOneProtectEvaluationCallback callback, use the getData() method to populate the response with the
captured data.

Android

try {

val callback =
node.getCallback(PingOneProtectEvaluationCallback: :class.java)

callback.getData(context)

} catch (e: PingOneProtectEvaluationException) {
Logger.error("PingOneRiskEvaluationCallback", e, e.message)

} catch (e: Exception) {
Logger.error("PingOneRiskEvaluationCallback", e, e.message)

}
i0S
if callback.type == "PingOneProtectEvaluationCallback",
let pingOneProtectEvaluationCallback = callback as? PingOneProtectEvaluationCallback
{

pingOneProtectEvaluationCallback.getData { result in
DispatchQueue.main.async {
var evaluationResult = ""
switch result {
case .success:

evaluationResult = "Success"
case .failure(let error):
evaluationResult = "Error: \(error.localizedDescription)"
}
FRLog.i("{p1p_name} Evaluation Result: \n\(evaluationResult)")
handleNode (node)
}
}
return

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

JavaScript

let data;
if (step.getCallbacksOfType('PingOneProtectEvaluationCallback')) {

const callback = step.getCallbackOfType('PingOneProtectEvaluationCallback');
try {

// Asynchronous call

data = await PIProtect.getData();
} catch (err) {

// Add any errors to the callback

callback.setClientError(err.message);

}
}
callback.setData(data);
FRAuth.next(step);

Set up user profile self service

Applies to:
v Ping SDK for Android
v Ping SDKfor iOS

v Ping SDK for JavaScript

The Ping SDKs support many of the callbacks used by authentication journeys, including ones that enable your users to manage
their own profile information, such as name, address, phone numbers and marketing preferences.

To update a user’s profile information you must have already authenticated them and issued a session token. You can then use
that session token to start a new journey which allows the user to update their profile data.
Compatibility
PingIDM is responsible for profile management. Therefore this tutorial is only compatible with the following server environments:
* PingOne Advanced Identity Cloud
* PingAM and PingIDM deployed together as the Ping Identity Platform (ForgeRock Identity Platform)Z

* PingAM and PingIDM deployed together by using ForgeRock DevOps (ForgeOps)&

Before you begin

You must create an authentication journey that checks for the presence of a user session and then displays the user profile fields
for editing. The journey must also update the profile with any changed values.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/platform/8/platform-guide/about.html
https://docs.pingidentity.com/platform/8/platform-guide/about.html
https://docs.pingidentity.com/forgeops/2025.1
https://docs.pingidentity.com/forgeops/2025.1

Ping SDKs Implement your use cases with the Ping SDKs

Create a user profile management journey

Follow the steps below to create a user profile management journey:
1. Create a new journey or tree and give it a name:
1. In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.
2. Enter a name, such as sdkProfileManagement and click Save.
The authentication journey designer appears.
1. Under Realm Overview, click Authentication Trees, then click Create Tree.
2. Enter a tree name, for example sdkProfileManagement , and then click Create.
The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.
2. Drag the following nodes into the designer area:
o Get Session Data
° Attribute Collector
o Patch Object
o Data Store Decision

3. Connect the nodes as follows:

& Journeys sdkProfileManagement (X507 Preview URL: https://openam-docs.. [@

c} Q ra & All Changes Saved Save ® oes

Patch Object
» Get Session Data » Attribute Collector
Patched

Failed

Figure 1. Example profile management authentication journey

4. Select the Get Session Data node and configure it to obtain the user’s account name from the session and store it in
shared state, as follows:

1. In Session Data Key, enter UserToken .

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs

Ping SDKs

@ Important

This field is case-sensitive. The value must exactly match the name of a property in the user’s session.
For a list of properties, refer to Get Session Data node .

2. In Shared State Key, enter userName .

The result resembles the following:

Get Session Data X

Retrieves the value of a specified key
from a user's session data.

Name

Get Session Data

Session Data Key ®

UserToken

Shared State Key ®

userName

Figure 2. Configure the Get Session Data node for profile management.

5. Select the Attribute Collector node and configure it with the profile attributes you want the user to view and edit:

1. In Attributes to Collect, enter the profile attributes to display. For example:

givenName

sn

mail
telephoneNumber
postalAddress

city

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-get-session-data.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-get-session-data.html

Ping SDKs Implement your use cases with the Ping SDKs

® country
m preferences/marketing
2. In Identity Attribute, enter userName .

The result resembles the following:

Attribute Collector X

Prompts the user to enter any
specified attributes.

Name

Attribute Collector

Attributes to Collect ®

givenName x sn X
mail X

telephoneNumber x
postalAddress x city x
country X

preferences/marketing X

All Attributes Required ®
Validate Input ®

Identity Attribute ®

userName

Figure 3. Configure the Attribute Collector node for profile management.
6. Select the Patch Object node and configure it to update the user's profile:
1. In Identity Resource, enter managed/alpha_user .
2. In Identity Attribute, enter userName .

The result resembles the following:

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

Patch Object X

Patches an object with the attributes
within shared state.

Name

Patch Object

Patch As Object @

Ignored Fields ®

Identity Resource ®

managed/alpha_user

Identity Attribute @

userName

Figure 4. Configure the Patch Object node for profile management.
7. Click Save.

Server configuration

This tutorial requires you to configure one of the following servers:

PingOne .
Advanced Identity Cloud PingAM

PingAM
PingOne Advanced Identity Cloud

PingOne Advanced Identity Cloud

The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.

To create a demo user in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.

2. In the left panel, click Identities > Manage.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

3. Click + New Alpha realm - User.
4. Enter the following details:
o Username = demo
o First Name = Demo
o Last Name = User
o Email Address = demo.user@example.com
o Password = Ch4ng3it!
5. Click Save.

Authentication journeys provide fine-grained authentication by allowing multiple paths and decision points throughout the flow.
Authentication journeys are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(Z in the PingAM
documentation.

To create a simple journey for use when testing the Ping SDKs, follow these steps:
1. In your PingOne Advanced Identity Cloud tenant, navigate to Journeys, and click + New Journey.
2. Enter a name, such as sdkUsernamePasswordJourney and click Save.
The authentication journey designer appears.

3. Drag the following nodes into the designer area:
° Page Node
° Platform Username
° Platform Password
o Data Store Decision

4. Drag and drop the Platform Username and Platform Password nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Implement your use cases with the Ping SDKs Ping SDKs

< Journeys sdkUsernamePasswordjourney ®

+ Add Nodes Q Q

rm
L

E u}

Page Node

Data Store Decision

> Platform Userna...
True

False
Platform Passwo... ‘

Figure 5. Example username and password authentication journey

6. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in PingOne Advanced Identity Cloud, follow these steps:
1. Log in to your PingOne Advanced Identity Cloud tenant.
2. In the left panel, click Applications.
3. Click + Custom Application.
4. Select OIDC - Openld Connect as the sign-in method, and then click Next.
5. Select Native / SPA as the application type, and then click Next.
6. In Name, enter a name for the application, such as Public SDK Client.

7.1n Owners, select a user that is responsible for maintaining the application, and then click Next.

Q Tip

When trying out the SDKs, you could select the demo user you created previously.

8.In Client ID, enter sdkPublicClient, and then click Create Application.
PingOne Advanced Identity Cloud creates the application and displays the details screen.
9. On the Sign On tab:
1. In Sign-In URLs, enter the following values:

org.forgerock.demo://oauth2redirect

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

@ Important

Also add any other domains where you host SDK applications.

2.In Grant Types, enter the following values:
Authorization Code
Refresh Token
3. In Scopes, enter the following values:
openid profile email address
10. Click Show advanced settings, and on the Authentication tab:
1. In Token Endpoint Authentication Method, select none .
2.In Client Type, select Public .
3. Enable the Implied Consent property.
11. Click Save.

The application is now configured to accept client connections from and issue OAuth 2.0 tokens to the example applications and
tutorials covered by this documentation.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

To ensure the PingOne Advanced Identity Cloud OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these
steps:

1. In your PingOne Advanced Identity Cloud tenant, navigate to Native Consoles > Access Management.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.
4. 0On the Core tab, ensure Issue Refresh Tokens is enabled.
5. On the Consent tab, ensure Allow Clients to Skip Consent is enabled.
6. Click Save Changes.
PingAM
The samples and tutorials in this documentation often require that you have an identity set up so that you can test
authentication.
To create a demo user in PingAM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B8 Identities, and then click + Add Identity.
3. Enter the following details:

o User ID = demo

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

o Password = Ch4ng3it!
o Email Address = demo.user@example.com
4. Click Create.

Authentication trees provide fine-grained authentication by allowing multiple paths and decision points throughout the
authentication flow. Authentication trees are made up of nodes that define actions taken during authentication.

Each node performs a single task, such as collecting a username or making a simple decision. Nodes can have multiple outcomes
rather than just success or failure. For details, see the Authentication nodes configuration reference(J in the PingAM
documentation.

