
Configuration
Automation -
Terraform
June 11, 2025

CONFIGURATION AUTOMATION - TERRAFORM

Copyright

All product technical documentation is
Ping Identity Corporation
1001 17th Street, Suite 100
Denver, CO 80202
U.S.A.

Refer to https://docs.pingidentity.com for the most current product documentation.

Trademark

Ping Identity, the Ping Identity logo, PingAccess, PingFederate, PingID, PingDirectory, PingDataGovernance, PingIntelligence, and
PingOne are registered trademarks of Ping Identity Corporation ("Ping Identity"). All other trademarks or registered trademarks
are the property of their respective owners.

Disclaimer

The information provided in Ping Identity product documentation is provided "as is" without warranty of any kind. Ping Identity
disclaims all warranties, either express or implied, including the warranties of merchantability and fitness for a particular
purpose. In no event shall Ping Identity or its suppliers be liable for any damages whatsoever including direct, indirect, incidental,
consequential, loss of business profits or special damages, even if Ping Identity or its suppliers have been advised of the
possibility of such damages. Some states do not allow the exclusion or limitation of liability for consequential or incidental
damages so the foregoing limitation may not apply.

Table of Contents

Terraform at Ping Identity . 3
What is Terraform . 6
Benefits of Terraform with Ping Identity deployments . 7

Best practices . 10
Develop with Terraform . 24

Importing to Terraform state . 26
Exporting Terraform configuration . 27
Interface stability . 28
Getting support . 29

Getting started . 29
Best practices . 35
Develop with Terraform . 44

Admin Role Management Considerations . 46

Tutorials . 51
Role assignment with Terraform . 53
Configuring the PingOne Self Service application . 55

FAQ . 57

Getting started . 60
FAQ . 65

Getting started . 67
FAQ . 71

Terraform at Ping Identity

We develop and provide Terraform providers that are used to integrate product administration APIs with the Hashicorp
Terraform ecosystem. With Terraform providers, developers can create Configuration as Code packages of Ping Identity product
configurations (alongside supported third-party vendor product configurations) that represent a declaration of the intended end-
state configuration for an environment.

Terraform enables use cases such as automated configuration promotion through GitOps pipelines, while being able to detect
and correct accidental or malicious configuration changes to managed configuration in a change-controlled environment.

Learn more about Terraform at Hashicorp Terraform, or learn more about the benefits of using Terraform at Ping Identity.

Published Terraform providers

View our published Terraform providers on the Terraform registry. The Terraform registry documentation provides a full
reference of resources, data sources, and functions.

PingOne

PingFederate/PingOne Advanced Services

PingDirectory

Get started

Begin development with our Terraform providers by first configuring your products to allow Terraform access.

PingOne

PingFederate

PingDirectory

Discover Terraform

Learn what Terraform is, what Terraform providers are, how it’s used, and how it can accelerate configuration promotion
between environments and protect against accidental or malicious configuration changes.

What is Terraform

Benefits of Terraform with Ping Identity deployments

grid_view

•

•

•

description

•

•

•

menu_book

•

•

Configuration Automation - Terraform Terraform at Ping Identity

Copyright © 2025 Ping Identity Corporation 5

https://www.terraform.io/
https://www.terraform.io/
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs
https://registry.terraform.io/providers/pingidentity/pingfederate/latest/docs
https://registry.terraform.io/providers/pingidentity/pingfederate/latest/docs
https://registry.terraform.io/providers/pingidentity/pingdirectory/latest/docs
https://registry.terraform.io/providers/pingidentity/pingdirectory/latest/docs

What is Terraform

HashiCorp Terraform is an open-source Infrastructure as Code (IaC) and Configuration as Code (CaC) tool that allows
developers to define and provision infrastructure using a declarative configuration language named Hashcorp Configuration
Langugage (HCL). It enables developers to manage infrastructure and configuration as code, which can be managed similarly to
code a developer writes for an application. This includes using industry standard GitOps methodologies for version control, multi-
team collaboration, and automation benefits.

Key use cases

Multi-product configuration management: Provision and manage interdependent configuration across multiple Ping
Identity products and third-party service providers.

Multi-cloud infrastructure management: Provision and manage infrastructure across multiple cloud providers, on-
premises data centers, and SaaS platforms.

Configuration as Code: Define and manage Ping Identity product configurations in a human-readable and machine-
executable format.

Use Case Deployment: Provision the necessary configuration for use case deployment, ensuring consistency and
repeatability between environments.

Templated Configuration: Create reusable and sharable configuration templates for product configuration, including
policies, application integrations, and use cases.

Platform Orchestration: Manage complex infrastructure and configuration dependencies between Ping Identity products
and customer applications and services.

Terraform providers

Providers are plugins that allow Terraform to interact with Ping Identity’s products and services. They define the API interactions
necessary to create, read, update, and delete resources on those platforms according to the HCL source code that the user
defines. For example, the PingOne Terraform provider allows Terraform to manage PingOne configuration resources such as
applications, schema attributes, policy configuration, branding, localised translations, and more.

Learn more in Hashicorp Terraform providers.

Terraform state

A key feature of Terraform is the Terraform state. The Terraform state represents a stored record of the configuration
successfully applied at the last run of Terraform, where configuration changes were made by Terraform. During execution,
Terraform compares the configuration stored in Terraform state with the actual configuration of the live service to determine
whether configuration has unexpectedly changed.

If the configuration of the live service has changed relative to the stored state, Terraform can issue configuration changes to
realign the live service back to the stored state, effectively correcting any unauthorized or unexpected configuration changes that
could lead to service outages or vulnerabilities.

Terraform state can be managed in different ways and should always be kept secure.

•

•

•

•

•

•

Terraform at Ping Identity Configuration Automation - Terraform

6 Copyright © 2025 Ping Identity Corporation

https://www.terraform.io/
https://www.terraform.io/
https://developer.hashicorp.com/terraform/language/syntax/configuration
https://developer.hashicorp.com/terraform/language/syntax/configuration
https://developer.hashicorp.com/terraform/language/syntax/configuration
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs
https://developer.hashicorp.com/terraform/language/providers
https://developer.hashicorp.com/terraform/language/providers

Learn more in Hashicorp Terraform state.

Terraform resources

Resources represent the individual components of Ping Identity product configurations. They are the building blocks of a fully
configured environment and manage the lifecycle of configuration resources through create, update, and delete actions.
Resources typically align with a single API endpoint, and each resource is defined with a schema of fields that reflects that API’s
request and response payload and is used to specify the desired state. For configuration that a resource manages, the resource
will retrieve the current configuration in the live service so that the configuration can be compared against the Terraform state
and the developer’s HCL. If changes are detected, Terraform will create a plan of action to reconcile and complete the changes.

For example, in the PingOne Terraform provider, the Terraform developer can define a single instance of an application using
the pingone_application resource. Terraform can then manage the ongoing lifecycle of the application’s configuration,
including taking corrective actions if the configuration unexpectedly changes.

Learn more in Hashicorp Terraform resources.

Terraform data sources

Data sources allow Terraform to retrieve information about existing, unmanaged configuration or data from external systems.
This enables developers to dynamically configure resources based on existing state or external inputs from data sources. Data
sources typically align with a single API endpoint, and each data source is typically defined with a schema of fields that reflects
that API’s response payload and is used to retrieve some configuration state.

Terraform doesn’t manage configuration using a data source, as data sources are read only.

For example, in the PingOne Terraform provider, the Terraform developer can read a single instance of an application using
the pingone_application data source.

Learn more in Hashicorp Terraform data sources.

Using providers, resources, and data sources to meet key use cases

The Terraform developer selects the appropriate provider for their target platform (for example, PingOne provider for
PingOne).

The Terraform developer then defines resources within their Terraform configuration files, specifying the desired state of
each configuration item. A resource’s Terraform code can be defined either:

Manually using the Terraform Registry documentation as a guide.

Export/Generation using Ping Identity’s developer tools. Learn more in Exporting configuration.

Data sources are used to retrieve dynamic information, enabling flexible and adaptable configurations based on outside
conditions.

Terraform uses the selected provider to interact with the target platform’s API to create, modify, or delete the defined
resources.

•

•

◦

◦

•

•

Configuration Automation - Terraform Terraform at Ping Identity

Copyright © 2025 Ping Identity Corporation 7

https://developer.hashicorp.com/terraform/language/state
https://developer.hashicorp.com/terraform/language/state
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application
https://developer.hashicorp.com/terraform/language/resources
https://developer.hashicorp.com/terraform/language/resources
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/application
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/application
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/application
https://developer.hashicorp.com/terraform/language/data-sources
https://developer.hashicorp.com/terraform/language/data-sources
https://registry.terraform.io/namespaces/pingidentity
https://registry.terraform.io/namespaces/pingidentity

Benefits of Terraform with Ping Identity deployments

The following sections describe the benefits of using Terraform with Ping Identity deployments.

Accelerating configuration promotion

Terraform enables developers to define configuration once during development, create a Configuration as Code package, and
then deploy that configuration consistently across different environments (development to test, test to production, and so on). By
using Terraform’s variables and modules, developers can easily parameterize configuration (use cases, solutions, and
applications) and adapt them to each environment’s specific requirements. This approach has the following benefits:

Reduces the risk of errors and inconsistencies during deployment promotion and accelerates time to value for new
features and end user experiences.

Reduces the time needed to align configuration between environments.

Enables quick rollback of configuration.

To get best value from accelerating configuration promotion, consider:

Using GitOps methodology to store Terraform configuration as code in source control.

Version controlling logical releases to accurately report the version of a solution that has been applied to any
environment.

Define a strong code review and change audit process to allow configuration owners to review and comment on potential
changes before they enter (or during) the deployment pipeline.

Apply testing automation to quickly alert to potential regression issues and gain confidence that configuration changes will
be successful when deployed to production.

Accelerating development cycles

Terraform accelerates multi-team development cycles by providing a standardized, code-driven approach to infrastructure and
configuration management. Using Configuration as Code, teams can use industry standard GitOps tools, such as a common
source control repository or central deployment and testing pipeline, to rapidly merge changes with full audit and approval
control. This approach can allow:

Ephemeral, on-demand environments to prevent multiple teams from conflicting in the same development environment.

Rapid refreshes of development environments to avoid conflict with experimental or sandbox configurations.

Clear definitions of ownership and change review, where different teams can be responsible for their own configuration
and be notified for review and approval if a team’s configuration is altered by a different team.

Use cases, applications, and solutions can be modularized to help prevent configuration sprawl.

•

•

•

•

•

•

•

•

•

•

•

Terraform at Ping Identity Configuration Automation - Terraform

8 Copyright © 2025 Ping Identity Corporation

Protecting against accidental or malicious configuration changes

As an out-of-the-box feature, Terraform compares the configuration that it’s stored in Terraform state (from the last successful
Terraform operation), the configuration the developer defines in the Configuration as Code HCL, and the configuration at the
point in time that is active on the live service. When comparing these three sources, Terraform can determine whether
configuration has been modified in the HCL by the developer (the live service should be updated to align with the developer’s
intention), or whether configuration has been modified in the live service (and not in Terraform HCL or state, meaning the live
service has changed unexpectedly) and the live service should be corrected.

If the live service configuration has changed unexpectedly, this change might indicate an accidental or malicious configuration
change. In Ping Identity systems, such a change might lead to an issue in the user experience, a weakened IAM security policy, or
an untested or unapproved use case.

Consider running Terraform on a regular schedule to alert administrators to potential drift in configuration so that the cause can
be investigated. Optionally, as part of the scheduled run, Terraform can be configured to be run to automatically remediate
changed configuration to return the environment back to the originally tested state.

Consistent and homogenous Configuration as Code syntax

Terraform provides two styles of Configuration as Code: Hashicorp Configuration Language (HCL) and JSON. For the Terraform
community, both HCL and JSON are well understood, and the syntax can be applied to Ping Identity or any other supported third-
party system. Both styles of code provide a consistent look and feel and have rich support for well-known code editors.

While both HCL and JSON are human and machine readable, the HCL style can be better organised by the developer to improve
readability by:

Adding lines of comments to add additional context to readers.

Separating large code files into smaller, discrete files where file names provide clear direction as to the purpose of the
contained HCL.

Separating groups of files or repeated HCL code into clearly defined, well documented modules.

Use of new line separators to create natural spacing between resources and data sources.

JSON can be used where machine readability (programatic manipulation) might be required over human readability.

Auditability and readability of changes

When using Terraform to perform changes to a live service, Terraform provides a full list of proposed changes during the plan
generation phase using the terraform plan command.

The full list of changes allows the developer to track:

What new configuration resources are to be created in the live service (new resources have been added to the code by the
developer).

What existing configuration resources need to be modified (the developer has requested changes in the code, or the live
service configuration needs correcting).

What existing configuration resources should be deleted (resources have been removed from the code by the developer).

•

•

•

•

•

•

•

Configuration Automation - Terraform Terraform at Ping Identity

Copyright © 2025 Ping Identity Corporation 9

This plan output provides Ping Identity configuration administrators with an ability to review all the changes to an environment
before they are made, allowing teams to understand the impact of proposed changes and potentially stop any accidental changes
from being applied to an environment.

The plan output also provides a way to record, in audit, what configuration changes have been requested to be made to an
environment. When reviewed alongside the apply output, auditors can trace configuration changes that have been made to an
environment over time.

Terraform at Ping Identity Configuration Automation - Terraform

10 Copyright © 2025 Ping Identity Corporation

Best practices

The following provides a set of best practices to apply when writing Terraform with Ping Identity providers and modules in
general. This guide is intended to be used alongside provider and service-specific best practices.

These guidelines are not intended to educate on the use of Terraform and are not a getting started guide. You can find more
information about Terraform in Hashicorp’s Online Documentation. Learn how to get started with the Ping Identity Terraform
providers in the Getting Started guides.

General use

plan first before apply

Running terraform plan before terraform apply is a crucial practice for Terraform users, as it provides a proactive approach
to infrastructure management. The plan command generates an execution plan, detailing the changes that Terraform intends to
make to the infrastructure. By reviewing this plan, administrators will gain insight into the potential modifications, additions, or
deletions of configured resources.

This preview allows administrators to assess the impact of the proposed changes, identify any unexpected alterations, and verify
that the configuration aligns with their intentions. This preventive step helps in avoiding unintended consequences and costly
mistakes, ensuring a smoother and more controlled deployment process. Skipping the plan phase and directly executing apply
can lead to inadvertent alterations, risking the stability and integrity of the infrastructure. Therefore, incorporating terraform
plan as an integral part of the workflow, potentially as an automation in the "Pull Request" stage of a GitOps process, promotes
responsible and informed infrastructure management practices.

Use --auto-approve with caution

Use of the --auto-approve feature in Terraform can lead to unintended and potentially destructive changes in your
infrastructure. When running Terraform commands, such as terraform apply , without the --auto-approve flag, Terraform will
provide a plan of the changes it intends to make and ask for confirmation before applying those changes.

By using --auto-approve , the process of reviewing planned changes to configuration and infrastructure is skipped, and
Terraform immediately applies the changes. Using this flag is risky for several reasons:

Accidental Changes: Without reviewing the plan, unintended changes could inadvertently be applied to the environment.
The lack of review is particularly dangerous in production environments where mistakes can have significant
consequences, such as causing breaking changes creating an outage or use case failure.

Destructive Changes: Similar to accidental changes, Terraform could also destroy resources as part of the update.
Without manual confirmation, unintentional removal of critical configuration or infrastructure can occur. This removal of
resources applies to both terraform apply and terraform destroy commands.

Security Implications: Auto-approving changes without verification increases the risk of security vulnerabilities. For
example, sensitive data could be exposed unintentionally, or access policies could be negated or weakened.

To minimize the risks associated with --auto-approve , Ping Identity recommends you review the Terraform plan before applying
changes. This review ensures that admins have a clear understanding of what modifications Terraform intends to make to live
service configuration and infrastructure.

•

•

•

Best practices Configuration Automation - Terraform

12 Copyright © 2025 Ping Identity Corporation

https://developer.hashicorp.com/terraform/docs
https://developer.hashicorp.com/terraform/docs

Store state securely

When operating production infrastructure with Terraform, the secure storage of Terraform state files is critical. These files serve
as the foundational blueprint of your infrastructure, containing detailed configurations, credentials, and the current state of
resources. As they contain sensitive information, exposure of these files could be used to gain unauthorized access to user data
and allow manipulation of deployed infrastructure.

To safeguard against these threats, it is vital that robust security measures are implemented around state file storage. Such
measures include: * Encrypting the state files to protect their contents during transit and at rest. * Employing stringent access
controls to ensure only authorized personnel can retrieve or alter the state. If cloud blob storage is used (such as AWS S3), ensure
public access is disabled. * Leveraging secure storage solutions that offer features such as versioning and backups.

One option is to use Terraform Cloud from Hashicorp, which provides secure state storage as part of the service.

Regardless of your method of storing the state information, these practices are crucial in maintaining the confidentiality, integrity,
and availability of your infrastructure.

Learn more about state management when using Terraform in Hashicorp’s online documentation.

Don’t modify state directly

Directly modifying Terraform state files is strongly discouraged due to the critical role they play in Terraform’s management of
infrastructure resources.

The state file acts as a single source of truth for both the configuration and the real-world resources it manages, which is critical
when Terraform calculates the differences between "intended" and "actual" configuration when running terraform plan .

Manual edits can lead to inconsistencies between the actual state of your infrastructure and Terraform’s record, potentially
causing unresolvable conflicts in the plan phase, or could result in errors when the provider is reading/writing the state of a
resource. Such actions undermine the integrity of your infrastructure management, leading to difficult-to-diagnose issues,
resource drift, and potentially the loss or corruption of critical infrastructure.

Instead of directly editing state files, it is best practice to use Terraform’s built-in commands, such as terraform state rm or
terraform import , to safely make changes. This approach ensures that Terraform can accurately track and manage the state of
provisioned infrastructure, maintaining the reliability and predictability of your Infrastructure as Code environment.

Learn more about state management when using Terraform in Hashicorp’s online documentation.

Ensure provider warnings are captured and reviewed

Terraform providers can produce warnings as a result of operations such as terraform validate , terraform plan , and
terraform apply . When these operations are run using the CLI, the warnings are directed to the command line output, and
when these operations are run in cloud services such as Terraform Cloud, these warnings are shown in the UI.

Ping Identity’s Terraform providers can show warnings that need to be captured and reviewed. For example, the PingOne
Terraform provider will produce warnings when specific configuration is used that remove guardrails to prevent accidental
deletion of data.

It is highly recommended that warnings shown on the terraform plan stage especially are captured and reviewed before the
terraform apply stage is run, as the messages might alert the administrator to potential undesired results of the terraform
apply stage.

Configuration Automation - Terraform Best practices

Copyright © 2025 Ping Identity Corporation 13

https://developer.hashicorp.com/terraform/language/state
https://developer.hashicorp.com/terraform/language/state
https://developer.hashicorp.com/terraform/language/state
https://developer.hashicorp.com/terraform/language/state

HCL writing recommendations

Use Terraform formatting tools

When writing Terraform HCL, using terraform fmt is a straightforward yet powerful practice. terraform fmt and equivalent
formatting tools adjust the Terraform code to a standard style, keeping the codebase tidy and consistent. Typically, this
formatting deals with maintaining consistent indentation, spacing, and alignment of code. If developing in Visual Studio Code, the
"Hashicorp Terraform" extension can be set to run terraform fmt automatically as you write and save configuration.

This consistency makes your code easier to read and understand for anyone who might work on the project. Having consistent
formatting reduces confusion and makes it easier to spot mistakes.

It is recommended to include terraform fmt into the development workflows as it has a big impact on the maintainability and
clarity of your infrastructure code. The benefits in code quality and collaboration outweigh the minimal effort required to format
everything consistently.

Additionally, it is recommended to include terraform fmt as a CI/CD validation check to ensure developers are applying
consistent development practices when committing Configuration as Code to a common CI/CD pipeline code repository.

Validate Terraform HCL before plan and apply

When writing Terraform HCL, it is recommended to use terraform validate before running terraform plan and terraform
apply .

This command serves as a preliminary check, verifying that Terraform HCL configurations are syntactically valid and internally
consistent without actually applying any changes. There are some resources in Ping Identity’s Terraform providers that have
specific validation logic to ensure that configuration is valid before any platform API is called, which reduces the "time-to-error", if
an error exists.

As a specific example, davinci_flow  resources validate the flow_json  input and the specified connection_link  blocks
to make sure remapped connections are valid.

Using count and for_each with resource iteration

When writing Terraform HCL, there are considerations around when to use count and when to use for_each , especially when
iterating over resources. Using the incorrect iteration method could result in accidental or unnecessary destruction or recreation
of resources as the data to iterate over changes.

Consider the following example, where a number of populations are being created from an array variable:

Best practices Configuration Automation - Terraform

14 Copyright © 2025 Ping Identity Corporation

https://registry.terraform.io/providers/pingidentity/davinci/latest/docs/resources/flow
https://registry.terraform.io/providers/pingidentity/davinci/latest/docs/resources/flow
https://registry.terraform.io/providers/pingidentity/davinci/latest/docs/resources/flow
https://registry.terraform.io/providers/pingidentity/davinci/latest/docs/resources/flow#flow_json
https://registry.terraform.io/providers/pingidentity/davinci/latest/docs/resources/flow#flow_json
https://registry.terraform.io/providers/pingidentity/davinci/latest/docs/resources/flow#flow_json
https://registry.terraform.io/providers/pingidentity/davinci/latest/docs/resources/flow#connection_link
https://registry.terraform.io/providers/pingidentity/davinci/latest/docs/resources/flow#connection_link
https://registry.terraform.io/providers/pingidentity/davinci/latest/docs/resources/flow#connection_link

locals {
 populations = [
 "Retail Customers",
 "Business Customers",
 "Business Partners",
]
}

resource "pingone_population" "my_populations" {
 count = length(local.populations)

 environment_id = pingone_environment.my_environment.id
 name = local.populations[count.index]
}

The HCL will create the populations successfully, but you will run into problems when the order of the array changes (for
example, if it is sorted alphabetically in the code):

locals {
 populations = [
 "Business Customers",
 "Business Partners",
 "Retail Customers",
]
}

resource "pingone_population" "my_populations" {
 count = length(local.populations)

 environment_id = pingone_environment.my_environment.id
 name = local.populations[count.index]
}

Configuration Automation - Terraform Best practices

Copyright © 2025 Ping Identity Corporation 15

Terraform will perform the following actions:

 # pingone_population.my_populations[0] will be updated in-place
 ~ resource "pingone_population" "my_populations" {
 id = "91ffa912-e24e-4fa7-a0f3-7fb48539f756"
 ~ name = "Retail Customers" -> "Business Customers"
 # (1 unchanged attribute hidden)
 }

 # pingone_population.my_populations[1] will be updated in-place
 ~ resource "pingone_population" "my_populations" {
 id = "f2df301c-c2a1-436b-afaf-33eb189fe7d6"
 ~ name = "Business Customers" -> "Business Partners"
 # (1 unchanged attribute hidden)
 }

 # pingone_population.my_populations[2] will be updated in-place
 ~ resource "pingone_population" "my_populations" {
 id = "f2df828e-cfd6-4ecb-815d-5bd33c566fa8"
 ~ name = "Business Partners" -> "Retail Customers"
 # (1 unchanged attribute hidden)
 }

In this situation, users are inadvertently being moved from one population to another based on the names of the populations.
Any downstream application that requires a hardcoded UUID for "Retail Customers" (for example) will instead return "Business
Partners" identities.

The problem is compounded when adding and removing elements to and from the array. This scenario is an example of when to
use for_each instead of count , as for_each will identify and store each resource with a unique key. Including guidance from
the Use maps with static keys when using for_each on resources best practice, the following HCL is the recommended way to
perform the same iteration:

locals {
 populations = {
 "business_customers" = "Business Customers",
 "retail_customers" = "Retail Customers",
 "business_partners" = "Business Partners",
 }
}

resource "pingone_population" "my_populations" {
 for_each = local.populations

 environment_id = pingone_environment.my_environment.id
 name = each.value
}

Best practices Configuration Automation - Terraform

16 Copyright © 2025 Ping Identity Corporation

Use maps with static keys when using for_each on resources

When writing Terraform HCL, there are considerations around the use of for_each when iterating over objects or maps to
manage resources. Using a variable key could result in accidental or unnecessary destruction or recreation of resources as the
data to iterate over changes. Ping Identity recommends using static keys and maps of objects when using for_each rather than a
list or array of objects to control resource creation.

When Terraform creates and stores resources in state, iterated resources must be stored with a defined "key" value that uniquely
identifies the resource against others.

Best practice

It is a best practice to use a map of objects, where there is a static key. Notice that first_population and second_population
are both static keys for the objects you want to create:

variable "populations" {
 type = map(object({
 name = string
 description = optional(string)
 }))

 default = {
 "first_population" = {
 name = "My awesome population"
 description = "My awesome population for awesome people"
 },
 "second_population" = {
 name = "My awesome second population"
 }
 }
}

resource "pingone_population" "my_awesome_population_map_of_objects" {
 environment_id = pingone_environment.my_environment.id

 for_each = var.populations

 name = each.value.name
 description = each.value.description
}

This results in creation of two unique resources:

pingone_population.my_awesome_population_map_of_objects["first_population"]

pingone_population.my_awesome_population_map_of_objects["second_population"]

In this case, if the name or description of any population changes, Terraform will correctly update the impacted resource,
rather than potentially forcing a recreation.

Additionally, if the order of the key-object pairs changes in the map, Terraform correctly calculates that there are no changes to
the data with the objects themselves because the relation of object to map key hasn’t changed. This has similar advantages to
using for_each over count , where changing the order of items does impact the plan that Terraform calculates because the
counted index related to the data has changed.