To create a simple tree for use when testing the Ping SDKs, follow these steps:
1. Under Realm Overview, click Authentication Trees, then click Create Tree.
2. Enter a tree name, for example sdkUsernamePasswordJourney , and then click Create.
The authentication tree designer appears, showing the Start entry point connected to the Failure exit point.

3. Drag the following nodes from the Components panel on the left side into the designer area:
o Page Node
o Username Collector
o Password Collector
o Data Store Decision

4. Drag and drop the Username Collector and Password Collector nodes onto the Page Node, so that they both appear on
the same page when logging in.

5. Connect the nodes as follows:

Start @ - Page Node [= ~@ Data Store Decision
True @— —@ Success
Username Collector Fass @i & Il .

Password Collector
® Failure

Figure 6. Example username and password authentication tree

6. Select the Page Node, and in the Properties pane, set the Stage property to UsernamePassword .

Q Tip

You can configure the node properties by selecting a node and altering properties in the right-hand panel.

One of the samples uses this specific value to determine the custom Ul to display.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html
https://docs.pingidentity.com/pingam/8/authentication-guide/auth-node-configuration-hints.html

Ping SDKs Implement your use cases with the Ping SDKs

7. Click Save.

Public clients do not use a client secret to obtain tokens because they are unable to keep them hidden. The Ping SDKs commonly
use this type of client to obtain tokens, as they cannot guarantee safekeeping of the client credentials in a browser or on a mobile
device.

To register a public OAuth 2.0 client application for use with the SDKs in AM, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. Navigate to B3 Applications > OAuth 2.0 > Clients, and then click + Add Client.
3.In Client ID, enter sdkPublicClient .
4. Leave Client secret empty.
5. In Redirection URIs, enter the following values:
org.forgerock.demo://oauth2redirect

@ Important

Also add any other domains where you will be hosting SDK applications.

6. In Scopes, enter the following values:
openid profile email address
7. Click Create.
PingAM creates the new OAuth 2.0 client, and displays the properties for further configuration.
8. On the Core tab:
1. In Client type, select Public.
2. Disable Allow wildcard ports in redirect URIs.
3. Click Save Changes.
9. On the Advanced tab:
1.In Grant Types, enter the following values:

Authorization Code
Refresh Token

2. In Token Endpoint Authentication Method, select None .
3. Enable the Implied consent property.
10. Click Save Changes.

The provider specifies the supported OAuth 2.0 configuration options for a realm.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

To ensure the PingAM OAuth 2.0 provider service is configured for use with the Ping SDKs, follow these steps:
1. Log in to the PingAM admin Ul as an administrator.
2. In the left panel, click ¥ Services.
3. In the list of services, click OAuth2 Provider.
4. 0n the Core tab, ensure Issue Refresh Tokens is enabled.
5. On the Consent tab, ensure Allow Clients to Skip Consent is enabled.

6. Click Save Changes.

Try it out
Follow the steps below to configure and run one of our sample applications to test profile self-management.

Step 1. Download the sample apps

To start this tutorial, you need to download the Ping SDK sample apps repo, which contains the projects you will use.
1. In a web browser, navigate to the Ping SDK sample apps repository (.
2. Download the source code using one of the following methods:
Download a ZIP file
1. Click Code, and then click Download ZIP.
2. Extract the contents of the downloaded ZIP file to a suitable location.
Use a Git-compatible tool to clone the repo locally
1. Click Code, and then copy the HTTPS URL.
2. Use the URL to clone the repository to a suitable location.

For example, from the command-line you could run:

git clone https://github.com/ForgeRock/sdk-sample-apps.git ©

The result of these steps is a local folder named sdk-sample-apps .

Step 2. Configure sample apps

Depending on the platform you are using, follow the steps below to configure a sample application to connect to your server.

Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps
https://github.com/ForgeRock/sdk-sample-apps.git
https://github.com/ForgeRock/sdk-sample-apps.git

Ping SDKs Implement your use cases with the Ping SDKs

Android

In this step, you configure the "kotlin-ui-prototype" sample to connect to your server.

1. In Android Studio, open the sdk-sample-apps/android/kotlin-ui-prototype folder you cloned in the previous
step.

2.In the Project pane, switch to the Android view.
3. In the Android view, navigate to app > kotlin+java > com.example.app > env, and open EnvViewModel.kt .

This file has the server environments the sample app uses. Each specifies the properties using the
FROptionsBuilder.build method.

4. Update the PingAM or PingAdvancedIdentityCloud example configuration values to match your server
environment:

url
The URL of the server to connect to.
Identity Cloud example:
https://openam-forgerock-sdks.forgeblocks.com/am
Self-hosted example:
https://openam.example.com:8443/openam
cookieName
The name of the cookie that contains the session token.
For example, with a self-hosted PingAM server this value might be iPlanetDirectoryPro.
Q Tip
) PingOne Advanced Identity Cloud tenants use a random alpha-numeric string.

To locate the cookie name in an PingOne Advanced Identity Cloud tenant, navigate to Tenant
settings > Global Settings, and copy the value of the Cookie property.

realm
The realm in which the OAuth 2.0 client profile and authentication journeys are configured.
Usually, root for AM and alpha or beta for Advanced Identity Cloud.

oauthClientld
The client ID of your OAuth 2.0 application in PingOne Advanced Identity Cloud or PingAM.
For example, sdkPublicClient

oauthRedirectUri

The redirect_uri as configured in the OAuth 2.0 client profile.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

@ Note

This value must exactly match a value configured in your OAuth 2.0 client.

For example, org.forgerock.demo://oauth2redirect .

5. Update the USER_PROFILE_JOURNEY variable with the name of the profile management journey you created
earlier.

For example, sdkProfileManagement

6. Save your changes.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

i0S

In this step, you configure the "FRExample" sample app to connect to your server.
1. In Xcode, on the File menu, click Open.

2. Navigate to the sdk-sample-apps folder you cloned in the previous step, navigate to i0S > uikit-frexamples >
FRExample > FRExample.xcodeproj, and then click Open.

3. In the navigator pane in Xcode, right-click FRExample/Configs/FRAuthConfig and select Open As > Source Code.
4. Update the following key values to match your server environment:
forgerock_url
The URL of the server to connect to.
Identity Cloud example:
https://openam-forgerock-sdks.forgeblocks.com/am
Self-hosted example:
https://openam.example.com:8443/openam
forgerock_cookie_name
The name of the cookie that contains the session token.

For example, with a self-hosted PingAM server this value might be iPlanetDirectoryPro.

Q Tip

PingOne Advanced Identity Cloud tenants use a random alpha-numeric string.
To locate the cookie name in an PingOne Advanced Identity Cloud tenant, navigate to Tenant
settings > Global Settings, and copy the value of the Cookie property.

forgerock_realm
The realm in which the OAuth 2.0 client profile and authentication journeys are configured.
Usually, root for AM and alpha or beta for Advanced Identity Cloud.

forgerock oauth_client_id
The client ID of your OAuth 2.0 application in PingOne Advanced Identity Cloud or PingAM.
For example, sdkPublicClient

forgerock oauth_redirect_uri

The redirect_uri as configured in the OAuth 2.0 client profile.

@ Note

This value must exactly match a value configured in your OAuth 2.0 client.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

For example, org.forgerock.demo://oauth2redirect .

5. Save your changes.

Step 3. Run the sample app

Depending on the platform you are using, follow the steps below to run the sample application, obtain a session token, and use it
to complete the self-registration journey you created earlier.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

Android

1. In Android Studio, select Run > Run 'app".

2. Tap the menu icon (=), and then tap 57 Launch Journey.

3. In Journey Name enter the name of a journey that will authenticate the user and issue a session, and then click
Submit.

For example, enter sdkUsernamePasswordJourney to use the authentication tree you created earlier.
4. Sign on as a demo user:
° Name: demo
° Password: Ch4ng3it!
5. After successful authentication, tap the menu icon (=), and then tap & User Profile.

The app sends the session token to the journey which extracts the username and returns their profile information:

¥.40100%
Demo App

= User

— First Name

Demo

— Last Name

User

— Email Address

demo.user@example.com

— Telephone Number

01234 567 6789

— Address 1

123 Fake Street

— City

Faketown

— Country

United Kingdom

Send me special offers and services

©
«

Figure 7. Viewing a user’s profile information in an Android sample app.

6. Update any of the presented properties and then click Next.

7. To verify the profile was updated, tap the menu icon (=), and then tap (&) user Profile.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

The app displays the updated profile values.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

i0S

1. In Xcode, select Product > Run.
Xcode launches the FRExample app in the iPhone simulator.

2. In the sample app on the iPhone simulator, in the Select an action menu, select Login with Ul (FRUser), and then
click Perform Action.

3. Sign on as a demo user:
° Name: demo
o Password: Ch4ng3it!

4. After successful authentication, in the Select an action menu, select FRSession.authenticate with Ul (Token), and
then click Perform Action.