•

•

Configuration Automation - Terraform Best practices

Copyright © 2025 Ping Identity Corporation 17

Not best practice

The following example does not follow best practice where creation of multiple populations might use for_each over a list of
objects. In this example, you might be inclined to use the name as the population’s key, which can introduce functional issues and
introduce security vulnerabilities for integrated production environments:

variable "populations" {
 type = list(object({
 name = string
 description = optional(string)
 }))

 default = [
 {
 name = "My awesome population"
 description = "My awesome population for awesome people"
 },
 {
 name = "My awesome second population"
 }
]
}

resource "pingone_population" "my_awesome_population_list_of_objects" {
 environment_id = pingone_environment.my_environment.id

 for_each = { for population in var.populations : population.name => population }

 name = each.key
 description = each.value.description
}

The above results in creation of two unique resources:

pingone_population.my_awesome_population_list_of_objects["My awesome population"]

pingone_population.my_awesome_population_list_of_objects["My awesome second population"]

However, in this case, if the name of My awesome population is changed to My awesome first population in the variable,
Terraform will destroy that population and recreate it with a new index value. This an unnecessary and dangerous way to change
the population name, as destruction of populations will put user data at risk.

Write and publish reusable modules

When writing Terraform HCL, there are many cases when collections of resources and data sources are commonly used together
or with the same or a similar structure. These collections of resources and data sources can be grouped together into a Terraform
module. Writing and publishing Terraform modules embodies a best practice within Infrastructure as Code paradigms for several
reasons:

Abstract complexity: Modules encapsulate and abstract complex sets of resources and configurations, promoting
reusability and reducing redundancy across your infrastructure setups. This modular approach enables teams to define
standardized and vetted building blocks, ensuring consistency, compliance, and reliability across deployments.

•

•

•

Best practices Configuration Automation - Terraform

18 Copyright © 2025 Ping Identity Corporation

Foster collaboration: Publishing these modules, either internally within an organization or publicly in the Terraform
Registry, fosters collaboration and knowledge sharing. It allows others to benefit from proven infrastructure patterns,
contribute improvements, and stay aligned with the latest best practices. This culture of sharing and collaboration not only
accelerates development cycles but also elevates the quality of infrastructure provisioning by leveraging the collective
expertise and experience of the Terraform community.

Versioning

Use Terraform version control

Terraform releases change over time, which can include new features and bug fixes. Major version changes can introduce
breaking changes to written code.

To ensure that Terraform HCL is run with consistent results between runs, it is recommended to restrict the version of Terraform
in the terraform {} block with a lower version limit (in case the HCL includes syntax introduced in a specific version) and an
upper version limit to protect against breaking changes.

For example:

terraform {
 required_version = ">= 1.3.0, < 2.0.0"

 # ... other configuration parameters
}

Another example that limits to a specific minor version:

terraform {
 required_version = "~> 1.6"

 # ... other configuration parameters
}

Terraform Documentation Reference

Use provider version control

Ping Identity and other vendors release changes to providers on a regular basis that can include new features and bug fixes.
Major version changes can introduce breaking changes to written code as older deprecated resources, data sources, parameters,
and attributes are removed. Provider versions that are less than 1.0.0 could also include breaking changes to written code. Ping
Identity follows guidance issued by Hashicorp on deprecations, removals, and renames.

To ensure consistent results between iterations, it is recommended to restrict the version of each provider in the
terraform.required_providers parameter with a lower version limit (in case the HCL includes syntax introduced in a specific
version) and an upper version limit to protect against breaking changes.

For example, the following syntax for the hashicorp/kubernetes and pingidentity/pingdirectory providers is recommended
for provider versions >= 1.0.0 :

•

Configuration Automation - Terraform Best practices

Copyright © 2025 Ping Identity Corporation 19

https://developer.hashicorp.com/terraform/tutorials/configuration-language/versions
https://developer.hashicorp.com/terraform/tutorials/configuration-language/versions
https://developer.hashicorp.com/terraform/plugin/framework/deprecations
https://developer.hashicorp.com/terraform/plugin/framework/deprecations

terraform {
 required_version = ">= 1.3.0, < 2.0.0"

 required_providers {
 kubernetes = {
 source = "hashicorp/kubernetes"
 version = ">= 2.25.2, < 3.0.0"
 }
 pingdirectory = {
 source = "pingidentity/pingdirectory"
 version = ">= 1.0.2, < 2.0.0"
 }
 }
}

The following example syntax for the pingidentity/pingone and hashicorp/time providers shows the recommended version
pinning for provider versions < 1.0.0 that could incur breaking changes during initial development, though it can also be used
for provider versions >= 1.0.0 :

terraform {
 required_version = "~> 1.6"

 required_providers {
 pingone = {
 source = "pingidentity/pingone"
 version = "~> 1.0"
 }
 time = {
 source = "hashicorp/time"
 version = "~> 0.9"
 }
 }
}

Terraform Documentation Reference

Use module version control

Ping Identity and other vendors release changes to modules on a regular basis that can include new features and bug fixes. Major
version changes can introduce breaking changes to written code as older deprecated resources, data sources, parameters, and
attributes are removed.

To ensure consistent results between iterations, it is recommended to restrict the version of each module with a lower version
limit (in case the HCL includes syntax introduced in a specific version) and an upper version limit to protect against breaking
changes.

For example, the following syntax for the terraform-aws-modules/vpc/aws module is recommended for module versions >=
1.0.0 :

Best practices Configuration Automation - Terraform

20 Copyright © 2025 Ping Identity Corporation

https://developer.hashicorp.com/terraform/tutorials/configuration-language/versions
https://developer.hashicorp.com/terraform/tutorials/configuration-language/versions

module "vpc" {
 source = "terraform-aws-modules/vpc/aws"
 version = ">= 5.5.1, < 6.0.0"

 # ... other configuration parameters
}

The following example syntax for the pingidentity/utils/pingone module shows the recommended version pinning for
module versions < 1.0.0 that could incur breaking changes during initial development, though it can also be used for module
versions >= 1.0.0 :

module "utils" {
 source = "pingidentity/utils/pingone"
 version = "~> 0.1"

 # ... other configuration parameters
}

Terraform Documentation Reference

Protect service configuration and data

Protect configuration and data with the lifecycle.prevent_destroy meta argument

While some resources are safe to remove and replace, there are some resources that, if removed, can result in data loss.

It is recommended to use the lifecycle.prevent_destroy meta argument to protect against accidental destroy plans that
might cause data to be lost. You might also want to use the meta argument to prevent accidental removal of access policies and
applications if dependent applications cannot be updated with Terraform in case of replacement.

For example:

resource "pingone_schema_attribute" "my_attribute" {
 environment_id = pingone_environment.my_environment.id

 name = "myAttribute"

 # ... other configuration parameters

 lifecycle {
 prevent_destroy = true
 }
}

Terraform Prevent Destroy Documentation

Configuration Automation - Terraform Best practices

Copyright © 2025 Ping Identity Corporation 21

https://developer.hashicorp.com/terraform/tutorials/configuration-language/versions
https://developer.hashicorp.com/terraform/tutorials/configuration-language/versions
https://developer.hashicorp.com/terraform/tutorials/state/resource-lifecycle#prevent-resource-deletion
https://developer.hashicorp.com/terraform/tutorials/state/resource-lifecycle#prevent-resource-deletion

Secrets management

Use of Terraform variables and secrets management

When writing Terraform HCL, it might be tempting to write values that are sensitive (such as passwords, API keys, tokens, OpenID
Connect Client Secrets, or TLS private key data) directly into the code. There is a significant risk that these secrets are then
committed to source control, where they can be viewed by anyone who can access that code. This risk is elevated when the
source control is a public Git repository hosted on sites such as GitHub or GitLab. After secrets are committed to a repository,
removing them requires extensive effort and does not guarantee that they have not been copied or logged elsewhere.

In addition, version control systems are designed to track and preserve history, making it challenging to completely erase secrets
after they are committed. This persistence in history means that even if the secrets are later removed from the codebase, they
remain accessible in the commit history. Additionally repositories are often cloned, forked, or integrated with third-party services,
further increasing the exposure of secrets.

In the end, if credentials have been leaked in this manner, the safest way to recover is to rotate them in the source systems, an
activity which can have broad impact across systems and individuals.

To mitigate these risks, it is recommended to use secure secrets management tools and practices. Terraform supports various
mechanisms for securely managing secrets, including environment variables, encrypted state files, and integration with dedicated
secrets management systems like AWS Secrets Manager, Azure Key Vault, or HashiCorp Vault. These tools provide controlled
access to secrets, audit trails, and the ability to rotate secrets periodically or in response to a breach.

By keeping secrets out of source control and employing robust secrets management strategies, users can significantly enhance
the security posture of their infrastructure deployments. This approach not only protects sensitive information but also aligns
with compliance requirements and best practices for secure infrastructure management.

Multi-team development

Use on-demand development environments

When using a GitOps CI/CD promotion process across multiple teams or individuals, a recommended approach is to spin up on-
demand development and test environments where possible. These environments can be specific to new features or to individual
teams to allow for development and integration testing that doesn’t conflict with other team’s activities. The Terraform provider
allows administrators to use CI/CD automation to provision new environments as required and remove them after the project
activity no longer needs them.

In a GitOps CI/CD promotion pipeline, configuration can be translated to Terraform Configuration as Code and then merged (with
Pull Requests) with common test environments, where automated tests can be run. Doing so allows the activities in the on-
demand environments to be merged into a common promotion pipeline to production environments.

In some cases, some integrated systems are not easily available for integration testing. For example, integrated HR systems or
systems are installed on bare metal infrastructure. In these cases, where possible, these systems can be stubbed into the process
and tested during the integration testing phase of the project when changes have been merged into a common promotion
pipeline.

Best practices Configuration Automation - Terraform

22 Copyright © 2025 Ping Identity Corporation

In some cases, it is not practical or possible to use on-demand environments. In these situations, one option is to create static
development environments that are shared between teams or projects, along with processes to mitigate conflicts. Ideally these
development environments will have their configuration periodically refreshed and aligned with that of common test
environments further down the CI/CD promotion pipeline. When using a shared environment, ensure the update activity is
appropriately scheduled with the project teams involved to avoid wiping configuration that is still in active development.

Continuous Integration/Continuous Delivery (CI/CD)

Use Terraform linting tools

Ping Identity recommends using linting tools in the development process, as these tools significantly enhance code quality,
maintainability, and consistency across projects.

Linters are static code analysis tools designed to inspect code for potential errors, stylistic discrepancies, and deviations from
established coding standards and best practices. By integrating linting tools into the development workflow, developers are
proactively alerted to issues such as syntax errors, potential bugs, and security vulnerabilities before the code is even executed or
deployed. This immediate feedback loop not only saves time and resources by catching issues early but also facilitates a learning
environment where developers can gradually adopt best coding practices and improve their skills.

Moreover, linting tools play a pivotal role in maintaining codebase consistency, especially in collaborative environments where
multiple developers contribute to the same project. They enforce a uniform coding style and standards, reducing the cognitive
load on developers who need to understand and work with each other’s code. This standardization is vital for code readability,
reducing the complexity of code reviews and easing the onboarding of new team members.

Furthermore, integrating linting tools into CI/CD pipelines automates the process of code quality checks, ensuring that only code
that meets the defined quality criteria is advanced through the stages of development, testing, and deployment. This automation
not only streamlines the development process but also aligns with agile practices and DevOps methodologies, promoting faster,
more reliable, and higher-quality software releases.

One of the most common and full-featured linting tools is TFLint.

Use Terraform security scanning tools

Ping Identity recommends that users incorporate Terraform security scanning tools into the development and deployment
workflow to help with security and compliance of Infrastructure as Code configurations.

Terraform manages highly sensitive and critical components of cloud infrastructure, making any misconfigurations or
vulnerabilities potentially disastrous in terms of security breaches, data leaks, and compliance violations. Security scanning tools
are designed to automatically inspect Terraform code for such issues before the infrastructure is provisioned or updated,
highlighting practices that could lead to security weaknesses, such as overly permissive access controls, unencrypted data
storage, or exposure of sensitive information.

By leveraging these tools, developers can preemptively identify and rectify security vulnerabilities within their infrastructure code,
significantly reducing the risk of attacks and breaches. This proactive approach to security is aligned with the principles of
DevSecOps, which advocates for "shifting left" on security, in other words, integrating security practices early in the software
development lifecycle. It ensures that security considerations are embedded in the development process.

Furthermore, Terraform security scanning tools often provide compliance checks against common regulatory standards and best
practices, such as the CIS benchmarks, making it easier for organizations to adhere to industry regulations and avoid penalties.
These tools also promote a culture of security awareness among developers, educating them on secure coding practices and the
importance of infrastructure security.

Configuration Automation - Terraform Best practices

Copyright © 2025 Ping Identity Corporation 23

https://github.com/terraform-linters/tflint
https://github.com/terraform-linters/tflint

Overall, the use of Terraform security scanning tools enhances the security posture of cloud environments, protects against the
financial and reputational damage associated with security incidents, and ensures continuous compliance with evolving
regulatory requirements. This makes them an indispensable asset in the toolkit of any team working with Terraform and cloud
infrastructure.

Example tools for security scanning include Trivy, Terrascan and checkov.

Check the .terraform.lock.hcl file into source control

Including the .terraform.lock.hcl file in source control is a recommended best practice for Terraform users, providing several
benefits to the Infrastructure as Code workflow.

This file serves as a version lock file that records the specific versions of the provider plugins and modules (and their hashes) used
in a Terraform configuration. By checking it into source control, teams ensure consistent and reproducible deployments across
different environments. The lock file acts as a snapshot of the dependencies, guaranteeing that everyone working on the project
has the same set of provider and module versions. This practice enhances collaboration, reduces the likelihood of version
mismatches, and mitigates the risk of unexpected changes or disruptions during deployments. It also facilitates version tracking
and simplifies the process of recreating the infrastructure at a later time. Overall, checking the .terraform.lock.hcl file into
source control contributes to the reliability and maintainability of Terraform configurations within a collaborative development
environment.

When used with a GitOps process that includes dependency scanning tools (such as GitHub’s Dependabot or Renovate),
automations can be configured to generate automatic pull requests of provider or module version updates that might include
bug fixes, enhancements, and security patches. The automated pull requests and associated checks can help streamline a CI/CD
workflow, leading to higher productivity and reduced human error.

Best practices Configuration Automation - Terraform

24 Copyright © 2025 Ping Identity Corporation

https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/trivy
https://runterrascan.io/docs/
https://runterrascan.io/docs/
https://www.checkov.io/
https://www.checkov.io/

Develop with Terraform

Importing to Terraform state

Learn how to take a preconfigured product environment and import to Terraform state. Importing to Terraform state
allows Terraform to manage a product environment without needing to recreate any configuration for that environment.
This is useful when bringing a production environment under Terraform control retrospectively.

Importing to Terraform state

Exporting and generating Terraform HCL

Learn how to generate Terraform HCL configuration for a preconfigured environment. This is useful when exporting
configuration from a development environment to store in source control, or promote to test or production.

Exporting Terraform configuration

Interface stability

Learn how Ping Identity’s development practices provide stability and predictability when using Ping Identity’s Terraform
providers.

Interface stability

Getting support

Learn where and how to get support on Ping Identity’s Terraform providers.

Getting support

menu_book

menu_book

menu_book

menu_book

Develop with Terraform Configuration Automation - Terraform

26 Copyright © 2025 Ping Identity Corporation

Importing to Terraform state

Terraform maintains a storage of the last known configuration of a product environment. This is to allow Terraform to compare
the intended configuration of an environment (declared using the Terraform code language, HCL), with the actual configuration
of the environment (which the provider will do when reading the current configuration of an environment using the service API),
with what Terraform believes is the last known configuration of an environment. Terraform compares these three sources to
reconcile configuration and produce an action plan to fix configuration drift in an environment, while simultaneously handling
configuration additions and deletions.

Terraform state is a required component of Terraform management of an environment and must be handled securely. The
storage mechanism of the Terraform state is left to the customer to decide. You can find more information and HashiCorp’s own
best practices when handling Terraform state in State in the HashiCorp documentation.

You should not manage Terraform state configuration manually using a text editor. Terraform manages the state file itself in two
ways:

By declaring end-state configuration in Terraform HCL and running the terraform plan and terraform apply
commands. This method is most common when adding net-new configuration to a product, meaning that Terraform
manages the full lifecycle of a configuration item including its initial creation.

By importing predefined configuration in an environment, using import {} block HCL code or using the terraform
import command. This method is most common when bringing existing product configuration under Terraform control,
where Terraform cannot manage the initial creation of that configuration.

Importing configuration is most suited to production environments that have been previously built and managed without using
Terraform. Importing configuration to Terraform state is non-destructive (meaning that configuration is not expected to be
removed or re-added). After configuration for an environment is imported to Terraform state, Terraform can manage the lifecycle
of the imported configuration in the normal way.

Using Ping CLI to generate import blocks

Terraform’s out-of-the-box import capability requires the developer to import each configuration item individually by its unique
ID. When working with Ping Identity products and Ping Identity Terraform providers, the required ID used for importing a specific
configuration item could be a single ID or a compound ID (where two or more IDs are concatenated together with a / forward
slash separator). Depending on the Ping Identity product, the ID could be customer developer defined or could be a platform
generated UUID. In both cases, the customer developer might have difficulty in retrieving the required IDs for all configuration for
a product environment.

The Ping CLI command-line tool has features to simplify importing configuration to Terraform state. The platform export
command is designed to connect to a supported Ping Identity product, read the live configuration of the service, and generate the
required Terraform HCL files with clearly labelled import {} blocks, complete with all necessary IDs. The developer can then
import all configuration for an environment or choose which configuration items to include in import.

Exporting Terraform configuration

When working with Terraform, you should configure use cases in the Ping Identity administration console (typically in the
development environment) and then export that configuration to Terraform HCL to promote it to your test and production
environments.

1.

2.

Configuration Automation - Terraform Develop with Terraform

Copyright © 2025 Ping Identity Corporation 27

https://developer.hashicorp.com/terraform/language/state
https://developer.hashicorp.com/terraform/language/state

Terraform includes experimental out-of-the-box functionality to export or generate configuration from a configured environment.
You can find more details in the Terraform documentation.

Using Ping CLI to generate Terraform configuration

Terraform’s out-of-the-box capability depends on the import {} block capability described in Importing to Terraform state.

Ping CLI has features to simplify generating Terraform HCL code for an environment. The platform export command is
designed to connect to a supported Ping Identity product, read the live configuration of the service, and generate the required
Terraform HCL files with clearly labelled import {} blocks, complete with all necessary IDs. The developer can then use the
Generate Terraform Configuration feature to generate the full HCL for an environment. The developer can then choose which
configuration items to include their Terraform HCL project.

Interface stability

To provide predictability and stability when developing Terraform HCL, Ping Identity’s development practices align with
development guidelines set out by Hashicorp and follow the expectations of the Hashicorp community.

When developing Terraform providers, Ping Identity follows the SemVer (Semantic Versioning) methodology set out at
Semver.org.

This includes a regular cadence of major, minor and patch versions of each Terraform provider. Releases are issued on the
respective GitHub code repositories using GitHub’s Releases feature. Changelogs are compiled on each release that provide a list
of issues resolved, enhancements, new features, general updates, and any breaking changes that might cause HCL developers to
alter the Terraform code in order to use the update.

High-level descriptions of the release types are:

Major releases: Typically once every year or couple of years. Major releases are issued when significant changes are made
to the Terraform provider and typically require customers to change their HCL code, otherwise known as breaking
changes.

Minor releases: Typically on a planned schedule, such as every few weeks or aligned with product releases. Minor releases
are issued when the providers are enhanced with additional, optional functionality and can also include planned bug fixes.

Patch releases: Typically ad-hoc, patch releases are issued between minor releases where bug fixes or documentation
updates must be released before the next minor release.

Learn more about major, minor, and patch releases at Semver.org

Breaking changes

Breaking changes to a Terraform provider typically require the customer Terraform developer to make changes to the written
HCL before they can use the update.

Breaking changes are required periodically to ensure Ping Identity’s Terraform providers remain aligned with the product API.
Significant breaking changes are typically planned in advance to be released in-bulk in the major release cycle.

As part of Ping Identity’s development practices, breaking changes are kept to a minimum and are planned as technical debt in
the major release cycle. It’s uncommon for breaking changes to occur in minor and patch releases.

•

•

•

Develop with Terraform Configuration Automation - Terraform

28 Copyright © 2025 Ping Identity Corporation

https://developer.hashicorp.com/terraform/docs
https://developer.hashicorp.com/terraform/docs
https://developer.hashicorp.com/terraform/language/import/generating-configuration
https://developer.hashicorp.com/terraform/language/import/generating-configuration
https://semver.org
https://semver.org
https://semver.org
https://semver.org

Occasionally, breaking changes cannot be included in the major release cycle and must be included in a minor release to ensure
that the provider functions correctly. These breaking changes are marked clearly in the release notes.

Some examples of breaking changes are: * Scheduled removal of previously deprecated functionality. * Renaming resources, data
sources, or functions without following a deprecation path. * Renaming or removing schema fields without following a
deprecation path. * Changing an Optional field to be Required in a resource or data source schema.

When breaking changes are made to a provider, these are highlighted in the release notes. If the change requires significant
rework of HCL code, or the corrective action cannot be included in the release note, or if there are many breaking changes to be
handled, then a specific guide might be created and published on the Terraform registry to assist with the conversion process.
Upgrade and migration guides are typically created when major releases are issued.

Getting support

Ping Identity’s Terraform providers are delivered as open-source projects and can be found on Ping Identity’s GitHub account

according to Hashicorp’s Terraform provider publishing guidelines. There are multiple ways to get support when using Ping
Identity’s Terraform providers:

Community Forum: The DevOps developer forum provides a quick and simple way to interact with an active community of
subject matter experts, including Ping Identity technical staff, customer, and partner specialists. The community forum is
ideal for specific questions on how best to configure Ping Identity products using Terraform HCL to meet use cases.

GitHub project issues: Each Terraform provider has a GitHub repository where open source provider code is published,
and each repository has the GitHub issues feature enabled. With a GitHub account, anyone can create issues on the
relevant project by filling in the provided template. Using GitHub project issues is ideal when requesting new features,
enhancements, or reporting unexpected errors or provider bugs. The GitHub issues are closely monitored and are a quick
and easy way to interact directly with the project team.

Ping Identity Support: For customers with an active product license, support tickets can be raised according to the normal
Ping Identity Support process. Raising a support ticket is ideal when there is a potential issue with the underlying product,
or the issue should be tracked with the account team.

•

•

•

Configuration Automation - Terraform Develop with Terraform

Copyright © 2025 Ping Identity Corporation 29

https://github.com/pingidentity
https://github.com/pingidentity

Getting started

The following provides guidance on preparing a PingOne tenant for Terraform access.

Requirements

Terraform CLI 1.4+

A licensed or trial PingOne cloud subscription. Try Ping here.

Administrator access to the PingOne admin console.

PingOne subscription or trial

To get started using the PingOne Terraform provider, you must first have an active PingOne cloud subscription. Get instant access
with a PingOne trial account or read more about Ping Identity at pingidentity.com

Configure PingOne for Terraform access

The PingOne Terraform provider requires the ability to connect to the PingOne Management APIs through the use of a worker
application that has administrative roles assigned.

The following steps describe how to connect Terraform to your PingOne instance using a worker application:

Sign on to your PingOne admin console. When you register for a trial, a link will be sent to your provided email address.

Open the Administrators environment. Note that any environment can be used.

Go to Applications.

Click the + icon to add a new application.

•

•

•

1.

2.

3.

4.

Configuration Automation - Terraform Getting started

Copyright © 2025 Ping Identity Corporation 31

https://www.pingidentity.com/en/try-ping.html
https://www.pingidentity.com/en/try-ping.html
https://docs.pingidentity.com/pingone/managing_your_pingone_user_profile/p1_signin.html
https://docs.pingidentity.com/pingone/managing_your_pingone_user_profile/p1_signin.html
https://www.pingidentity.com/en/try-ping.html
https://www.pingidentity.com/en/try-ping.html
https://www.pingidentity.com
https://www.pingidentity.com

Enter a name and an optional description, and ensure that Worker is selected as the application type.

Click the toggle to enable the application.

On the Roles tab, set the administrative roles accordingly.

The following image shows example roles to be able to create and manage environments and their configurations. You
can find more information about role permissions in Administrator Roles in the PingOne documentation.

5.

6.

7.

Getting started Configuration Automation - Terraform

32 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingone/directory/p1_roles.html
https://docs.pingidentity.com/pingone/directory/p1_roles.html

On the Configuration tab, expand the General section and copy the Client ID, Client Secret, and Environment ID values.
These IDs are used to authenticate the provider to your PingOne tenant.

8.

Configuration Automation - Terraform Getting started

Copyright © 2025 Ping Identity Corporation 33

You can find the steps to configure the PingOne Terraform provider using these values in the Terraform Registry provider
documentation.

Finding required IDs

There are tenant specific, unique IDs and name values that are required for the provider to operate. The following sections show
how to retrieve the relevant IDs.

License ID, organization ID, and organization name

The license ID is required when creating an environment using the pingone_environment resource.

The organization ID and organization name can be used with the pingone_organization data source. These values can be
found with the following steps:

Sign on to the PingOne admin console using your unique console link.

Go to Licenses.

Look for the relevant license (that’s not an Admin license) and click the Copy link icon to copy the ID. The organization
name and organization ID are also shown and can be copied.

9.

1.

2.

3.

Getting started Configuration Automation - Terraform

34 Copyright © 2025 Ping Identity Corporation

https://registry.terraform.io/providers/pingidentity/pingone/latest/docs
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/organization
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/organization
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/organization

Configuration Automation - Terraform Getting started

Copyright © 2025 Ping Identity Corporation 35

Best practices

The following sections provide a set of best practices to apply when writing Terraform with the PingOne Terraform provider and
associated modules.

These guidelines are not intended to educate on the use of Terraform and are not a getting started guide. You can find more
information about Terraform in Hashicorp’s Online Documentation. Learn how to get started with the PingOne Terraform
provider in the Getting started guide.

Develop in the admin console, promote using Configuration as Code

Ping Identity recommends performing use-case development activities in the PingOne admin console whenever possible. This
recommendation is due to the complex nature of Workforce IAM and Customer IAM deployments that includes policy definition,
user experience design, and associated testing and validation of designed use cases.

After you’ve developed a configuration in the PingOne admin console, you can extract it as Configuration as Code to be stored in
source control (such as a Git code repository) and linked with CI/CD tooling to automate the delivery of use cases into test and
production environments.

For professionals experienced in DevOps development, configuration can be created and altered outside of the PingOne admin
console, but care must be taken when modifying complex configuration, such PingOne Authorize, PingOne MFA, PingOne Protect,
or PingOne SSO sign-on policies.