5. In the popup window, enter the name of the profile management journey you created earlier, and then click
Continue.

For example, sdkProfileManagement
6. Update any of the presented properties and then click Next.

The app sends the session token to the journey which extracts the username and returns their profile information:

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

(4

FORGEROCK

Demo

User
demo.user@example.com
01234 567 6789

123 Fake Street

Figure 8. Viewing a user’s profile information in an iOS sample app.
7. Update any of the presented properties and then click Next.

8. To verify the profile was updated, tap Perform Action again, enter the name of your profile management tree and
then click Continue.

The app displays the updated profile values.

Set up registered device self service

Applies to:
v Ping SDK for Android
v Ping SDKfor iOS

v Ping SDK for JavaScript

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

The Ping SDKSs can retrieve a list of the devices your users register to their accounts. Users can then manage their own devices,
for example delete or rename them.

PingOne Advanced Identity Cloud and PingAM support registration of many different device types to support your multi-factor
authentication journeys:

OATH devices
The registered device generates a one-time passcode that your users enter into the authentication journey.
Register OATH devices using the OATH Registration node (.

To learn more about implementation, refer to Implement MFA using OATH one-time passwords.

PUSH devices

The registered device receives a PUSH notification from the server that the user must approve to continue their
authentication journey.

Register PUSH devices using the Push Registration node .
To learn more about implementation, refer to Implement MFA using push notifications.

WebAuthn devices

The registered device acts as an authenticator and uses public-key cryptography to securely sign an assertion from the
server.

Register WebAuthn devices using the WebAuthn Registration node (4.
To learn more about implementation, refer to Implement mobile biometrics and Implement web biometrics.

Device binding

The registered device generates a key pair and a key ID. The Ping SDKs send the public key and key ID to PingOne
Advanced Identity Cloud or PingAM for storage in the user’s profile.

Bind devices using the Device Binding node .
To learn more about implementation, refer to Bind and verify user devices.
Device profiling

The Ping SDKs collect specific data about the registered device to create a profile that helps to identify it during
authentication journeys.

Profile devices using the Device Profile Collector node .
To learn more about implementation, refer to Device profile client configuration.

The Ping SDKs provide utility methods for managing each type of registered device:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-oath-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-push-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-binding.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-profile-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-device-profile-collector.html

Implement your use cases with the Ping SDKs Ping SDKs

Methods for managing devices

Type Get Update Delete

OATH oath.get() Not supported oath.delete(device)
PUSH push.get() Not supported push.delete(device)
WebAuthn webAuthn.get() webAuthn.update(device) webAuthn.delete(device)
Device bound.get() bound.update(device) bound.delete(device)
binding

Device profile.get() profile.update(device) profile.delete(device)
profiles

Getting lists of devices

To get a list of devices you must have an active session for the user. The Ping SDKs include the session token when making calls to
the device management endpoints.

Session tokens often have a short duration and expire after 5 minutes. If the client does not have an active session token you
should trigger an authentication journey to obtain a new session token before attempting to manage registered devices.

@ Note

Device management is not available when using OIDC login, as the Ping SDKs do not have direct access to the session
token, which remains in the embedded browser.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

Examples

Android

1. Import and initialize deviceClient:

import org.forgerock.android.auth.selfservice.Device

private val deviceClient = DeviceClient()

2. Call the get() method to retrieve lists of devices:

"Oath" -> deviceClient.oath.get()

"Push" -> deviceClient.push.get()
"WebAuthn" -> deviceClient.webAuthn.get()
"Binding" -> deviceClient.bound.get()
"Profile" -> deviceClient.profile.get()

i0S

1. Import FRAuth and initialize deviceClient:

import FRAuth

let deviceClient = DeviceClient()

2. Call the get() method to retrieve lists of devices:

let oathDevices = try await deviceClient.oath.get()

let pushDevices = try await deviceClient.push.get()

let webAuthnDevices = try await deviceClient.webAuthn.get()
let bindingDevices = try await deviceClient.bound.get()

let profileDevices = try await deviceClient.profile.get()

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

JavaScript

1. Import the deviceClient module from the Ping SDK for JavaScript, and provide a ConfigOptions object to
initialize device self-service functionality:

import { deviceClient } from '@forgerock/javascript-sdk/device-client"';
import { type ConfigOptions } from '@forgerock/javascript-sdk';

const config: ConfigOptions = {
serverConfig: {
baseUrl: 'https://openam-forgerock-sdks.forgeblocks.com/am",

Yo
realmPath: 'alpha',
b

const deviceClient = deviceClient(config);

2. Call the get() method, with optional query, to retrieve a list of devices.

For example, the following code gets a list of all the user's OATH devices:

const oathQuery: RetrieveOathQuery = {
/* your query parameters */

b
deviceClient.oath
.get(oathQuery)
.then((response) => {
console.log('OATH Devices:', response);
})
.catch((error) => {
console.error('Error fetching OATH devices:', error);
P

Renaming a device
You can rename some types of registered device, with the following caveats:
1. You can only rename these device types:
o Bound devices
o Device profiles
o WebAuthn devices
2. The authentication journey that provided the users' session must fulfil one or more of the following criteria:

o Used same multi-factor authentication method as the device you want to rename.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

For example, to rename a WebAuthn device the authentication journey that created the session must also
authenticate using a WebAuthn device.

Or:
> Used the Enable Device Management node(that alters the Device Check Enforcement Strategy.

Examples

Android

fun update(device: Device) {
viewModelScope.launch {
try {
when (device) {
is WebAuthnDevice -> deviceClient.webAuthn.update(device)
is BoundDevice -> deviceClient.bound.update(device)
is ProfileDevice -> deviceClient.profile.update(device)
else -> throw IllegalArgumentException("Unsupported Device Type")
}
fetch(selectedType)
} catch (e: Exception) {
yield()
state.update { it.copy(devices = emptylList(), throwable = e) }

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-enable-device-management.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-enable-device-management.html

Implement your use cases with the Ping SDKs Ping SDKs

i0S
let alert = UIAlertController(title: "Edit Device Name",
message: device.id,
preferredStyle: .alert)
alert.addTextField { textField in
textField.text = device.deviceName
}
let okAction = UIAlertAction(title: "Submit", style: .default) { [unowned alert] _ in
let updateDeviceName = alert.textFields![@].text!
Task {
do {
if var device = device as? BoundDevice {
device.deviceName = updateDeviceName
try await self.deviceClient.bound.update(device)
} else if var device = device as? ProfileDevice {
device.deviceName = updateDeviceName
try await self.deviceClient.profile.update(device)
} else if var device = device as? WebAuthnDevice {
device.deviceName = updateDeviceName
try await self.deviceClient.webAuthn.update(device)
}
} catch AuthApiError.apiFailureWithMessage(let reason, let message, let code, _) {
self.showAlert(title: reason, message: message + " - \(String(describing: code ?? 8))")
}
self.reloadAllDevices()
}
}
JavaScript

const updateWebAuthnQuery: WebAuthnQueryWithUUID & WebAuthnBody = {
/* your update query */
b

deviceClient.webAuthn
.update(updateWebAuthnQuery)
.then((response) => {

console.log('Updated WebAuthn Device:', response);
})
.catch((error) => {

console.error('Error updating WebAuthn device:', error);
3

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

Deleting a device

You can delete or deregister a device, with the following caveats:
1. The authentication journey that provided the users' session must fulfil one or more of the following criteria:
o Used same multi-factor authentication method as the device you want to delete.

For example, to delete a WebAuthn device the authentication journey that created the session must also
authenticate using a WebAuthn device.

Or:
> Used the Enable Device Management node(that alters the Device Check Enforcement Strategy.

Examples

Android

fun delete(device: Device) {
viewModelScope.launch {
try {
when (device) {
is OathDevice -> deviceClient.oath.delete(device)
is PushDevice -> deviceClient.push.delete(device)
is WebAuthnDevice -> deviceClient.webAuthn.delete(device)
is BoundDevice -> deviceClient.bound.delete(device)
is ProfileDevice -> deviceClient.profile.delete(device)
else -> throw IllegalArgumentException("Unsupported Device Type")
}
fetch(selectedType)
} catch (e: Exception) {
yield()
state.update { it.copy(devices = emptylList(), throwable = e) }

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-enable-device-management.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-enable-device-management.html

Implement your use cases with the Ping SDKs Ping SDKs

i0S

let delete = UIContextualAction(style: .destructive, title: "Delete") { (action, view, completion) in
let alert = UIAlertController(title: "Delete Device", message: "Are you sure you want to delete device
\"\(device.deviceName)\"?", preferredStyle: .alert)

alert.addAction(UIAlertAction(title: "Yes", style: .destructive, handler: { (alert: UIAlertAction!) in
Task {
do {
if let device = device as? BoundDevice {
try await self.deviceClient.bound.delete(device)
} else if let device = device as? ProfileDevice {
try await self.deviceClient.profile.delete(device)
} else if let device = device as? WebAuthnDevice {
try await self.deviceClient.webAuthn.delete(device)
} else if let device = device as? OathDevice {
try await self.deviceClient.oath.delete(device)
} else if let device = device as? PushDevice {
try await self.deviceClient.push.delete(device)
}
} catch AuthApiError.apiFailureWithMessage(let reason, let message, let code, _) {
self.showAlert(title: reason, message: message + " - \(String(describing: code ?? 8))")
}
self.reloadAllDevices()
}
completion(true)

H)

JavaScript

const deleteWebAuthnQuery: WebAuthnQueryWithUUID & WebAuthnBody = {
/* your delete query */
b

deviceClient.webauthn
.delete(deleteWebAuthnQuery)
.then((response) => {
console.log('Deleted WebAuthn Device:', response);

})
.catch((error) => {
console.error('Error deleting WebAuthn device:', error);

3

Limitations
+ The SDK for JavaScript does not apply the following customizations when using the device management endpoints:
o Customized REST calls using interceptors

o Customized logging behaviors

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

What are mobile biometrics?

Applies to:
v Ping SDK for Android
v Ping SDKfor iOS

X Ping SDK for JavaScript

Mobile biometric authentication lets users authenticate by using a mobile device's biometric authenticator. Communication with
the platform authenticator, such as fingerprint reader or facial recognition system, is handled by the SDK. The SDK communicates
with PingAM to perform biometric registration and authentication using WebAuthn nodes. You can configure the nodes in PingAM
to request that the SDK activates authenticators with certain criteria.

To enable mobile biometrics, the user’s authenticator must first be registered through an authentication journey with the
WebAuthn Registration node. Registration involves the selected authenticator creating a key pair. This key pair is specific to the
origin of the application performing the authentication. The private key is used to sign the challenge from PingAM and create
attestation for the authenticator.

The public key of the pair is sent to PingAM and stored in the user’s profile. The private key is securely stored within the mobile
device’s and never leaves the device at any time.

When authenticating using mobile biometrics, the registered user encounters the WebAuthn Authentication node via an
authentication journey. A challenge from PingAM is created and sent to the user’s device. The device then signs an assertion from
that challenge with its stored, private key. This assertion is then sent to PingAM for verification using the public key stored in the
user’s profile. If the data is verified as being from the registered authenticator and passes attestation checks, the authentication is
considered successful.

Differences between device binding and WebAuthn

There are many similarities between WebAuthn and Device Binding and JWS verification. We provide authentication nodes to
implement both technologies in your journeys.

Both can be used for usernameless and passwordless authentication, they both use public key cryptography, and both can be
used as part of a multi-factor authentication journey.

One major difference is that with device binding, the private key never leaves the device.

With WebAuthn, there is a possibility that the private key is synchronized across client devices because of Passkey support, which
may be undesirable for your organization.

For more details of the differences, refer to the following table:

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

Comparison of WebAuthn and Device Binding//WS Verification

Feature WebAuthn / FIDO Device Binding / JWS Details
Verifier

Industry-standards based You can refer to the WebAuthn W3C
specificationZ.

Device binding and JWS verification are
proprietary implementations.

Public key cryptography Both methods use Public key
cryptography .

Usernameless support After registration, the username can be
stored in the device and obtained
during authentication without the user
having to enter their credentials.

Keys are bound to the With WebAuthn, if Passkeys are used,

device they can be shared across devices.
With device binding, the private keys do
not leave the device.

Sign custom data With device binding, you can:

« Customize the challenge that the
device must sign. For example,
you could include details of a
transaction, such as the amount
in dollars.

X + Add custom claims to the
payload when signing a
challenge. This gives additional
context that the server can make
use of by using a scripted node.
Refer to Add custom claims
when signing.

Format of signed data WebAuthn authenticator JSON Web Signature
datall gws)2

Integration With device binding, after verification,
the signed JWT is available in:

* Audit Logs
X * Transient node state

This enables the data within to be used
for integration into your processes and
business logic.

Copyright © 2025 Ping Identity Corporation

https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#authenticator-data
https://www.w3.org/TR/webauthn/#authenticator-data
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://openid.net/specs/draft-jones-json-web-signature-04.html
https://openid.net/specs/draft-jones-json-web-signature-04.html

Ping SDKs

Implement your use cases with the Ping SDKs

Feature

Platform support

Authenticator support

Key storage

Managing device keys

Passkey Support

WebAuthn / FIDO

) Android
ioS
Web browsers

Determined by the
platform.
Configuration limited to:

» Biometric with
Fallback to Device
Pin

Web browsers and iOS

synchronize to the cloud.
Android has the option to
synchronize to the cloud.

Managed by the device
OsS.

Apps cannot delete /ocal
client keys
programmatically and do
not have a reference to
the remote server key for
deletion.

Device Binding / JWS
Verifier

) Android
io0S
X Web browsers

Determined by the
authentication node.
Full configuration
options:

* Biometric
Authentication

* Biometric with
Fallback to Device
Pin

+ Application Pin

« Silent

Android
KeyStore

ioS
Secure enclave:
hardware-backed
and not
synchronized to
the cloud.

Managed by the Ping
SDKs.

Provides an interface to
delete local client and
remote server keys.

Details

As it is challenging to store secure data
in a browser as a client app, device
binding is not supported in web
browsers.

With device binding, you can specify
what authentication action the user
must perform to get access to the
private keys.

This provides greater flexibility in your
security implementation and can
reduce authentication friction for your
users.

Both technologies store the private keys
securely on the client.

WebAuthn supports synchronizing the
private keys to the cloud for use on
other devices.

This can reduce authentication friction
for your users but may also increase
the risk of a breach.

The ability to programmatically delete
both client and server keys can greatly
simplify the process of registering a
new device if an old device is lost or
stolen.

WebAuthn supports synchronizing the
private keys to the cloud for use on
other devices.

Device binding keeps the private key
locked in the device.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs

Ping SDKs

Feature

App integrity verification

Key attestation

Complexity

Prerequisites

WebAuthn / FIDO

Android
Requires an
assetlinks.json
file.

ioS

Requires apple-
app-site-
association file.

Android
SafteyNet

ioS

None

Medium

Device Binding / JWS
Verifier

Not provided by the
device binding or
verification nodes.

It can be added as part of
the journey by using app
integrity nodes.

Android
Uses hardware-
backed key pairs
with Key
Attestation (2,
ioS
It can be added as
part of the
journey by using
app integrity
nodes to support
key attestation.

Low

To create a journey with mobile biometric authentication, you need the following:

Details

App integrity verification helps ensure
your users are only using a supported
app rather than a third-party or
potentially malicious version.

Key attestation verifies that the private
key is valid and correct, is not forged,
and was not created in an insecure
manner.

WebAuthn requires a bit more
configuration, for example, creating and
uploading the assetlinks.json and
apple-app-site-association files.
Device binding only requires the
journey and the SDK built into your app.

1. A server that supports the WebAuthn nodes (PingOne Advanced Identity Cloud or PingAM 7.1 or later).

2. A mobile device that has biometric authentication, such as Face ID or a fingerprint reader, and the user has registered
their biometrics on the device.

3. An application with the latest native mobile SDK that includes the Biometric Authentication API (v3 or later).

Copyright © 2025 Ping Identity Corporation

https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation

Ping SDKs Implement your use cases with the Ping SDKs

@ Note

The SDKs can only support the WebAuthn Registration and WebAuthn Authentication nodes when the Return

challenge as JavaScript option is disabled.
When this option is disabled, the WebAuthn nodes return a MetadataCallback , which the SDK converts to a
WebAuthnRegistrationCallback or a WebAuthnAuthenticationCallback .

Prepare the server

The following example journey covers the "usernameless" authentication case. This is a simple prototype flow that does not cover
all edge cases that might be present in a production environment. If WebAuthn authentication is not possible for any reason, the
flow falls back to a normal login journey.

To access this configuration, you need to log in to PingOne Advanced Identity Cloud or PingAM as an administrator, and create a
new journey.

1. In the editor drag the following nodes into the journey:
o WebAuthn Registration node
o WebAuthn Authentication node
° Inner Tree Evaluator node
o Two Choice Collector nodes

2. Connect the nodes similar to the following example:

WebAuthn Authentication Node

Normal Login Enable Biometrics
Unsupported

q 0 True Yes
No Device Registered

False No
Success
Failure
e Client Error

WebAuthn Registration Node °
Unsupported Biometrics registration failed

Success Retry

Failure et

Client Error

3. Configure the nodes:

° In both the WebAuthn Registration and WebAuthn Authentication nodes, the Return challenge as JavaScript
option must be disabled.

° In the WebAuthn Registration node, Authentication attachment must be either UNSPECIFIED or PLATFORM.

° In the WebAuthn Registration node, enable the Username to device option.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

° In the WebAuthn Authentication node, enable the Username from device option.

o Use Choice Collector nodes to handle the user input in case of registration failure, and to give users the option to
enable biometrics for this journey.

o Set the Relying party identifier to the domain of your PingAM instance.
For example: openam.example.com.