Example or bootstrapped configuration dependencies

Deploy to "clean" environments, without example or bootstrapped configuration

Example or bootstrapped configuration is deployed automatically by the PingOne service when an environment is created or new
services are provisioned to an existing environment. This is the default behavior of the PingOne admin console and the API.

Example or bootstrapped configuration can be a useful starting point when initially creating use cases with the service (in the
development phase), but creates conflicts when migrating the configuration through to test and production environments.

The definition of the example or bootstrapped configuration for new environment can also change over time, as new features are
released and use case configuration best practices are defined. An environment created today might not be the same as an
environment created a year from now.

It’s best practice to create a new environment as a "clean" (without example or bootstrapped configuration) environment for
those environments outside of the initial development one. If environments cannot be recreated or are intended to be long-
lasting (such as staging or production), it might be enough to remove bootstrapped configuration manually when an environment
is created.

Notable examples of demo configuration include:

Platform

The default branding theme

Optional directory schema attributes (which can be disabled if not used)

accountId

address

•

•

◦

◦

Configuration Automation - Terraform Best practices

Copyright © 2025 Ping Identity Corporation 37

https://developer.hashicorp.com/terraform/docs
https://developer.hashicorp.com/terraform/docs

email

externalId

locale

mobilePhone

name

nickname

photo

preferredLanguage

primaryPhone

timezone

title

type

The default Keys and Certificates

The default notification policies

The default Single_Factor sign-on policy

The example password policies

The PingOne Application Portal (which can be disabled if not used)

DaVinci service

Example Forms

MFA service

The default MFA Device Policy

The default FIDO2 policies

The Multi_Factor sign-on policy

Verify service

The default verify policy

Define all configuration dependencies in Terraform or elsewhere in the pipeline

Example or bootstrapped configuration is deployed automatically by the PingOne service when an environment is created or new
services are provisioned to an existing environment. This is the default behavior of the PingOne admin console and the API.

Example or bootstrapped configuration can be a useful starting point when initially creating use cases with the service (in the
development phase), but creates conflicts when migrating the configuration through to test and production environments.

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

•

•

•

•

•

•

•

•

•

Best practices Configuration Automation - Terraform

38 Copyright © 2025 Ping Identity Corporation

The definition of the example or bootstrapped configuration for new environment can also change over time as new features are
released and use case configuration best practices are defined. An environment created today might not be the same as an
environment created a year from now.

It’s best practice to explicitly define all configuration dependencies in Terraform (or as a prior step in the CI/CD pipeline) after
developing flows for use cases. Most notably, this practice includes defining the policies (for example, sign-on, MFA Device, FIDO2,
or Protect policies) that applications will use in HCL, rather than using the example or bootstrapped environment examples.

Not best practice

The following pingone_population  definition doesn’t follow best practice, as it depends on the "Passphrase" password policy
that was deployed by default when the environment was created. This definition assumes that this password policy will always
exist and have a consistent definition on every environment creation. However, the password policy could change over time,
invalidating the configuration.

data "pingone_password_policy" "ootb_passphrase" {
 environment_id = pingone_environment.my_environment.id

 name = "Passphrase"
}

resource "pingone_population" "my_population" {
 environment_id = pingone_environment.my_environment.id

 name = "My awesome population"
 description = "My new population for awesome people"

 password_policy_id = data.pingone_password_policy.ootb_passphrase.id

 lifecycle {
 # change the `prevent_destroy` parameter value to `true` to prevent this data carrying resource from being
destroyed
 prevent_destroy = false
 }
}

Best practice

The following pingone_population  definition follows best practice, as the password policy that it depends on is explicitly
defined using the pingone_password_policy  resource. This explicit definition ensures that environments are built and
configured consistently between development, test, and production.

Configuration Automation - Terraform Best practices

Copyright © 2025 Ping Identity Corporation 39

https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/password_policy
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/password_policy
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/password_policy

resource "pingone_password_policy" "my_password_policy" {
 environment_id = pingone_environment.my_environment.id

 name = "My awesome password policy"

 excludes_commonly_used_passwords = true
 excludes_profile_data = true
 not_similar_to_current = true

 history = {
 count = 6
 retention_days = 365
 }

 # ... other configuration parameters
}

resource "pingone_population" "my_population" {
 environment_id = pingone_environment.my_environment.id

 name = "My awesome population"
 description = "My new population for awesome people"

 password_policy_id = pingone_password_policy.my_password_policy.id

 lifecycle {
 # change the `prevent_destroy` parameter value to `true` to prevent this data carrying resource from being
destroyed
 prevent_destroy = false
 }
}

Protect service configuration and data

The following sections detail best practices to apply to ensure protection of production data beyond what is covered in Secrets
management when using the PingOne Terraform provider.

Regularly rotate worker application secrets

In PingOne, administration management functions against the API can be performed by worker applications with admin roles
assigned, as described in Configuring roles for a worker application in the PingOne documentation. To use these worker
applications, you might need to generate an application secret and use that secret in downstream applications and services. You
should rotate these secrets on a regular basis to help mitigate against unauthorized platform changes.

Rotation can be controlled by a secrets engine that can update with the relevant API, as described in the Update Application
Secret in the PingOne developer documentation, but can also be rotated through the Terraform process.

For example, the following Terraform code will rotate an application secret for the application "My Awesome App" every 30 days:

Best practices Configuration Automation - Terraform

40 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingone/applications/p1_configurerolesforworkerapplication.html
https://docs.pingidentity.com/pingone/applications/p1_configurerolesforworkerapplication.html
https://apidocs.pingidentity.com/pingone/platform/v1/api/#post-update-application-secret
https://apidocs.pingidentity.com/pingone/platform/v1/api/#post-update-application-secret
https://apidocs.pingidentity.com/pingone/platform/v1/api/#post-update-application-secret

resource "pingone_application" "my_application" {
 name = "My Awesome App"
 enabled = true

 oidc_options = {
 type = "WORKER"
 grant_types = ["CLIENT_CREDENTIALS"]
 token_endpoint_auth_method = "CLIENT_SECRET_BASIC"
 }

 # ... other configuration parameters
}

resource "time_rotating" "application_secret_rotation" {
 rotation_days = 30
}

resource "pingone_application_secret" "foo" {
 environment_id = pingone_environment.my_environment.id
 application_id = pingone_application.my_application.id

 regenerate_trigger_values = {
 "rotation_rfc3339" : time_rotating.application_secret_rotation.rotation_rfc3339,
 }
}

Review use of API force-delete provider overrides

The PingOne Terraform provider has a provider-level parameter named global_options  that allows administrators to
override API behaviors for development, test, and demo purposes. You can find details in the registry documentation of this
parameter.

There are two parameters that allow force-deletion of configuration, which could result in loss of data if not used correctly.

global_options.environment.production_type_force_delete

WARNING:

The global_options.environment.production_type_force_delete global option was removed in the PingOne Terraform
provider version v1.0. This section applies to prior provider versions (v0.29 or earlier).

Misuse of the parameter could cause unintended data loss, so it must be used with caution.

The purpose of the parameter is to override the API level restriction of not being able to destroy environments of type
"PRODUCTION". The default value of this parameter is false , meaning that environments will not be force-deleted if a
pingone_environment  resource that has a type value of PRODUCTION has a destroy plan when run in the terraform apply
phase. Use of this parameter is designed to help facilitate development, testing, or demonstration purposes and should be set to
false or left undefined for environments that carry production data.

The implementation of this option is that the environment type will be changed from PRODUCTION to SANDBOX before a delete API
request is issued. Instead of using this parameter, consider changing the type to SANDBOX manually before running a plan that
destroys an environment.

Configuration Automation - Terraform Best practices

Copyright © 2025 Ping Identity Corporation 41

https://registry.terraform.io/providers/pingidentity/pingone/latest/docs#nestedblock%E2%80%94%E2%80%8Bglobal_options
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs#nestedblock%E2%80%94%E2%80%8Bglobal_options
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs#nestedblock%E2%80%94%E2%80%8Bglobal_options
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs#global-options
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs#global-options
https://registry.terraform.io/providers/pingidentity/pingone/0.29.2/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/0.29.2/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/0.29.2/docs/resources/environment

global_options.population.contains_users_force_delete

The purpose of the parameter is to override the API level restriction of not being able to destroy populations that contain user
data. The default value of this parameter is false , meaning that populations that contain user data will not be force-deleted if a
pingone_population  resource has a destroy plan when run in the terraform apply phase. Use of this parameter is designed
to help facilitate development, testing, or demonstration purposes where non-production user data is created and can be safely
discarded. The parameter should strictly be set to false or left undefined for environments that carry production data.

The implementation of this option is that the provider will find and delete all users assigned to the population being destroyed
before a delete API request is issued to the population. Instead of using this parameter, consider removing non-production data
manually before running a plan that destroys a population.

Protect configuration and data with the lifecycle.prevent_destroy meta argument

While some resources are safe to remove and replace, there are some resources that, if removed, can result in data loss.

You should use the lifecycle.prevent_destroy meta argument to protect against accidental destroy plans that could cause
data loss. You might also want to use the meta argument to prevent accidental removal of access policies and applications if
dependent applications cannot be updated with Terraform in case of replacement.

For example:

resource "pingone_schema_attribute" "my_attribute" {
 environment_id = pingone_environment.my_environment.id

 name = "myAttribute"

 # ... other configuration parameters

 lifecycle {
 prevent_destroy = true
 }
}

The following resources, if destroyed, put data at risk within a PingOne environment:

pingone_schema_attribute 

If a custom schema attribute is created, a destroy of the schema attribute will erase that attribute’s data for users.

pingone_population 

Users must belong to a population. If a population is removed, the users within that population could be at risk.
There are platform controls to prevent accidental deletion of a population that contains users.

warning
Misuse of the parameter could cause unintended data loss, so it must be used with caution.

Warning

•

◦

•

◦

Best practices Configuration Automation - Terraform

42 Copyright © 2025 Ping Identity Corporation

https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/schema_attribute
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/schema_attribute
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/schema_attribute
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/population

pingone_environment 

Users might belong to the environment’s default population. If the environment is removed, the users within that
population could be at risk. There are platform API-level controls to prevent accidental deletion of an environment
where the environment’s type is set to PRODUCTION . SANDBOX environments do not have such API restrictions.

Multi-team development

Use on-demand sandbox environments

PingOne customer tenants have a "tenant-in-tenant" architecture, whereby a PingOne tenant organisation can contain many
individual environments. These individual environments can be purposed for development, test, pre-production, and production
purposes. These separate environments allow for easy maintenance of multiple development and test instances.

The recommended approach for multi-team development, when using a GitOps CI/CD promotion process, is to spin up on-
demand development and test environments, specific to new features or to individual teams, to allow for development and
integration testing that doesn’t conflict with other team’s development and test activities. The Terraform provider allows
administrators to use CI/CD automation to provision new environments as required and remove them after the project activity no
longer needs them.

In a GitOps CI/CD promotion pipeline, configuration can be translated to Terraform Configuration as Code and then merged (with
pull requests) with common test environments, where automated tests can be run. This flow allows the activities in the on-
demand environments to be merged into a common promotion pipeline to production environments.

User administrator role assignment

Use group role assignments over Terraform-managed user role assignments

PingOne supports assigning administrator roles to groups, such that members of the group get the administrator roles
assigned.

Ping Identity recommends that groups with admin role assignments are controlled by the Joiner/Mover/Leaver Identity
Governance processes, separate from the Terraform CI/CD process that configures applications, policies, domain verification, and
so on. It could be that the groups with their role assignments are initially seeded by Terraform. In this case, it should still be a
separate Terraform process from the process that controls platform configuration, and the user group assignments should still
happen in the Joiner/Mover/Leaver Identity Governance process.

You can use Terraform to assign administrator roles to individuals directly, but this is not recommended best practice except in
development or non-production environments. Ping Identity recommends that role assignment processes in non-production
environments align as closely as possible to role assignment processes in production environments.

Use custom roles to follow principles of least privilege

PingOne supports the creation of custom administrator roles, which allow an administrator to define their own admin role
based on a collection of permissions that represent a specific purpose.

Ping Identity recommends that customers create custom administrator roles to follow least privilege principles. To mitigate
accidental or malicious changes to environments, assign the minimum required permissions for users to be able to perform their
roles.

•

◦

Configuration Automation - Terraform Best practices

Copyright © 2025 Ping Identity Corporation 43

https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://docs.pingidentity.com/pingone/getting_started_with_pingone/p1_manage_admin_roles.html
https://docs.pingidentity.com/pingone/getting_started_with_pingone/p1_manage_admin_roles.html
https://docs.pingidentity.com/pingone/directory/p1_roles.html
https://docs.pingidentity.com/pingone/directory/p1_roles.html

You can use Terraform to manage custom administrator roles and also manage the assignment of custom roles to groups and
users.

Best practices Configuration Automation - Terraform

44 Copyright © 2025 Ping Identity Corporation

Develop with Terraform

Administrator role considerations

Learn about administrator role considerations when using Terraform to manage PingOne environments.

Admin Role Management Considerations

Importing a PingOne environment to Terraform state

Take a preconfigured PingOne environment and import to Terraform state. Importing to Terraform state allows Terraform
to manage a product environment without needing to recreate any configuration for that environment. This is useful when
bringing a production environment under Terraform control retrospectively.

Importing to Terraform state

Exporting or generating PingOne Terraform HCL

Generate Terraform HCL configuration for a preconfigured environment. This is useful when exporting configuration from
a development environment to store in source control or promote to test or production.

Exporting Terraform configuration

Admin Role Management Considerations

When creating and managing environments using Terraform, admin role management must be considered to avoid unexpected
errors or unexpected inability to manage platform resources. The following describes admin role management considerations
that administrators must take when using the PingOne Terraform provider.

PingOne admin role model

An administrative role is a collection of permissions that you can assign to a user, group of users, application, or connection.
Administrative roles give PingOne admins access to resources in the PingOne admin console, API, Terraform resources, and
determine the actions they can take in PingOne.

You can find the list of available admin roles in PingOne roles in the PingOne documentation.

menu_book

menu_book

menu_book

Develop with Terraform Configuration Automation - Terraform

46 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/r/en-us/pingone/p1_c_roles
https://docs.pingidentity.com/r/en-us/pingone/p1_c_roles

Each role is a collection of permissions. You can find the list of permissions that each role contains in PingOne role permissions

in the PingOne developer documentation.

Considerations when using Terraform to create environments

When creating environments with Terraform using the pingone_environment resource, the worker application used to
connect Terraform to the PingOne tenant should have the Organization Admin role assigned, as that role contains the
permission Create, promote, read, update, and delete environment.

After the worker application has created the new environment, the worker application automatically inherits the following roles
scoped to the new environment:

Environment Admin.

Identity Data Admin.

Client Application Developer.

Any existing user, group of users, application, or connection that has an admin role assignment scoped to the organization also
inherits the ability to manage the new environment with the permissions assigned to that role.

For example, if admin user Barbara Jensen has Environment Admin scoped to the organization and Identity Data Admin scoped to
individual environments, either assigned directly or by being member of a group that has those admin roles assigned, Barbara will
inherit the role permissions to be able to manage that new environment (inherited Environment Admin role permissions), but
will not be able to manage user and group data of the environment (the Identity Data Admin role permissions have not been
inherited). In this example, if Barbara needs to manage user identities and groups, she would need the Identity Data Admin role
assigned scoped to the new environment, either directly or by being made a member of a group that has that role assigned. Learn
more in Assigning admin roles.

Other than the birthright roles assigned to the worker application on environment creation and the inherited permissions on
actors with roles scoped to the organization, no other role assignments are given implicitly.

It’s now up to the customer tenant administrators to consider:

Are the Terraform worker application’s birthright roles sufficient to perform further configuration with Terraform?

If not, further roles might need to be explicitly assigned to the worker application. Adding additional roles can be done in
the PingOne admin console by an administrator, by API, or by Terraform. Learn more in Assigning admin roles.

Are the worker application’s birthright role permissions beyond what’s required for the worker application to perform its
configuration management purpose and contravene least privilege principles?

In this case, roles might need to be revoked from the worker application. Role revoking can be done in the PingOne admin
console by an administrator or by API. You cannot revoke birthright roles from a worker application used to create an
environment using Terraform unless the birthright role assignments are first imported into Terraform state. Learn more in
Importing role assignments to Terraform state._

•

•

•

info
To prevent privilege escalation, admin users, worker applications, or connections that previously could view and
manage the worker application’s secret might no longer be able to do so after an environment has been created with
Terraform. This change can lead to an error Actor does not have permissions to access worker application client
secrets. You can find more information in When admins cannot view a worker application secret.

Note

•

•

Configuration Automation - Terraform Develop with Terraform

Copyright © 2025 Ping Identity Corporation 47

https://apidocs.pingidentity.com/pingone/platform/v1/api/#pingone-role-permissions
https://apidocs.pingidentity.com/pingone/platform/v1/api/#pingone-role-permissions
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment

Should other users, worker applications, or connections be granted administrative roles that can manage the new
environment or continue to manage the secret of the Terraform worker application? (Refer to When admins cannot view
or manage a worker application secret).

Roles can be explicitly assigned to any user, group of users, worker application, or connection in the PingOne admin
console, by API, or by Terraform. Learn more in Assigning admin roles.

Do existing users, worker applications, or connections that have roles scoped to the organization (and therefore implicitly
gain permissions to manage the new environment) have the appropriate role permissions, or do those users (through
direct assignment or through group membership), worker applications, or connections need to have their role scope
reduced such that their roles should instead be scoped to individual environments.

Reducing the scope of admin role assignments can be achieved in the PingOne admin console by an administrator, by API,
or by Terraform (if those role assignments are managed using Terraform).

Assigning admin roles

When assigning admin roles to users, worker applications, or connections, the role assignments can be assigned with a scope to
individual environments, populations, or to the entire organization (depending on the role). Users can be assigned roles directly
or by being members of a group that’s been assigned admin roles.

Admin role assignments can be managed in the PingOne admin console, by API, or by Terraform. When using Terraform, the
following resources apply:

Assigning admin roles directly to users: pingone_user_role_assignment resource. Role conflicts might occur. Learn more
in Role assignment scope conflicts.

Assigning admin roles to groups: pingone_group_role_assignment resource. Role conflicts might occur on the group role
assignment, but role conflicts on group user members are resolved automatically. Learn more in Role assignment scope conflicts.

Assigning admin roles to worker applications: pingone_application_role_assignment resource. Role conflicts might
occur. Learn more in Role assignment scope conflicts.

Assigning admin roles to connections: pingone_gateway_role_assignment resource. Role conflicts might occur. Learn
more in Role assignment scope conflicts.

Learn how Terraform can be used to assign roles to administrative actors in the Role assignment with Terraform tutorial.

Ping Identity recommends that customers follow documented general best practices and PingOne-specific best practices for
developing with Terraform, paying close attention to best practices around administrative role assignment.

Role assignment scope conflicts

When assigning roles to users, groups of users, applications, or connections using Terraform, there are situations where role
assignment uniqueness conflicts can occur. Errors could look similar to the following:

•

•

•

•

•

•

Develop with Terraform Configuration Automation - Terraform

48 Copyright © 2025 Ping Identity Corporation

https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/user_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/user_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/user_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/gateway_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/gateway_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/gateway_role_assignment

PingOne Error Details:
ID: f21b****-****-****-****-********a7d0
Code: INVALID_DATA
Message: The request could not be completed. One or more validation errors were in the request.
Details:
 - Code: UNIQUENESS_VIOLATION
 Message: May not assign duplicate Role
 Target: role

This error occurs when a user, group, worker application, or connection already has the role assignment at a scope that is greater
than or equal to the scope being configured.

For example, Janet Smith has the Environment Admin role assigned scoped to the organization. The terraform apply run
attempts to assign the Environment Admin to Janet using the pingone_user_role_assignment resource, scoped to an
individual environment. Because Janet already has Environment Admin with organization-level permissions (and so can manage
all environments), Terraform is attempting to add duplicate role permissions.

In this example, the user-level conflict can be resolved by instead managing user’s role assignments using groups, using the
pingone_group_role_assignment resource where needed. When using Terraform to manage role assignments, using groups
to manage user’s role assignments is a documented best practice.

In the case of worker applications and connections, the Terraform HCL must be adjusted to resolve the role assignment scope
conflict. You can change the following:

Change how role assignments are managed as an out-of-band control to avoid the possibility of conflict. In this way,
admin-level controls outside of Terraform ensure that conflicts are unlikely to happen when Terraform needs to manage
role conflicts.

Manage roles with privileged access management tools to reduce the need for Terraform to manage role assignments.

Use Terraform to calculate the possibility of conflicting role assignments.

Importing role assignments to Terraform state

Role assignments to users, groups, worker applications, and connections might have been defined outside of Terraform’s
management control. This includes role assignments that:

Have been defined by administrators in the PingOne admin console

Have been defined by administrators or scripts using the PingOne platform management API

•

•

•

info
There are disadvantages to using Terraform to calculate the possibility of conflicting role assignments, as role
assignments for a user, group, application, or connection must be fully known in order to calculate the potential
conflicts. Because in Terraform, IDs are not known until the first terraform apply , this can lead to a situation where
the Terraform HCL must be applied twice:

Applying the initial role assignments
Applying again to perform an accurate calculation to ensure any future role assignments are not in conflict

You can find an example HCL in GitHub issue 478

Note

1.
2.

•

•

Configuration Automation - Terraform Develop with Terraform

Copyright © 2025 Ping Identity Corporation 49

https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/user_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/user_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/user_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://github.com/pingidentity/terraform-provider-pingone/issues/478#issue-1805321896
https://github.com/pingidentity/terraform-provider-pingone/issues/478#issue-1805321896

Have been defined implicitly by the platform when creating new environments though the PingOne admin console, by API,
or by Terraform (using the pingone_environment resource)

These role assignments can be brought under Terraform’s management control by using the Terraform import functionality.
Import is supported on the following resources:

Admin role assignment to a user directly: pingone_user_role_assignment resource

Admin role assignment to a group: pingone_group_role_assignment resource

Admin role assignment to a worker application: pingone_application_role_assignment resource

Admin role assignment to a connection: pingone_gateway_role_assignment resource

Import by Terraform CLI

Hashicorp Terraform provides a standard CLI command, terraform import , that can be used to import any supported resource
into Terraform state. Learn more in Importing to Terraform state.

Each resource listed previously contains an example for importing the resource to Terraform state using the Terraform CLI.

Import by Terraform configuration language

Hashicorp Terraform provides a standard configuration language import declaration block, import {} , that you can use to
import any supported resource into Terraform state and generate its resulting HCL. Learn more in Importing to Terraform state.

The following is an example of a role assignment import for pingone_group_role_assignment , where the ID is a composite ID of
<environment_id>/<group_id>/<role_assignment_id> , as shown in the Terraform CLI import example in the registry
documentation:

import {
 to = pingone_group_role_assignment.example
 id = "e16f****-****-****-****-********15be/80f9****-****-****-****-********e828/f936****-****-****-****-
********65c1"
}

When admins cannot view or manage a worker application secret

Admin actors (users, worker applications, and connections) might not be able to view or rotate a worker application’s secret when
they were able to previously as an unexpected change of behavior.

The issue can be observed in the PingOne admin console (manifesting as a lack of control over a worker application’s secret), a
403 error response from the Read Application Secret API, or the following error within Terraform when attempting to use the
pingone_application_secret resource or data source:

•

•

•

•

•

Develop with Terraform Configuration Automation - Terraform

50 Copyright © 2025 Ping Identity Corporation

https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/user_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/user_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/user_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/gateway_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/gateway_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/gateway_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://apidocs.pingidentity.com/pingone/platform/v1/api/#get-read-application-secret
https://apidocs.pingidentity.com/pingone/platform/v1/api/#get-read-application-secret
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application_secret
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application_secret
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/application_secret
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/application_secret

PingOne Error Details:
ID: f21b****-****-****-****-********a7d0
Code: ACCESS_FAILED
Message: The request could not be completed. You do not have access to this resource.
Details:
 - Code: INSUFFICIENT_PERMISSIONS
 Message: Actor does not have permissions to access worker application client secrets

The change in ability to manage a worker application’s client secret typically occurs when the worker application is granted
additional role permissions that the user, admin worker application, or connection doesn’t have. The worker application whose
secret cannot be managed has a higher level of privilege to manage configuration and data within the tenant. The ability to view
and change the secret is therefore restricted to mitigate privilege escalation issues where admin actors could potentially use the
higher privileged worker application to make changes they aren’t authorized to make in the platform.

For example, the worker application Terraform Admin is used to create a new environment using the pingone_environment
resource. The Terraform Admin worker application is implicitly granted birthright roles to be able to manage that environment
(refer to Considerations when using Terraform to create environments), but other admin users, worker applications, and
connections aren’t provided the same birthright role permission assignments.

The Terraform Admin worker application that created the environment now has higher privileges than other administrators, so
privilege escalation controls are applied to other platform administrators. Other platform administrators have now lost the ability
to view and manage the Terraform Admin worker application secret.

The resolution is to apply the missing roles permissions by assigning roles to the users, worker applications, or connections that
need to be able to manage the worker application’s secret.

In the previous example, you would add a combination of Environment Admin, Identity Data Admin, and Client Application
Developer roles scoped to the newly created environment to the users, worker applications, or connections that need to be able to
manage the "Terraform Admin" worker application’s secret.

Roles can be explicitly assigned to any user, group of users, worker application, or connection in the PingOne admin console, by
API or by Terraform. Learn more in Assigning admin roles.

Configuration Automation - Terraform Develop with Terraform

Copyright © 2025 Ping Identity Corporation 51

Tutorials

Role assignment using Terraform

Learn how to use Terraform to automatically grant roles to users, groups, worker applications, or gateways.

Role assignment with Terraform

Configure the end-user Self Service application

Learn how to use Terraform to enable and disable features in the default end-user Self Service application.

Configuring the PingOne Self Service application

Role assignment with Terraform

The following shows an example of environment creation using the PingOne Terraform provider, followed by role permission
assignment to administration users that are members of a group we will create.

The example assumes that all relevant admins users will have a role strategy as follows:

Environment Admin, scoped to individual environments (not scoped to the organization)

Identity Data Admin, scoped to individual environments

First, you’ll create the group in PingOne to which you’ll assign your administrator users. This example uses the pingone_group
resource.

menu_book

menu_book

info
PingOne supports assigning administrator roles groups, and members of those groups are assigned administrator
roles. Although you can use Terraform to assign administrator roles to individuals directly, Ping Identity recommends
that role assignments provisioned by Terraform are assigned to groups instead and that you manage group
membership through Joiner/Mover/Leaver Identity Governance processes.