If you want your users to provide a username, deactivate the Username from/to device options, and add a Username Collector
node before the WebAuthn Registration node and WebAuthn Authentication node.

Accessing WebAuthn authenticator information

The Ping SDKs send WebAuthn assertion or attestation information back to the server when they encounter a WebAuthn
Authentication node or a WebAuthn Registration Node.

For example, whether the authenticator used is platform based, such as a built-in fingerprint reader, or is cross-platform,
such as a USB security key that could be used on multiple clients.

The Ping SDKs also include a number of flags about the authenticator used, as defined in Web Authentication: An API for
accessing Public Key Credentials Level 2(Z.

The authentication nodes store this data in transient state, so that you can use the information to alter the course of the
authentication journey, if required.

WebAuthnRegistration node

Stores the attestation information in a webauthnAttestationInfo objectin transient state:

Example webauthnAttestationInfo object

{
"authenticatorAttachment": "platform",
"flags": {

"UP": true,
"UV": true,
"ED": false,
"AT": false,
"BE": true,
"BS": true
}
}

WebAuthnAuthentication node

Stores the assertion information in a webauthnAttestationInfo object in transient state:

Copyright © 2025 Ping Identity Corporation

https://www.w3.org/TR/webauthn-2/#sctn-authenticator-data
https://www.w3.org/TR/webauthn-2/#sctn-authenticator-data
https://www.w3.org/TR/webauthn-2/#sctn-authenticator-data

Ping SDKs Implement your use cases with the Ping SDKs

Example webauthnAttestationInfo object

{
"authenticatorAttachment": "cross-platform",
"flags": {
"UP": true,
"UV": true,
"ED": false,
"AT": false,
"BE": false,
"BS": false
}

Catching client errors

The WebAuthn Registration and WebAuthn Authentication nodes might resultin a Client Error . Client errors can happen for a
number of reasons.

In order to parse the error and act upon it, make use of a Scripted Decision node to access the shared state within the journey,
and read the WebAuthenticationDOMException thrown.

For more information regarding the use of the Scripted Decision node, see Scripted Decision Node API Functionality(in the
PingAM documentation.

Biometrics using the Ping SDK for Android

This section covers how to implement mobile biometric authentication using the Ping SDK for Android.

Support for mobile biometrics lets users authenticate through the WebAuthn Registration and WebAuthn Authentication nodes
to register the user's device, and use the device as an authenticator.

Associate your app with your server

To associate your server with your Android app you need to make public, verifiable statements by using a Digital Asset Links JSON

file (assetlinks.json).

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/8/authentication-guide/scripting-api-node.html
https://docs.pingidentity.com/pingam/8/authentication-guide/scripting-api-node.html

Implement your use cases with the Ping SDKs Ping SDKs

Example assetlinks. json file

"relation": [
"delegate_permission/common.handle_all_urls",
"delegate_permission/common.get_login_creds"

s

"target": {

"namespace"”: "android_app",

"package_name": "com.example.app",

"sha256_cert_fingerprints": [
"E6:5A:5D:37:22:FC...22:99:20:03:E6:47"

Get SHA-256 fingerprint of your signing certificates

The assetlinks. json file includes SHA-256 fingerprints of the certificates you use to sign your Android applications. The steps
for obtaining the fingerprint depend on the method you use to distribute your application.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

Android App Bundles

If you are using Android App Bundles to distribute your apps, then the hashes of the certificate used to sign your
application are available in the Android Developer console.

Follow these steps to obtain the SHA-256 hash of your signing certificate:

1. Configure your Android App Bundle for signing. Google has a number of methods for managing the signing
certificates, including uploading your own or having Google manage them for you.

For information on how to set up signing, refer to Sign your appZ in the Google Developer Documentation.
2.In the Google Play Console
1. Select the app that will be supporting mobile biometrics.

2. Navigate to Setup > App integrity > App signing.

S p Google Play Console Q_ Search Play Console » ® ForgeRock Example

overview App integrity

Release Protect your app and your users Show more

B8 Releases overview Integrity API responses off - @ Releases signed by Google Play

& Production
- Integrity API App signin
») Testing oy &

» 10 Reach and devices

App signing key certificate Download certificate &,

This is the public certificate for the app signing key that Google uses to sign
v 83 Setup each of your releases. Use it to register your key with API providers. The app
signing key itself is not accessible, and is kept on a secure Google server.

(=) App bundle explorer

App integrity
Internal app sharing MDS5 certificate finge & T3l bl t B ML o2 FI 3700200 L3I0 |D

Advanced settings

SHA-1 certificate fing ==:=D=tl: T2 Fa:TosBRh: 125 s harBinROITL @

Grow
4 §> Store presence SHA-256 certificate f 8C:41:44:62:1F:11: 262l Jf-npT: 2T 5 LD
&

» A Store performance

Figure 1. App signing keys in the Google Play Console

3. In the App signing key certificate section, copy the SHA-256 certificate fingerprint value.

Q Tip

In the Digital Asset Links JSON section is a file that you can copy with the SHA-256 fingerprint
already in place.

3. Create or update an assetlinks.json with the values copied from the Google Play Console for your app.

Copyright © 2025 Ping Identity Corporation

https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://play.google.com/console
https://play.google.com/console

Implement your use cases with the Ping SDKs Ping SDKs

For more information on creating an assetlinks.json file, refer to Google Digital Asset Links (2.

Copyright © 2025 Ping Identity Corporation

https://developers.google.com/digital-asset-links/v1/getting-started
https://developers.google.com/digital-asset-links/v1/getting-started

Ping SDKs Implement your use cases with the Ping SDKs

Local debug keys

You must manually generate a SHA-256 fingerprint of your signing key in the following scenarios:
* You are signing your APK with the default debug.jks that Android Studio created for the project

* You are signing your APK with your own keys that you have generated that have not been uploaded to the Google
Play Console

Follow these steps to obtain the SHA-256 hash of your signing certificate:

1. In the build.gradle file for your application, check the settings defined in the signingConfigs property:

Example signingConfigs when using the default debug.jks

signingConfigs {
debug {
storeFile file('../debug.jks")
storePassword 'android’
keyAlias 'androiddebugkey'
keyPassword 'android’

2.1n a terminal window, navigate to the location of the JKS file, and then run the following command:

keytool -list -v -alias <keyAlias> -keystore <storeFile> | grep SHA256

@ Important

Swap the <keyAlias> and <storeFile> placeholders with the values you obtained from your project. For

example:
keytool -list -v -alias "androiddebugkey" -keystore "./debug.jks" | grep SHA256

3. When requested, enter the keystore password, as specified in the keyPassword property in the build.gradle
file.

The command prints the SHA-256 fingerprint of the signing key:
Enter keystore password: android
SHA256: E6:5A:5D:37:22:FC...22:99:20:03:E6:47
Signature algorithm name: SHA256withRSA
4. Create or update an assetlinks.json with the SHA-256 fingerprint, and the details of your app.

For more information on creating an assetlinks.json file, refer to Google Digital Asset Links(Z.

Copyright © 2025 Ping Identity Corporation

https://developers.google.com/digital-asset-links/v1/getting-started
https://developers.google.com/digital-asset-links/v1/getting-started

Implement your use cases with the Ping SDKs Ping SDKs

Host the digital asset links JSON file

* For PingOne Advanced Identity Cloud deployments, refer to Upload an Android assetlinks.json file(Z.

* For self-managed deployments, host the file at https://<your domain>/.well-known/assetlinks.json.

Summary

You have now created and uploaded a digital asset links JSON file.

You can now proceed to Configure biometric authentication journeys.

Configure biometric authentication journeys

To use mobile biometrics with the Ping SDK for Android configure the authentication nodes in your journeys as follows:
1. In each WebAuthn Registration node and WebAuthn Authentication node:
o Ensure the Return challenge as JavaScript option is not enabled
The SDK expects a JSON response from these nodes, enabling this option would cause the journey to fail
o Set the Relying party identifier option to be the domain hosting the assetlinks.json file
For example, openam-docs.forgeblocks.com
You do not need the protocol or the path.
2. In each WebAuthn Registration node
o Set the Authentication attachment option to either UNSPECIFIED or PLATFORM
o Ensure the Accepted signing algorithms option includes either ES256 or RS256
° Ensure the Limit registrations option is not enabled

Configure origin domains

To enable WebAuthn on Android devices, you must configure the nodes with the base64-encoded SHA-256 hash of the signing
certificate as the origin domain.

The steps for obtaining the base64-encoded SHA-256 hash depend on the method you use to distribute your application.

Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/idcloud/latest/developer-docs/upload-android-assetlinks.html
https://backstage.forgerock.com/docs/idcloud/latest/developer-docs/upload-android-assetlinks.html

Ping SDKs Implement your use cases with the Ping SDKs

Android App Bundles

Follow these steps to download the app signing certificate, and then generate a base64-encoded SHA-256 hash:
1. In the Google Play ConsoleZ:
1. Select the app that will be supporting mobile biometrics.
2. Navigate to Setup > App integrity > App signing.
3. In the App signing key certificate section, click Download certificate.
This downloads a local copy of the signing certificate, named deployment_cert.der .

2.In a terminal window, navigate to the location of the deployment_cert.der file, and then run the following
command:
cat deployment_cert.der | openssl sha256 -binary | openssl base64 | tr '/+' '_-' | tr -d '='
The command prints the base64-encode SHA-256 fingerprint of the signing key:
JEFEYh80K55iHYkxsBRLGtAP6wvjOS5Pj-ZKHHjwiek
3. Add a prefix of android:apk-key-hash: to the base64-encode SHA-256 fingerprint. For example:

android:apk-key-hash:jEFEYh80K55iHYkxsBRLGtAP6wv jOS5Pj-ZKHHjwilk

4. In each WebAuthn Registration node and WebAuthn Authentication node, set the Origin domains option to the
value created in the previous step:

Copyright © 2025 Ping Identity Corporation

https://play.google.com/console
https://play.google.com/console

Implement your use cases with the Ping SDKs Ping SDKs

WebAuthn Registration Node X

Allows users of supported clients to register FIDO2 devices for use
during authentication.

Name

WebAuthn Registration Node

Relying party @
ForgeRock
Relying party identifier @
openam-docs.forgeblocks.com
Origin domains @
android:apk-key-hash:jEFEYh80K55iHYkxsBRLGtAP6wWvjOS5Pj-ZKHHjwiOk x

User verification requirement @

PREFERRED v

Preferred mode of attestation @

NONE v

Accepted signing algorithms @

ES256 x RS256 x

Authentication attachment @

PLATFORM v

Figure 1. Example WebAuthn Registration node configuration

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

Local debug keys

Follow these steps to extract the app signing certificate from the JKS and generate a base64-encoded SHA-256 hash:

1.In the build.gradle file for your application, check the settings defined in the signingConfigs property:

Example signingConfigs when using the default debug.jks

signingConfigs {
debug {
storeFile file('../debug.jks")
storePassword 'android’
keyAlias 'androiddebugkey'
keyPassword 'android’

2. In a terminal window, navigate to the location of the JKS file, and then run the following command:

keytool -exportcert -alias <keyAlias> -keystore <storeFile> | openssl sha256 -binary | openssl base64
| tr '"/+' '_-" | tr -d '='

@ Important

Swap the <keyAlias> and <storeFile> placeholders with the values you obtained from your project. For
example:

keytool -exportcert -alias "androiddebugkey" -keystore "./debug.jks" | openssl sha256 -
binary | openssl base64 | tr '/+' '_-' | tr -d '='

3. When requested, enter the keystore password, as specified in the keyPassword property in the build.gradle
file.
The command prints the base64-encoded SHA-256 fingerprint of the signing key:

Enter keystore password: android
JEFEYh80K55iHYkxsBRLGtAP6wvjOS5Pj-ZKHHjwilk

4. Add a prefix of android:apk-key-hash: to the base64-encode SHA-256 fingerprint. For example:
android:apk-key-hash:jEFEYh80K55iHYkxsBRLGtAP6wvjOS5Pj-ZKHHjwilk

5. In each WebAuthn Registration node and WebAuthn Authentication node, set the Origin domains option to the
value created in the previous step:

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

WebAuthn Registration Node X

Allows users of supported clients to register FIDO2 devices for use
during authentication.

Name

WebAuthn Registration Node

Relying party @
ForgeRock
Relying party identifier @
openam-docs.forgeblocks.com
Origin domains @

android:apk-key-hash:jEFEYh80K55iHYkxsBRLGtAP6wWvjOS5Pj-ZKHHjwiOk x

User verification requirement @

PREFERRED v

Preferred mode of attestation @

NONE v

Accepted signing algorithms @

ES256 x RS256 x

Authentication attachment @

PLATFORM v

Figure 2. Example WebAuthn Registration node configuration

Summary

You have now configured your WebAuthn journey for use with the Ping SDK for Android.

You can now proceed to Configure the Ping SDK for Android for WebAuthn.

Configure the Ping SDK for Android for WebAuthn

1. Add the following dependency to the build.gradle file:

implementation 'com.google.android.gms:play-services-fido:20.0.1"

2. Link to assetlinks.json in the Android app, adding the following line to the manifest file under your application:

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

<meta-data android:name="asset_statements" android:resource="@string/asset_statements" />

3.Add an asset_statements string resource to the string.xml file:

<string name="asset_statements" translatable="false">
[{

\"include\": \"https://<custom-domain-fqdn>/.well-known/assetlinks.json\"
H

</string>

Register a WebAuthn device

To register a WebAuthn device on receipt of a WebAuthnRegistrationCallback from the server, use the register() method.

Optionally, use the deviceName parameter to assign a name to the device to help the user identify it.

Android - Java

WebAuthnRegistrationCallback callback =
node.getCallback(WebAuthnRegistrationCallback.class);

callback.register(requireContext(), deviceName, node, new FRListener<Void>() {
@0verride
public void onSuccess(Void result) {
// Registration is successful
// Continue the journey by calling next()

@0verride

public void onException(Exception e) {
// An error occurred during the registration process
// Continue the journey by calling next()

3

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

Android - Kotlin

fun WebAuthnRegistrationCallback(
callback: WebAuthnRegistrationCallback,
node: Node,
onCompleted: () -> Unit

val context = LocalContext.current
var deviceName by remember { mutableStateOf(Build.MODEL) }

try {
callback.register(context, deviceName, node)
// Registration is successful
currentOnCompleted()
} catch (e: CancellationException) {
// User cancelled registration
} catch (e: Exception) {
// An error occurred during the registration process
currentOnCompleted()

Passkey support

The Ping SDK for Android supports passkeys when the app is running on Android P or later. For more information on passkeys,
refer to Passkey support on Android and Chrome (.

If the WebAuthn Registration node has the Username to device option enabled and the app is running on Android P or later,
then the SDK sets the RESIDENT_KEY_REQUIRED flag and enables passkeys for WebAuthn.

In this case, the user is asked to create a new passkey on their device and is required to perform biometric authentication to
confirm. The device syncs the generated passkey to the user's Google Account for use on their supported devices.

Copyright © 2025 Ping Identity Corporation

https://developers.google.com/identity/passkeys/supported-environments
https://developers.google.com/identity/passkeys/supported-environments

Ping SDKs Implement your use cases with the Ping SDKs

=9

Create a passkey
This passkey will be used for Demo App

®_. Demo User (demo.user@exam...
a? 54c77653-dc88-48fb-ac6b-d5078e...

Cancel Continue

ﬁ demo.user@example.com

Figure 1. Creating a new passkey on Android

If the device is not running Android P or later, the SDK sets the RESIDENT_KEY_DISCOURAGED flag, meaning passkeys are not used
nor synchronized to the Google Account.

For more information about resident keys and client-side discoverable credentials, refer to ResidentkeyRequirement(Z in the
Google developer documentation.

Override passkey support

You can use the setResidentKeyRequirement() method to override the automatic behavior. For example, if you do not want to
use passkeys on Android P devices, you might use the following code:

callback.setResidentKeyRequirement(ResidentKeyRequirement.RESIDENT_KEY_DISCOURAGED)

Copyright © 2025 Ping Identity Corporation

https://developers.google.com/android/reference/com/google/android/gms/fido/fido2/api/common/ResidentKeyRequirement
https://developers.google.com/android/reference/com/google/android/gms/fido/fido2/api/common/ResidentKeyRequirement

Implement your use cases with the Ping SDKs Ping SDKs

Authenticate by using a WebAuthn device

After the user registers their mobile device they can use it as an authenticator, with its registered key pair, through the WebAuthn
Authentication node, which the Ping SDK for Android returns as a WebAuthnAuthenticationCallback .

If the device supports passkeys [, the operating system displays a list of available passkeys:

=9

Choose a passkey
Choose which passkey you'd like to use

to sign in to Demo App

®_ Demo User (demo.user@exam...
af? 54¢77653-dc88-48fb-ac6b-d5078e...

®_ D.User (d.user@example.net)
&Y 54077653 dc88-48fb-ac6b-d5078e...

Cancel

4 ® (]
Figure 1. Select the passkey to use for WebAuthn

Note that removing credentials stored on the client device does not remove the associated data from the server. You will need to
register the device again after removing credentials from the client.

As part of authentication process, the SDK provides the WebAuthnAuthenticationCallback for authenticating the device as a
credential.