Note

•

•

info
The example uses:

The pingone_admin_environment_id variable that can be mapped directly or can be found from the
environment name from the pingone_environment data source

The license_id variable that can be mapped directly or can be found from the license name from the
pingone_licenses data source.

Note

•

•

Configuration Automation - Terraform Tutorials

Copyright © 2025 Ping Identity Corporation 53

https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/licenses
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/licenses
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/licenses
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group

resource "pingone_group" "my_awesome_admins_group" {
 environment_id = var.pingone_admin_environment_id

 name = "My awesome admins group"
 description = "My new awesome group for admins who are awesome"

 lifecycle {
 # change the `prevent_destroy` parameter value to `true` to prevent this data carrying resource from being
destroyed
 prevent_destroy = false
 }
}

Next, you’ll fetch the required roles. You’ll need to find the IDs of the Identity Data Admin and Environment Admin predefined
admin roles, which are different between tenant organizations. You can use the pingidentity/utils/pingone helper module

to retrieve the role IDs, so that you can use role IDs in role assignment to the group:

module "admin_utils" {
 source = "pingidentity/utils/pingone"
 version = "0.1.0"

 region_code = "EU" // Will be either NA, EU, CA, AU or AP depending on your tenant region.
 environment_id = var.pingone_admin_environment_id
}

You can then define the new sandbox environment using the PingOne Terraform provider with the pingone_environment
resource, with the SSO service enabled. This is the environment to which you want to scope the administrator roles so that
your users can manage configuration and data within this environment:

resource "pingone_environment" "my_environment" {
 name = "Example PingOne Role Permission Assignment Environment"
 type = "SANDBOX"
 license_id = var.license_id

 services = [
 {
 type = "SSO"
 }
]
}

After you’ve created the new environment, you can assign the roles to the administration users with the
pingone_group_role_assignment resource.

info
When including a new module in Terraform HCL, remember to re-run terraform init to initialize the module in the
Terraform project.

Note

Tutorials Configuration Automation - Terraform

54 Copyright © 2025 Ping Identity Corporation

https://registry.terraform.io/modules/pingidentity/utils/pingone/latest
https://registry.terraform.io/modules/pingidentity/utils/pingone/latest
https://registry.terraform.io/modules/pingidentity/utils/pingone/latest
https://registry.terraform.io/providers/pingidentity/pingone/latest
https://registry.terraform.io/providers/pingidentity/pingone/latest
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/environment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/group_role_assignment

resource "pingone_group_role_assignment" "admin_sso_identity_admin" {
 environment_id = var.pingone_admin_environment_id
 group_id = pingone_group.my_awesome_admins_group.id
 role_id = module.admin_utils.pingone_role_id_identity_data_admin

 scope_environment_id = pingone_environment.my_environment.id
}

resource "pingone_group_role_assignment" "admin_sso_environment_admin" {
 environment_id = var.pingone_admin_environment_id
 group_id = pingone_group.my_awesome_admins_group.id
 role_id = module.admin_utils.pingone_role_id_environment_admin

 scope_environment_id = pingone_environment.my_environment.id
}

The group "My awesome admins group" has now been assigned the Identity Data Admin and Environment Admin roles. Any
user who is made a member of the group will inherit these administrative roles and their associated permissions.

Configuring the PingOne Self Service application

The following shows an example of how to configure the PingOne Self Service system application.

You can configure the PingOne Self Service application in the PingOne admin console. It’s a web application, and its capabilities
are configured by assigning resource scopes to the application, rather than through a dedicated API or Terraform resource.

First, you’ll need to ensure that the Self Service application itself is configured using the pingone_system_application resource
.

resource "pingone_system_application" "pingone_self_service" {
 environment_id = pingone_environment.my_environment.id

 type = "PING_ONE_SELF_SERVICE"
 enabled = true

 apply_default_theme = true
 enable_default_theme_footer = true
}

You’ll then select which self-service capabilities (the scopes) you want to apply to the Self Service application. The simplest way is
to create a list and select the appropriate scope data using the pingone_resource_scope data source.

Configuration Automation - Terraform Tutorials

Copyright © 2025 Ping Identity Corporation 55

https://docs.pingidentity.com/pingone/user_experience/p1_self_service.html
https://docs.pingidentity.com/pingone/user_experience/p1_self_service.html
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/system_application
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/system_application
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/system_application
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/system_application
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/resource_scope
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/resource_scope
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/data-sources/resource_scope

locals {
 pingone_api_scopes = [
 # Manage Profile
 "p1:read:user",
 "p1:update:user",

 # Manage Authentication
 "p1:create:device",
 "p1:create:pairingKey",
 "p1:delete:device",
 "p1:read:device",
 "p1:read:pairingKey",
 "p1:update:device",

 # Enable or Disable MFA
 "p1:update:userMfaEnabled",

 # Change Password
 "p1:read:userPassword",
 "p1:reset:userPassword",
 "p1:validate:userPassword",

 # Manage Linked Accounts
 "p1:delete:userLinkedAccounts",
 "p1:read:userLinkedAccounts",

 # Manage Sessions
 "p1:delete:sessions",
 "p1:read:sessions",

 # View Agreements
 "p1:read:userConsent",

 # Manage OAuth Consents
 "p1:read:oauthConsent",
 "p1:update:oauthConsent",
]
}

data "pingone_resource_scope" "pingone_api" {
 for_each = toset(local.pingone_api_scopes)

 environment_id = pingone_environment.my_environment.id
 resource_type = "PINGONE_API"

 name = each.key
}

Next, you’ll map the appropriate scopes to enable the specific self-service features you want using the
pingone_application_resource_grant resource.

Tutorials Configuration Automation - Terraform

56 Copyright © 2025 Ping Identity Corporation

https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application_resource_grant
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application_resource_grant
https://registry.terraform.io/providers/pingidentity/pingone/latest/docs/resources/application_resource_grant

resource "pingone_application_resource_grant" "my_awesome_spa_pingone_api_resource_grants" {
 environment_id = pingone_environment.my_environment.id
 application_id = pingone_system_application.pingone_self_service.id

 resource_type = "PINGONE_API"

 scopes = [
 for scope in data.pingone_resource_scope.pingone_api : scope.id
]
}

The Self Service application is now configured with the required capabilities.

You can find the full runable example on GitHub.

Configuration Automation - Terraform Tutorials

Copyright © 2025 Ping Identity Corporation 57

https://github.com/pingidentity/terraform-docs/tree/main/examples/pingone-configuring-the-self-service-application
https://github.com/pingidentity/terraform-docs/tree/main/examples/pingone-configuring-the-self-service-application

Frequently Asked Questions

How do I export configuration from a previously configured environment?

You can export configuration from a PingOne environment using a combination of Ping CLI and Terraform CLI tools.

Learn more in Exporting Terraform configuration.

How do I bring a previously configured environment under Terraform
management?

You can bring any environment that has been configured without using Terraform under Terraform management using a
combination of Ping CLI and Terraform CLI tools.

Learn more in Importing to Terraform state.

I cannot create a workforce-enabled environment or where can I Terraform
creation of a PingID-enabled environment?

The PingOne provider does not yet support creation of a PingID-enabled workforce environment. You can track the list of known
issues and provider limitations on the project’s GitHub.

I’ve created a new environment with Terraform, but my admins can’t see it

Check the admin user’s role permissions. The admin user must have any of the following roles to see it in the list of environments:

Organization Admin

Environment Admin

Identity Data Admin

Client Application Developer

Identity Data Read Only

Configuration Read Only

Refer to the Admin Role Management Considerations guide for details on role assignment and considerations for admin role
management when using Terraform.

I’ve created a new environment or population with Terraform, but my admins
can’t view users, or manage group or population based configuration

Check the admin user’s role permissions. The admin user must have any of the following roles to be able to view and manage
identity data and configuration:

Identity Data Admin

•

•

•

•

•

•

•

Configuration Automation - Terraform Frequently Asked Questions

Copyright © 2025 Ping Identity Corporation 59

https://github.com/pingidentity/terraform-provider-pingone/issues/451
https://github.com/pingidentity/terraform-provider-pingone/issues/451

Identity Data Read Only

Refer to the Admin Role Management Considerations guide for details on role assignment and considerations for admin role
management when using Terraform.

I get an error "Actor does not have permissions to access worker application
client secrets"

Admin actors (users, worker applications, connections) might not be able to view or rotate a worker application’s secret when
they could previously as an unexpected change of behavior.

The change in ability to manage a worker application’s client secret typically occurs when the worker application is granted
additional role permissions that the user, admin worker application, or connection doesn’t have. The worker application whose
secret cannot be managed has a higher level of privilege to manage configuration and data within the tenant. The ability to view
and change the secret is therefore restricted to mitigate privilege escalation issues where admin actors could potentially use the
higher privileged worker application to make changes they aren’t authorized to make in the platform.

You can find more information and guidance on how to resolve this error in Admin Role Management Considerations.

•

Frequently Asked Questions Configuration Automation - Terraform

60 Copyright © 2025 Ping Identity Corporation

Getting started

The following provides guidance on preparing a PingFederate deployment for Terraform access.

Requirements

Terraform CLI 1.4+

A running PingFederate server accessible over HTTPS, or Docker CLI to start one.

If using Docker to start a PingFederate server, you must have a DevOps license. Register for the DevOps program here.

(Optional) Start a PingFederate Docker container

Start a PingFederate server. The following example shows how to start a single PingFederate server using Docker.

Your DevOps credentials will be read from the .pingidentity/config file in the user’s home directory. The HTTPS port
(default 9999) must be exposed. This example starts the product with the getting-started/pingfederate server profile,
running the latest version of PingFederate from Docker Hub.

docker run --name pingfederate_terraform_provider_container \
 -d -p 9031:9031 \
 -d -p 9999:9999 \
 --env-file "${HOME}/.pingidentity/config" \
 -e SERVER_PROFILE_URL=https://github.com/pingidentity/pingidentity-server-profiles.git \
 -e SERVER_PROFILE_PATH=getting-started/pingfederate
 pingidentity/pingfederate:latest

After starting the container, follow the logs until the server becomes available.

docker logs -f pingfederate_terraform_provider_container

After you see the following message in the container logs, the server is ready to receive requests from the provider:

PingFederate is up

Accessing the PingFederate API

Gaining access to the API depends on where your PingFederate instance is running. In order to work with the API, you need to
authenticate just as you would for performing administrative tasks. To interact directly with the API in the browser and view the
documentation, you would typically go to the following URL:

https://<pf_host>:9999/pf-admin-api/api-docs/

•

•

•

info
If you already have a running PingFederate server that you can reach over HTTPS, you can skip this step. The provider
can be used with any PingFederate server.

Note

1.

2.

Getting started Configuration Automation - Terraform

62 Copyright © 2025 Ping Identity Corporation

https://devops.pingidentity.com/how-to/devopsRegistration/
https://devops.pingidentity.com/how-to/devopsRegistration/

where <pf_host> is the network address of your PingFederate server. This target can be an IP address, a host name, or a fully
qualified domain name. It must be reachable from your computer.

If you’re using OIDC, you can find information on how to connect in OIDC authentication in the PingFederate documentation.

When using a local container as shown above, the port mappings result in PingFederate being available at https://localhost:9999/
pingfederate/app#/ by default. The provider supports an attribute admin_api_path which defaults to /pf-admin-api/v1. If your
environment has a load balancer or other network configuration that requires a different path to the API, you can configure the
provider to use it.

The PingFederate Terraform provider applies configuration at the API endpoints using the specified port (9999) over HTTPS when
accessing the product locally under Docker.

Determine credentials that are able to configure the server

The provider supports basic authentication, OAuth2 client credentials flow authentication, and access token authentication for
connection to the configuration API. In this example, basic authentication will be used.

When using basic authentication, the provider will need the username and password of a user with permission to manage server
configuration.

When using OAuth2 client credentials, the client_id , client_secret , and token_url attributes are required in the provider
configuration, with scopes being optional.

When using an access token, only access_token is required in the provider configuration.

You can find examples of configuring other authentication methods in the Terraform registry documentation.

Determine what version of PingFederate you’re running

The provider requires that the version of PingFederate is specified.

You can do this one of two ways:

Using the product_version attribute when configuring the provider:

provider "pingfederate" {
 ...
 product_version = "12.1"
}

Setting the PINGFEDERATE_PROVIDER_PRODUCT_VERSION environment variable to the version of PingFederate you’re
running:

info
When using the Ping Identity Docker images, the default username and password can be used. Learn more in Deploy
an Example Stack in the Ping Identity DevOps documenation.

Note

1.

2.