Copyright © 2025 Ping Identity Corporation

https://developers.google.com/identity/passkeys/supported-environments
https://developers.google.com/identity/passkeys/supported-environments

Ping SDKs Implement your use cases with the Ping SDKs

Android - Java

WebAuthnAuthenticationCallback callback = node.getCallback(WebAuthnAuthenticationCallback.class);
callback.authenticate(requireContext(), node, webAuthnKeySelector.DEFAULT, new FRListener<Void>() {
@0verride
public void onSuccess(Void result) {
// Authentication is successful
// Continue the journey by calling next()

@0verride

public void onException(Exception e) {
// An error occurred during the authentication process
// Continue the journey by calling next()

3

Android - Kotlin

fun WebAuthnAuthenticationCallback(
callback: WebAuthnAuthenticationCallback,
node: Node,
onCompleted: () -> Unit

) A

val context = LocalContext.current

try {
callback.authenticate(context, node)
// Authentication successful
currentOnCompleted()
} catch (e: CancellationException) {
// User cancelled authentication
} catch (e: Exception) {
// An error occurred during the authentication process
currentOnCompleted()

@ Note

The WebAuthnAuthenticationCallback.authenticate() method has a parameter, Node .

If the current node has both WebAuthnAuthenticationCallback and HiddenValueCallback callbacks then the SDK
automatically sets the outcome of the authentication process for both success and failure to the designated
HiddenValueCallback .

WebAuthnKeySelector

An optional WebAuthnKeySelector parameter can be provided for authentication.

Copyright © 2025 Ping Identity Corporation

Implement your use cases with the Ping SDKs Ping SDKs

The WebAuthnKeySelector.select() method is invoked when Username from device is enabled in the WebAuthn
Authentication node. This feature requires that Username to device is enabled in the WebAuthn Registration node as well. With
these options enabled, the registered key pair is associated with the username, and the SDK can present a list of registered keys
to the user to continue the authentication process without collecting a username.

@ Note

The sourcelList is a list of PublicKeyCredentialSource constructed during registration. You can alter the string
value and present the altered value to the user; however, you must return the selected PublicKeyCredentialSource
as it was provided in the original list to the provided listener .

callback.authenticate(this, node, new WebAuthnKeySelector() {
@0override
public void select(@NonNull FragmentManager fragmentManager,
@NonNull List<PublicKeyCredentialSource> sourcelist,
@NonNull FRListener<PublicKeyCredentialSource> listener) {
//Always pick the first one.
listener.onSuccess(sourcelList.get(0));
}
}, new FRListener<Void>() {
@0Override
public void onSuccess(Void result) {
//...
}

@0Override
public void onException(Exception e) {
//...
}
)

Handle WebAuthn errors

When an error occurs during the registration or authentication process, the Ping SDK for Android returns the
WebAuthnResponseException exception. In most cases, errors are returned as per the specification(. The error code can be
found from WebAuthnResponseExcetpion.getErrorCode() .

Convert exceptions for handling by the PingAM server

When you use WebAuthnRegistrationCallback.register() or WebAuthnAuthenticationCallback.authenticate() , the SDK
automatically parses the error into the appropriate format for PingAM. When PingAM receives the completed callback from the
SDK the authentication flow follows the WebAuthn registration process to reach the appropriate outcome.

However, if the error has to be handled manually, the WebAuthnResponseException class provides a convenience method called
toServerError() to convert the error into the appropriate format.

Copyright © 2025 Ping Identity Corporation

https://heycam.github.io/webidl/#idl-DOMException-error-names
https://heycam.github.io/webidl/#idl-DOMException-error-names

Ping SDKs Implement your use cases with the Ping SDKs

callback.register(this, node, new FRListener<Void>() {
@0Override
public void onSuccess(Void result) {
next();
}

@Override
public void onException(Exception e) {
if (e instanceof WebAuthnResponseException) {
WebAuthnResponseException exception = (WebAuthnResponseException) e;
exception.getErrorCode(); // Do something with the error or proceed to the next node.

@ Note

WebAuthnResponseExcetpion.getErrorCode() ==
com.google.android.gms.fido.fido2.api.common.ErrorCode#NOT_SUPPORTED_ERR results in an Unsupported
outcome in both WebAuthn Registration node and WebAuthn Authentication node.

Any other WebAuthnResponseExcetpion.getErrorCode() resultsina Client Error outcome in the nodes.

Unregister a WebAuthn device

To unregister a WebAuthn device from a user’s profile, use the deleteCredentials function in your application. The function
requires the publicKeyCredentialSource as a parameter.

Use the loadAllCredentials method and pass in the relying party identifier (rpld) string to return an array of
publicKeyCredentialSource values. The rpld string must match the configuration you used when you configured the
authentication journeys earlier.

@ Note

You can only remove a device if it has the username embedded in the profile.
You must enable the Username to Device option in the WebAuthn Registration nodeJ to be able to remove the
device from a user’s profile on the server using the SDKs.

The SDK attempts to delete the record of the device from the server. If that succeeds, it will then remove the local keys held by

the client device. If it fails to remove the records from the server, it will not remove the local keys by default.

However, you can pass the forceDelete: true boolean parameter to the function to delete the local keys even if the call to the
server fails.

val rpId = "openam-docs.forgeblocks.com"

frWebAuthn.loadAllCredentials(rpId).let {
friWebAuthn.deleteCredentials(it.first(), true)
}

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-webauthn-registration.html

Implement your use cases with the Ping SDKs Ping SDKs

Removing keys from either the server or the device means you will need to register it again for WebAuthn journeys. Refer to

Register a WebAuthn device.

More information

+ deleteCredentials API reference@

+ loadAllCredentials API reference@

Biometrics using the Ping SDK for iOS

This section covers how to implement mobile biometric authentication using the Ping SDK for iOS.

Support for mobile biometrics lets users authenticate through the WebAuthn Registration and WebAuthn Authentication nodes
to register the user’s device, and use the device as an authenticator.

Prepare an apple-app-site-association file

You can create an apple-app-site-association file that creates a secure association between your domain and your app. This
allows you to share credentials, and use universal links to open your app from your website.

To create the secure association, you upload the apple-app-site-association file to your domain, and add matching
Associated Domains Entitlement keys to your app.

1. Prepare an apple-app-site-association file. For example:

{
"applinks": {
"details": [
{
"appIDs": [
"XXXXXXXXXX . com.example . AppName"
IE
"components": [
{
"/": "/reset/*",
"comment": "Success after reset password journey"
}
]
}
]
Jo
"webcredentials": {
"apps": [
"XXXXXXXXXX . com.example . AppName"
]
}
}

For more information, refer to Supporting associated domains(Z.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/delete-credentials.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/delete-credentials.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/delete-credentials.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/load-all-credentials.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/load-all-credentials.html
https://docs.pingidentity.com/sdks/latest/_attachments/android/api-reference/forgerock-auth/forgerock-auth/org.forgerock.android.auth.webauthn/-f-r-web-authn/load-all-credentials.html
https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://developer.apple.com/documentation/xcode/supporting-associated-domains

Ping SDKs Implement your use cases with the Ping SDKs

2. Host the file at your domain.

> For PingOne Advanced Identity Cloud deployments, refer to Upload an apple-app-site-association file(5 in the
Identity Cloud documentation.

° For self-managed deployments, host the file at https://<your domain>/.well-known/apple-app-site-

association.
3. Configure the associated domains entitlement key in your app.

For more information, refer to Associated Domains Entitlement (X,

Configure biometric authentication journeys
To use mobile biometrics with the Ping SDK for iOS configure the authentication nodes in your journeys as follows:
1. In each WebAuthn Registration node and WebAuthn Authentication node:
o Ensure the Return challenge as JavaScript option is not enabled.

The SDK expects a JSON response from these nodes; enabling the Return challenge as JavaScript option would
cause the journey to fail.

o Set the Relying party identifier option to be the domain hosting the apple-app-site-association file; for
example, openam-docs.forgeblocks.com.

You do not need the protocol or the path.

° To enable passkey support, enable Username to device in the WebAuthn Registration node, and Username from
device in the WebAuthn Authentication node.

2. In each WebAuthn Registration node:

o Set the Authentication attachment option to either UNSPECIFIED or PLATFORM.
o Ensure the Accepted signing algorithms option includes ES256 .

o Ensure the Limit registrations option is not enabled.

Configure origin domains

To enable WebAuthn on iOS devices, you must configure the nodes with a specially-formatted string containing the bundle
identifier of your application, which you can find in XCode, on the Signing & Capabilities tab of your apps target page:

Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/idcloud/latest/developer-docs/upload-ios-apple-app-site-association.html
https://backstage.forgerock.com/docs/idcloud/latest/developer-docs/upload-ios-apple-app-site-association.html
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_associated-domains
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_associated-domains

Implement your use cases with the Ping SDKs Ping SDKs

r -
\A » S a) O Finished running Quickstart on iPhone 14 Pro
X &= QA § D B
| A
v | Quickstart M
v Quickstart
Quickstart A + Capability
AppDelegate PROJECT
LoginViewController M [Quickstart Signing
Main M v Automatically manage signing
Assets TARGETS
LaunchScreen - .
FRAuthConfig M LRSS Team ForgeRock Ltd <
uthConfi
Info Bundle Identifier com.forgerock.ios.sdk.Quickstart
q ios
Package Dependencies
> AppAuth 1.6.0 Provisioning Profile Xcode Managed Profile @
> Facebook 9.1.0 Signing Certificate Apple Development: ol musll " -

> ForgeRock-iOS-SDK SDKS...