Configuration Automation - Terraform Getting started

Copyright © 2025 Ping Identity Corporation 63

https://docs.pingidentity.com/pingfederate/latest/administrators_reference_guide/pf_enabling_oidc_based_auth.html
https://docs.pingidentity.com/pingfederate/latest/administrators_reference_guide/pf_enabling_oidc_based_auth.html
https://devops.pingidentity.com/get-started/getStartedExample/
https://devops.pingidentity.com/get-started/getStartedExample/
https://devops.pingidentity.com/get-started/getStartedExample/
https://registry.terraform.io/providers/pingidentity/pingfederate/latest/docs
https://registry.terraform.io/providers/pingidentity/pingfederate/latest/docs

export PINGFEDERATE_PROVIDER_PRODUCT_VERSION=12.1

If using the container, you can view the product version using by running a shell in the container and searching for the
appropriate environment variable:

docker container exec -it pingfederate_terraform_provider_container /bin/sh

Next, in the container shell, get the version:

env | grep PING_PRODUCT_VERSION

If neither is set, the provider will throw an error.

Trusting PingFederate certificates

PingFederate generates a self-signed certificate by default, which is presented by the server when connecting. The default self-
signed certificate can be replaced with a custom certificate. The provider has a few ways of configuring trust for the HTTPS
connection with the server.

By default, the provider will trust the host’s default root certificate authority (CA) set when connecting to the server.

If you need to provide CA certificates for the provider to trust, you can use the ca_certificate_pem_files attribute. This
attribute supports providing a set of paths to files containing PEM-encoded CA certificates to be trusted.

You can also use the PINGFEDERATE_PROVIDER_CA_CERTIFICATE_PEM_FILES environment variable, with commas to delimit
multiple PEM file paths if necessary.

Finally, the provider supports an insecure_trust_all_tls boolean attribute that enables it to trust all certificates when
connecting to the server.

Use the provider to configure PingFederate

You are now ready to configure the PingFederate server using the provider.

You can find examples on configuring the Terraform provider to manage PingFederate configuration in the PingFederate Provider
Registry documentation.

info
The product_version provider configuration attribute takes precedence over the
PINGFEDERATE_PROVIDER_PRODUCT_VERSION environment variable.

Note

warning
The insecure_trust_all_tls provider flag, when set to true, is insecure and is intended for development and testing
only. You should not enable this option for production use.

Warning

Getting started Configuration Automation - Terraform

64 Copyright © 2025 Ping Identity Corporation

https://registry.terraform.io/providers/pingidentity/pingfederate/latest/docs
https://registry.terraform.io/providers/pingidentity/pingfederate/latest/docs
https://registry.terraform.io/providers/pingidentity/pingfederate/latest/docs

Configuration Automation - Terraform Getting started

Copyright © 2025 Ping Identity Corporation 65

Frequently Asked Questions

What versions of PingFederate are supported?

You can find the list of supported PingFederate versions by provider version the latest provider documentation.

How do I configure trust for connecting over HTTPS?

You can find details on configuring TLS trust in the Getting started guide.

Configuration Automation - Terraform Frequently Asked Questions

Copyright © 2025 Ping Identity Corporation 67

https://registry.terraform.io/providers/pingidentity/pingfederate/latest/docs/guides/server-support
https://registry.terraform.io/providers/pingidentity/pingfederate/latest/docs/guides/server-support

Getting started

The following provides guidance on preparing a PingDirectory deployment for Terraform access.

Requirements

Terraform CLI 1.1+

A running PingDirectory server accessible over HTTPS, or Docker CLI to start one.

When using Docker to start a PingDirectory server, you must have a DevOps license. Register for the DevOps program
here.

(Optional) Start a PingDirectory Docker container

Start a PingDirectory server. The following example shows how to start a single PingDirectory server using Docker.

Your DevOps credentials will be read from the .pingidentity/config file in the user’s home directory. The HTTPS port
(default 1443) must be exposed.

docker run --name pingdirectory_terraform_provider_container \
-d -p 1443:1443 \
-d -p 1389:1389 \
-e TAIL_LOG_FILES= \
--env-file "${HOME}/.pingidentity/config" \
pingidentity/pingdirectory:latest

After starting the container, follow the logs until the server becomes available.

docker logs -f pingdirectory_terraform_provider_container

After you see the following message in the container logs, the server is ready to receive requests from the provider:

Setting Server to Available

Ensure the Configuration HTTP Servlet extension is enabled

The PingDirectory Terraform provider applies configuration using the Configuration HTTP servlet extension, which must be
enabled for the server’s HTTPS connection handler.

This setting is already configured by default in PingDirectory, including when running in Docker.

If you’ve disabled the Configuration HTTP servlet extension on your server, you can re-enable it with dsconfig:

•

•

•

info
If you already have a running PingDirectory server that you can reach over HTTPS, you can skip this step. The provider
can be used with any PingDirectory server.

Note

1.

2.

Configuration Automation - Terraform Getting started

Copyright © 2025 Ping Identity Corporation 69

https://devops.pingidentity.com/how-to/devopsRegistration/
https://devops.pingidentity.com/how-to/devopsRegistration/
https://devops.pingidentity.com/how-to/devopsRegistration/

dsconfig set-connection-handler-prop --handler-name "HTTPS Connection Handler" --add http-servlet-
extension:Configuration

Determine what port the server is using for HTTPS connections

The PingDirectory Docker image uses port 1443 for HTTPS by default.

To determine what port you’re using, use the status command and examine the output for a block containing the HTTPS port:

dsconfig status

 --- Connection Handlers ---
Address:Port : Protocol : State : Name
-------------:----------:----------:-------------------------
0.0.0.0:1389 : LDAP : Enabled : LDAP Connection Handler
0.0.0.0:1443 : HTTPS : Enabled : HTTPS Connection Handler
0.0.0.0:1636 : LDAPS : Enabled : LDAPS Connection Handler

Determine credentials that are able to configure the server

The Configuration API used by the provider uses basic authentication. The provider will need the username and password of a
user that has permissions to manage server configuration.

Determine what version of PingDirectory you are running

The provider requires that the version of PingDirectory is specified through the product_version attribute or the
PINGDIRECTORY_PROVIDER_PRODUCT_VERSION environment variable.

You can view the product version using the status command. Look for the Server Details section:

dsconfig status

 --- Server Details ---
Host Name: ...
Instance Name: ...
Administrative Users: cn=administrator
Installation Path: /opt/out/instance
Server Version: Ping Identity Directory Server 9.2.0.0

info
When using the Ping Identity Docker images, the default username and password can be used. Learn more in Deploy
an Example Stack.

Note

Getting started Configuration Automation - Terraform

70 Copyright © 2025 Ping Identity Corporation

https://devops.pingidentity.com/get-started/getStartedExample/
https://devops.pingidentity.com/get-started/getStartedExample/
https://devops.pingidentity.com/get-started/getStartedExample/

Trusting PingDirectory certificates

PingDirectory generates a self-signed certificate by default, which is presented by the server’s HTTPS connection handler. You can
replace the default self-signed certificate with a custom certificate. The provider has a few ways of configuring trust for the HTTPS
connection with the server.

By default, the provider will trust the host’s default root Certificate Authority (CA) set when connecting to the server.

The provider also supports an insecure_trust_all_tls boolean attribute (configurable with environment variable
PINGDIRECTORY_PROVIDER_INSECURE_TRUST_ALL_TLS) that allows simply trusting all certificates when connecting to the server.
This option is insecure and should not be used in production.

If you need to provide CA certificates for the provider to trust, you can use the ca_certificate_pem_files attribute. This
attribute allows you to provide a set of paths to files containing PEM-encoded CA certificates to be trusted. The
PINGDIRECTORY_PROVIDER_CA_CERTIFICATE_PEM_FILES environment variable can also be used, with commas to delimit multiple
PEM file paths if necessary.

If you want to trust the default self-signed certificate of the PingDirectory server, you can export the certificate from the server’s
keystore using the manage-certificates command-line tool.

Write the output of that command to a file. Then you can include the path to that file in the ca_certificate_pem_files attribute
when using the provider. The following example uses cert.pem as the filename:

manage-certificates export-certificate --keystore config/keystore --alias server-cert > cert.pem

Use the provider to configure PingDirectory

You are now ready to configure the PingDirectory server with the provider.

You can find examples on configuring the Terraform provider to manage PingDirectory configuration in the PingDirectory
Provider Registry documentation.

Configuration Automation - Terraform Getting started

Copyright © 2025 Ping Identity Corporation 71

https://registry.terraform.io/providers/pingidentity/pingdirectory/latest/docs
https://registry.terraform.io/providers/pingidentity/pingdirectory/latest/docs
https://registry.terraform.io/providers/pingidentity/pingdirectory/latest/docs

Frequently Asked Questions

What versions of PingDirectory are supported?

You can find the list of supported PingDirectory versions by provider version the latest provider documentation.

How do I configure trust for connecting over HTTPS?

You can find details on configuring TLS trust in the Getting started guide.

Configuration Automation - Terraform Frequently Asked Questions

Copyright © 2025 Ping Identity Corporation 73

https://registry.terraform.io/providers/pingidentity/pingdirectory/latest/docs#pingdirectory-version-support
https://registry.terraform.io/providers/pingidentity/pingdirectory/latest/docs#pingdirectory-version-support

	Table of Contents
	Terraform at Ping Identity
	Published Terraform providers
	Get started
	Discover Terraform
	What is Terraform
	Key use cases
	Terraform providers
	Terraform state
	Terraform resources
	Terraform data sources
	Using providers, resources, and data sources to meet key use cases

	Benefits of Terraform with Ping Identity deployments
	Accelerating configuration promotion
	Accelerating development cycles
	Protecting against accidental or malicious configuration changes
	Consistent and homogenous Configuration as Code syntax
	Auditability and readability of changes

	Best practices
	General use
	plan first before apply
	Use --auto-approve with caution
	Store state securely
	Don’t modify state directly
	Ensure provider warnings are captured and reviewed

	HCL writing recommendations
	Use Terraform formatting tools
	Validate Terraform HCL before plan and apply
	Using count and for_each with resource iteration
	Use maps with static keys when using for_each on resources
	Best practice
	Not best practice

	Write and publish reusable modules

	Versioning
	Use Terraform version control
	Use provider version control
	Use module version control

	Protect service configuration and data
	Protect configuration and data with the lifecycle.prevent_destroy meta argument

	Secrets management
	Use of Terraform variables and secrets management

	Multi-team development
	Use on-demand development environments

	Continuous Integration/Continuous Delivery (CI/CD)
	Use Terraform linting tools
	Use Terraform security scanning tools
	Check the .terraform.lock.hcl file into source control

	Develop with Terraform
	Importing to Terraform state
	Exporting and generating Terraform HCL
	Interface stability
	Getting support
	Importing to Terraform state
	Using Ping CLI to generate import blocks

	Exporting Terraform configuration
	Using Ping CLI to generate Terraform configuration

	Interface stability
	Breaking changes

	Getting support

	Getting started
	Requirements
	PingOne subscription or trial
	Configure PingOne for Terraform access
	Finding required IDs
	License ID, organization ID, and organization name

	Best practices
	Develop in the admin console, promote using Configuration as Code
	Example or bootstrapped configuration dependencies
	Deploy to "clean" environments, without example or bootstrapped configuration
	Platform
	DaVinci service
	MFA service
	Verify service

	Define all configuration dependencies in Terraform or elsewhere in the pipeline
	Not best practice
	Best practice

	Protect service configuration and data
	Regularly rotate worker application secrets

	Review use of API force-delete provider overrides
	global_options.environment.production_type_force_delete
	global_options.population.contains_users_force_delete
	Protect configuration and data with the lifecycle.prevent_destroy meta argument

	Multi-team development
	Use on-demand sandbox environments

	User administrator role assignment
	Use group role assignments over Terraform-managed user role assignments
	Use custom roles to follow principles of least privilege

	Develop with Terraform
	Administrator role considerations
	Importing a PingOne environment to Terraform state
	Exporting or generating PingOne Terraform HCL
	Admin Role Management Considerations
	PingOne admin role model
	Considerations when using Terraform to create environments
	Assigning admin roles
	Role assignment scope conflicts

	Importing role assignments to Terraform state
	Import by Terraform CLI
	Import by Terraform configuration language

	When admins cannot view or manage a worker application secret

	Tutorials
	Role assignment using Terraform
	Configure the end-user Self Service application
	Role assignment with Terraform
	Configuring the PingOne Self Service application

	Frequently Asked Questions
	How do I export configuration from a previously configured environment?
	How do I bring a previously configured environment under Terraform management?
	I cannot create a workforce-enabled environment or where can I Terraform creation of a PingID-enabled environment?
	I’ve created a new environment with Terraform, but my admins can’t see it
	I’ve created a new environment or population with Terraform, but my admins can’t view users, or manage group or population based configuration
	I get an error "Actor does not have permissions to access worker application client secrets"

	Getting started
	Requirements
	(Optional) Start a PingFederate Docker container
	Accessing the PingFederate API
	Determine credentials that are able to configure the server
	Determine what version of PingFederate you’re running
	Trusting PingFederate certificates
	Use the provider to configure PingFederate

	Frequently Asked Questions
	What versions of PingFederate are supported?
	How do I configure trust for connecting over HTTPS?

	Getting started
	Requirements
	(Optional) Start a PingDirectory Docker container
	Ensure the Configuration HTTP Servlet extension is enabled
	Determine what port the server is using for HTTPS connections
	Determine credentials that are able to configure the server
	Determine what version of PingDirectory you are running
	Trusting PingDirectory certificates
	Use the provider to configure PingDirectory

	Frequently Asked Questions
	What versions of PingDirectory are supported?
	How do I configure trust for connecting over HTTPS?