Figure 1. Bundle identifier field in XCode

Prefix this value with the string ios:bundle-id: . For example:

ios:bundle-id:com.forgerock.ios.sdk.Quickstart

To enable passkey support, add the fully-qualified domain name of the PingOne Advanced Identity Cloud or PingAM instance as
an origin domain. For example, https://openam-docs.forgeblocks.com(Z .

Add these values to the Origin domains property in each WebAuthn Registration node and WebAuthn Authentication node in
the journey.

Register a WebAuthn device

To register a WebAuthn device on receipt of a WebAuthnRegistrationCallback from the server, use the register() method.

Copyright © 2025 Ping Identity Corporation

https://openam-docs.forgeblocks.com
https://openam-docs.forgeblocks.com

Ping SDKs Implement your use cases with the Ping SDKs

if let registrationCallback = callback as? WebAuthnRegistrationCallback {
registrationCallback.delegate = self

registrationCallback.register(
node: node,
window: UIApplication.shared.windows.first,
deviceName: UIDevice.current.name,
usePasskeysIfAvailable: false)

{ (attestation) in
// Registration is successful
// Submit the Node using Node.next()

} onError: { (error) in
// An error occurred during the registration process
// Submit the Node using Node.next()

Use the optional deviceName parameter to assign a name to the device to help the user identify it.
Set the usePasskeysIfAvailable parameter to true to enable passkeys on supported devices.

Enable Passkey support

The Ping SDK for iOS supports passkeys when the app is running on iOS 16 or later, or recent versions of macOS. For more
information, refer to Passkeys(Z in the Apple developer documentation.

To enable the use of passkeys during registration, you should: - In PingAM, enable the Username to device option in the
WebAuthn Registration node in your authentication journeys. - In the SDK, set the usePasskeysIfAvailable parameter to true
inthe registrationCallback.register function.- Runyour app on a passkey-enabled version of iOS or macOS.

When passkeys are enabled the user is asked to create a new passkey on their device and is required to perform biometric
authentication to confirm. The device syncs the generated passkey to the user’s iCloud account for use on their supported
devices.

Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/passkeys/
https://developer.apple.com/passkeys/

Implement your use cases with the Ping SDKs Ping SDKs

Carrier &

Sign In X

Do you want to save a passkey for “sdkDemo"?
Passkeys are saved in your iCloud Keychain and
are available for sign in on all your devices.

Continue with Touch ID

Save on Another Device

Figure 1. Creating a new passkey on iOS

Detect WebAuthn keys on passkey-enabled devices

The localKeyExistsAndPasskeysAreAvailable() method is invoked when the SDK detects an existing WebAuthn key on the
device, and that the device supports passkeys.

// MARK: PlatformAuthenticatorAuthenticationDelegate
func localKeyExistsAndPasskeysAreAvailable() {

// You can prompt the user to Register a new Key to use with Apple Passkeys. From then on, use the “register” and
‘authenticate’™ methods passing the ‘usePasskeysIfAvailable: true’.

}

You can use this delegate method to offer a journey that reregisters the device. Make sure you set usePasskeysIfAvailable to
true.

Copyright © 2025 Ping Identity Corporation

Ping SDKs Implement your use cases with the Ping SDKs

Request consent

You might need to ask the user for consent to perform certain actions depending on the configuration of the authentication
journey.

The Ping SDK for iOS provides the PlatformAuthenticatorRegistrationDelegate protocol for requesting user consent:

public protocol PlatformAuthenticatorRegistrationDelegate {
func excludeCredentialDescriptorConsent(consentCallback: @escaping WebAuthnUserConsentCallback)
func createNewCredentialConsent(keyName: String, rpName: String, rpId: String?, userName: String,
userDisplayName: String, consentCallback: @escaping WebAuthnUserConsentCallback)

}

Request consent when credentials already exist for the device

The SDK invokes the excludeCredentialDescriptorConsent() method when Limit registrations is enabled in the
WebAuthn Registration node.

This setting prevents a device from being registered if the server has a set of matching keys already stored for it.

During registration, the server returns a list of key descriptor identifiers that the SDK compares with its stored keys. If there is a
match, you must get consent from the user to generate a new set of identifiers without explaining the reason, which is they
already exist.

For more information, refer to section (6.3.2.3)J in the WebAuthn specification.

The following example shows how to request consent:

func excludeCredentialDescriptorConsent(consentCallback: @escaping WebAuthnUserConsentCallback) {

let alert = UIAlertController(title: "Create Credentials", message: nil, preferredStyle: .alert)

let cancelAction = UIAlertAction(title: "Cancel", style: .cancel, handler: { (_) in
consentCallback(.reject)

})

let allowAction = UIAlertAction(title: "Allow", style: .default) { (_) in
consentCallback(.allow)

}

alert.addAction(cancelAction)

alert.addAction(allowAction)

guard let vc = self.viewController else {

return

DispatchQueue.main.async {
viewController.present(alert, animated: true, completion: nil)

Copyright © 2025 Ping Identity Corporation

https://www.w3.org/TR/webauthn/#sctn-op-make-cred
https://www.w3.org/TR/webauthn/#sctn-op-make-cred

Implement your use cases with the Ping SDKs Ping SDKs

If the user selects Allow, the SDK returns WebAuthnError.notAllowed . If the user selects Cancel, the SDK returns
WebAuthnError.invalidState.

Request consent to create new credentials

The SDK invokes the createNewCredentialConsent() method to obtain user consent prior to the SDK generating a key-pair.

In addition to the consent, the SDK might prompt for biometric authentication if the WebAuthn Registration node’s User
verification requirement is setto PREFERRED or REQUIRED.

For more information, refer to section 6.3.2.6(7 in the WebAuthn specification.

The following example shows how to request consent:

func createNewCredentialConsent(
keyName: String,
rpName: String,
rpId: String?,
userName: String,
userDisplayName: String,
consentCallback: @escaping WebAuthnUserConsentCallback)

{
let alert = UIAlertController(
title: "Create Credentials",
message: "KeyName: \(keyName) | Relying Party Name: \(rpName) | User Name: \(userName)",
preferredStyle: .alert)
let cancelAction = UIAlertAction(
title: "Cancel",
style: .cancel,
handler: { (_) in
consentCallback(.reject)
})
let allowAction = UIAlertAction(
title: "Allow",
style: .default) { (_) in
consentCallback(.allow)
}
alert.addAction(cancelAction)
alert.addAction(allowAction)
guard let vc = self.viewController else {
return
}
DispatchQueue.main.async {
viewController.present(alert, animated: true, completion: nil)
}
}

If the user selects Allow, the SDK creates the key pair and performs the attestation. If the user selects Cancel, the SDK returns
WebAuthnError.cancelled.

Copyright © 2025 Ping Identity Corporation

https://www.w3.org/TR/webauthn/#sctn-op-make-cred
https://www.w3.org/TR/webauthn/#sctn-op-make-cred

Ping SDKs Implement your use cases with the Ping SDKs

Authenticate by using a WebAuthn device

After the user’s mobile device has been registered in PingAM, the device can be used as an authenticator with its registered key
pair through the WebAuthn Authentication node, which is returned as a WebAuthnAuthenticationCallback by the Ping SDK for

iOS.

If the device supports Passkeys(, the operating system displays passkeys that can be used:

Do you want to sign in to “Quickstart” with your
saved passkey for “sdkDemo"?

Face ID

Figure 1. Select a passkey to use for WebAuthn

Note that removing credentials stored on the client device does not remove the associated data from the server. You will need to
register the device again after removing credentials from the client.

With WebAuthnAuthenticationCallback , you must implement the following protocol method to handle the authentication

process:

public protocol PlatformAuthenticatorAuthenticationDelegate {
func selectCredential(keyNames: [String], selectionCallback: @escaping WebAuthnCredentialsSelectionCallback)

As part of authentication process, the SDK provides the WebAuthnAuthenticationCallback for authenticating the device as a

credential.

Copyright © 2025 Ping Identity Corporation

https://developer.apple.com/passkeys/
https://developer.apple.com/passkeys/

Implement your use cases with the Ping SDKs Ping SDKs

if let authenticationCallback = callback as? WebAuthnAuthenticationCallback {
authenticationCallback.delegate = self

// Note that the ‘Node' parameter in ' .authenticate() is an optional parameter.
// If the node is provided, the SDK automatically returns the assertion
// in the HiddenValueCallback.

authenticationCallback.authenticate(
node: node,
window: UIApplication.shared.windows.first,
preferImmediatelyAvailableCredentials: false,
usePasskeysIfAvailable: true

) { (assertion) in
// Authentication is successfu